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Abstract. Stability control of Runge-Kutta numerical schemes is studied to increase efficiency of in-
tegrating stiff problems. The implementation of the algorithm to determine coefficients of stability
polynomials with the use of the GMP library is presented. Shape and size of the stability region of a
method can be preassigned using proposed algorithm. Sets of first-order methods with extended stability
domains are built. The results of electrical circuits simulation show the increase of the efficiency of the
constructed first-order methods in comparison with methods of higher order.
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Introduction

Systems of ordinary differential equations (ODEs) describe various dynamic processes in
chemistry, physics, etc. One of the areas where ODEs may be effectively applied is the electric
circuit theory. Any changes in electric circuit lead to transient processes where some voltage
swells, electromagnetic oscillations, extra currents may occur. They can damage electrical de-
vices. At the same time transient processes occur in electrical generators and other electric
circuits. Many electric circuits problems are described by stiff systems of ODEs.

In some cases explicit methods are required to solve initial value problems of stiff ODEs
because L-stable methods involve inversion of the Jacobi matrix of a system. This defines overall
computational costs [1-2]. At the same time explicit methods do not require the Jacobi matrix
computation and they are more preferable to use for problems with not so high stiffness ratio.

At present time various explicit and implicit methods were developed [3]. The former are used
on transition regions where the integration step is restricted by the accuracy criterion and there
is no requirements for large stability interval. The latter are for the regions where large stability
interval gives an opportunity to pass the integration interval in "several steps". Nevertheless these
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algorithms are not so efficient to solve high dimension systems of ODEs because of mentioned
above reasons.

Variable order algorithms based on explicit schemes were developed [4]. They are applied to
the regions where there is no need to use high-order methods. Low computational cost can be
achieved by using there low-order methods with extended stability intervals which in fact play
part of implicit methods from the point of view of the length of stability interval.

Low-order methods with large stability interval are needed to develop such algorithms. In
addition the greater number of stages of a method (and therefore the higher the degree m of
stability polynomial ), the large the stability interval is. The stability polynomials of degree up
to m = 13 were constructed [2]. The algorithm to determine the stability polynomial coefficients
was developed such that the corresponding explicit Runge-Kutta methods have a predetermined
shape and size of the stability region [7].

Here implementation of the algorithm to obtain the stability polynomial coefficients with
the use of the library for arbitrary precision arithmetic GMP is presented. Set of the first-
order methods with extended stability intervals is developed. Numerical simulation of Van der
Pol oscillator shows that proposed algorithms are more efficient in comparison with the Merson
method of fourth order of accuracy.

1. Explicit Runge-Kutta methods
We consider the Cauchy problem for the stiff system of ordinary differential equations

y/:f(tvy)a y(t0> = Yo, togtgtkv (1)

where y u f are real N-dimantional vector functions, ¢ is independent variable. To solve (1) the
following explicit Runge-Kutta methods were proposed [2]

m i—1
Yn+1 = Yn + me,ikia kl = h.f (tn + aih7 Yn + Z 5ijkj>a (2)
i=1 j=1

where k;, 1 <14 < m, are stages of the method, h is an integration step, pmi, ai, Bij, 1 <@ < m,
1 < j < i—1, are numerical coefficients that define stability and accuracy of scheme (2). For
the sake of simplicity we consider the Cauchy problem for the autonomous system of ordinary
differential equations

Y = 1), y(to) =yo, to <t <ty (3)

To solve (3) we can also write formulas (2) in the following form:

i m
Yni =Un+ > Bivrjkj, 1<i<m—1, i1 =yn+ Y pmiki, (4)
j=1 i=1

where k; = hf (ym_l), 1 <@ <M, Yno = Yn. The results given below can be used for non-

autonomous systems if we assume in (2) that
i—1
ay =0, ai225ija2<i<m- (5)
j=1
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Below we need matrix B,, with elements b;; in the form [2]

i—1
bri= Y Bybr-1, 2<k<m, k<i<m,
j=k—1

where f3;; are numerical coefficients of schemes (2) or (4).
The stability of one-step methods is usually investigated by applying a Runge-Kutta method
to a linear scalar equation known as Dahlquist’s test equation

v =Xy, y(0)=yo, t >0, (7)

with complex A, Re ()\)< 0. Variable X is considered as a certain eigenvalue of the Jacobi matrix
of problems (1) or (3). Applying numerical scheme (4) to Dahlquist’s equation we get

Uni1 = Qm(2)n, 2= 0N, Qm(2) =1+ cmiz', Cmi= Y bijpmj, 1<i<m. (8)
i=1 j=1

Denoting Cr, =(Cp1s .- cmm)T and P, =(pm1, ...,pmm)T, we can rewrite the latter equality
(8) in the form
B, P, = Chpy, (9)

where the elements of matrix B, are defined in (6). For internal numerical schemes (4) we have
k k
Undk = Qr(2)Un,  Qr(2)=1+ eniz's o= bijBer1y, 1<k<m—1.  (10)
i=1 j=1

Using designations [y, :(5k+1,1, ...,ﬂk+17k)T and ¢y, :(Cm, ...,ckk)T we obtain that coefli-
cients f;; of internal schemes (4) and the coefficients of corresponding stability polynomials are
related by the equation

BB =cr, 1<k<m—1. (11)

It follows from of (6) and (10) that by; = ¢;—1 k—1, i.e., the elements of (k+1)-th column of
matrix B,, are equal to coefficients of stability polynomial Qy (z) Hence, if the coeflicients of
the stability polynomials of the basic and intermediate numerical schemes are defined then the
coefficients of methods (4) are uniquely determined from linear systems (9) and (11) with upper
triangular matrices B;,1 <7 < m.

Expansions of the exact and approximate solutions in the Taylor series in powers of h have
the form

h2
Y(tnsr)=y(ta)+hf + - f'f+O(h%),
” ” (12)
Ynt1 = yn+<Zbljpmj>hf+<Zijpmj)hzfr/Lfn +0(h?),
j=1 =2

where the elementary differentials are taken with respect to exact y(tn) and approximate y,
solutions, respectively. Comparing relations (12) under assumption that y(tn): Yn, ONE can

m
show that numerical scheme (4) has the first order of accuracy if " bi;pm; = 1. Hence, to
j=1

design m-stage methods of the first order of accuracy it is necessary to set ¢,;,1 = 1.
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2. Stability polynomials

Let two integer numbers k£ and m, k < m be given. Consider the polynomial

Qm.i(x 71+Zczx + Z it (13)

1=k+1
where the coefficients ¢;, 1 < i < k, are given and ¢, k+ 1< i< m, are free coeflicients. The
coefficients ¢;, 1 < i < k, are usually defined from the approximation requirements. Therefore,
for definiteness we assume below that ¢; = 1/il, 1 <@ < k.

Denote extremum points of (13) as x1,...,Tm—1, where 1 > x9 > -+ > x;,—1. Unknown
coefficients ¢;, k +1 < ¢ < m can be obtamed from the condition that polynomlal (13) takes on
predefined values at extremum points z;, k <i<m —1, i.e.,

Qmui(zi)=F, k<i<m-—1, (14)

where F(x) is a preassigned function, F; = F (1:1 ) For this purpose let us consider the algebraic
system of equations with respect to variables z;,k <i<m —1,and ¢;,k+1<j<m,

Qi (w:)=Fi, Qppl:)=0, k<i<m—1, Q=Y ica' ", (15)

We rewrite (15) in the form that is convenient for computations. Let us introduce vectors v,
z, g and r with components

j 1
Yi = Thaio1, % = Chti, i = Frpi1—1— E cyl, ri=-— E Jeiyl T,

= (16)
1<i<m—k,
We also introduce diagonal matrices E1, ..., E5 with elements on the main diagonal
k m—k
el =k+i, ey =1/y, eé’:chjyi Z k+§)zys
j=1 j=1
i "y i-2 = . tj—2 (17)
ef =Y j( — eyl (k+4)(k +j — 1)z 72,
— o
el = (=1)M T 1<i<m—k.
Consider matrix A with elements a = ykﬂ 1 <4, 5 < m— k. The elements of vectors (16),

matrices (17) and A depend on numbers m and k, where
9=9(), r=r(y), E2=Ex(y), Es=Es(y,z), Es=Es(y.z), A=A(y).
Then, we can rewrite problem (15) in the form
Az—g=0, EFEyAFE1z—1r=0. (18)

System (18) is ill-conditioned that leads to some difficulties in applying the fixed-point iterations
for its solution. For convergence of the Newton method it is necessary to obtain good initial
values but in this case it is difficult problem in its own right.
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If we assume in (15) that F; = (=1)!, k < i < m — 1, we can find the polynomial with the
maximal length of stability interval. In this case the problem of finding initial value yq is solved
by using values of the Chebyshev polynomial at extremum points over interval [—2m?, 0], where
m is the degree of polynomial (13). These values are

yi = m?[cos(im/m) — 1], 1<i<m—1. (19)

Substituting (19) in system (17), we obtain coefficients of the Chebyshev polynomial for which
|Qum1(z)] <1 ona € [-2m?0]. Then for any k values given in (19) can be taken as the initial
values, and according to numerical calculations there is good convergence rate in this case. If
F; # (—1)%, k <i < m — 1, then the choice of initial values is quite a difficult problem.

Let us describe a way to solve (18) that does not require good initial values. One can apply
relaxation to solve system (18). The main idea of relaxations is to solve unsteady-state problem
which solution converges to the steady-state solution of the initial problem. Let us consider the
Cauchy problem

Y = Es(E2AE A7 g — 1), y(0)=yo. (20)

Apparently, upon finding the stationary point of (20), the coefficients of a stability polynomial
can be determined from system (18). Let us notice that because matrix Ej5 is used all eigenvalues
of the Jacobi matrix of (20) have negative real parts, i.e., problem (7) is stable. It follows from
numerical results that (20) is a stiff problem. Methods for solving such problems use calculation
of the Jacobi matrix which cause difficulties in solving (20). Therefore, we apply the method of
the second order of accuracy using numerical calculation and freezing the Jacobi matrix to solve
(20) [5-6].

It can be shown that values of the polynomial coefficients tend to zero as m increases. Coeffi-
cients ¢;, k+1 < i < m, were calculated for the polynomial degree up to m = 13 using algorithm
[2]. Moreover, the algorithm of obtaining polynomial coefficients on the interval [—1, 1] was de-
scribed in [7]. In this case coefficients ¢; grow with slower rate and it is possible to construct
polynomials of degrees m > 13.

3. Calculation of coefficients of stability polynomials using
the GMP library

It is not difficult to see that coefficient ¢, of stability polynomial (13) tends to zero as m
increases and in particular if m = 13 and k& = 1 the value of ¢, is about 10726, Solution of
problem (20) where m > 13 with double precision is very hard to realize because of round-
off errors. In order to compute coefficients of polynomial of higher degrees m algorithm was
implemented using ¢d library [8, 9.

The gd library allows one to perform computations with higher accuracy. Standard data type
double which allows one to perform computations with double precision is restricted by 53 bites
of binary mantissa and provides accuracy of 16 decimal digits. Whereas qd data type dd_real
has 106-bit mantissa that provides accuracy of 32 decimal digits. In fact, the number of data
type dd_real is a programmed concatenation of two double numbers, where mantissa becomes
doubled but the range of values that can be represented using new data type stays the same
(from 1073% to 1038). Despite this restriction accuracy of number representation increases.

With the use of this library the coefficients of polynomials up to degree m = 35 were com-
puted [8]. Nevertheless, the gd library has some disadvantages. Firstly, accuracy of number
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representation is restricted because of program implementation of data types. Secondly, it can
be used only in Unix systems. Moreover, the gd library is written in the C' + + programming
language. That is why numerical codes that use this library could be slower than codes written
in low-level programming languages (for example, C).

Here we show numerical results of calculations of polynomial coefficients with the help of the
library for arbitrary precision arithmetic GM P. This library provide accuracy of computations
that is restricted only by the size of random access memory. It is cross-platform library, and it
supports operations on integer, rational and real numbers. Besides, the GM P library is written
in the C' programming language which potentially increase the speed of computations.

Using the GM P library we obtain coefficients of polynomials up to degree m = 40. At higher
degrees there are some difficulties that may be related to the choice of initial conditions for
problem (20).

4. Construction of stability regions

Let us now describe the effect of function F' on the size and shape of the stability region.
If we assume F; = (—1)%, k < i < m — 1, than the stability interval length is hm‘ = 2m?2.
In this case, we have the maximum length of stability interval along the real axis for given m.
The stability region of such methods is almost multiply connected which leads to the reduction
of stability interval length because rounding errors may cause small imaginary parts of Jacobi
matrix eigenvalues to appear. Fig. 1 shows the stability region of 5-stage method, where the
stability interval length is |7m| = 50.

Im(z)
-+ 5

Fig. 1. Stability region at m =5, k =1, F = {-1,1,—1,1}, |ym| = 50

In order to avoid the stability region reduction because of rounding errors it should be
"stretched" along the imaginary axis at the extremum points of the stability polynomial. For
that we can assume F; = (=1)iu, 1 < i < m — 1,0 < p < 1. For example, if we choose
1 = 0.95 then the stability interval length is reduced by only 3-4% in comparison with the
maximal possible length that is equal to 2m?. Then it becomes equal to ’7m’ = 48.39 (Fig. 2).
The stability region of the 5-stage method at p = 0.8 is shown in Fig. 3. In this situation,
the stability interval length is reduced to |'ym} = 43.55 with conjoined "stretching" along the
imaginary axis. For better visualization of the roots of polynomial (13) level lines |ka(x)| =1,
Qi ()] = 0.8, |Qmi(x)] = 0.6, |Qmi(z)| =04, |Qmxr(x)| = 0.2. in the complex plane Are
shown in all figures.
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Im(z)

Fig. 2. Stability region at m =5, k =1, F = {-0.95,0.95,0.95,0.95}, |y, | = 48.39

Im(z)
-+ 5

Fig. 3. Stability region at m =5, k=1, F = {-0.8,0.8,—-0.8,0.8}, 'ym| =43.55

5. First-order method

For numerical solution of Cauchy problem (1) we consider the explicit five-stage Runge-Kutta
method

Yn+1 = Yn + P1k1 + p2ka + psks + paka + psks,

ki = hf(yn), ko = hf(yn + 521k1)7

ks = hf(yn + Bsik1 + Bszks), (21)
hf (yn + Barkr + Bazkz + Pasks),
= hf (Yn + Bs1k1 + Boaka + Bssks + Bsaka),

k4
ks

where y and f are real N-dimensional vector functions, ¢ is independent variable, h is the
integration step, ki,ko, ks, ks and ks are stages of the method, pi,p2,ps,ps,Ps, 5821, 831, P32,
Bat, Baz, Pas, Bs1, Bs2, Bs3, B54 are numerical coefficients that define accuracy and stability of (21).
Applying the algorithm, we obtain coefficients of the stability polynomial:

cs,1 = 0.1el, c52 = 0.164341322127140896342¢0, c53 = 0.948975952580473808808¢ — 2,
5,4 = 0.223956930863224544258¢ — 3, c55 = 0.18509727522235334153e — 5
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In this case the stability interval length is |7m’ = 48.39. Upon solving (9) and (11), we obtain
the coefficients of the first-order method:

Bo1 = 0.0413243016210550, f31 = 0.0805823881610573, B3 = 0.0805823881610573,
Bar = 0.11916681511228434, 4o = 0.1597820013984078, f[43 = 0.0819394878966193,
Bs1 = 0.1570787892802991, 5o = 0.2379583021959820, Bs3 = 0.1631711307360486,
B4 = 0.0822916178203657,

p1 = 0.1945277188657676, pa = 0.3151822878089125, ps = 0.2437005934695969,

pa = 0.1641555613805598, ps = 0.0824338384751631.

Accuracy control of numerical scheme is based on local error estimation [10].
The magnitude of
Al =1(0.5 — cima) /aa] (ks — k1) (22)
is used as preliminary estimation of local error. To we estimate the final accuracy the magnitude
of
Al = (0.5 = cm2) (A f (yn41) —k1) (23)

is used. Thus, the following inequalities
A, <e, Ay <e (24)

are used for the accuracy control and for the choice of of integration step. As k; linearly depends
on integration step then omission of inequality (24) leads to just one additional computation of
the right hand side of the problem. If the step of integration is successful the second inequality
(24) does not lead to the increase of computational cost because f (ynH) is not used at the next
step. At the same time if the second inequality (24) is used for accuracy control the repeat
computations in the case of violating accuracy criterion are quite expensive. Moreover, the
greater m the higher computational cost is. Nevertheless, in most cases preliminary estimation
of A! allows one to avoid repeat computations. The following inequality

Vp < Ym,1 (25)

is used for stability control of method (2), where
-1
Up = ‘0@532’ 1I<np2XN‘[Ol2/€3 + asky — (o2 + ag)ki)j/[k2 — k1l;, (26)

SV

and positive constants 7, 1 define the size of stability regions [10].

6. Merson method

One of the most effective explicit fourth-order Runge-Kutta type methods is the Merson
method [§]

1 2 1
Yn+1 = Yn + 7]91 + 71‘74 + 7k57

6 3 6
1 1 1
ki =hf(yn), ko=hf(y.+ glﬁ), ks = hf(yn + élﬁ + Ekz), (27)
1 3 1 3
ks =hf(yn + Sk + §k3)7 ks = hf (yn + Sk = Sks + 2ky).
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The fifth computation of function f does not result in the fifth order of accuracy but allows
one to extend the stability interval to 3.5 and estimate truncation error 6, 4 using stages ; i.e.,

5n,4 e (2]411 — 9k3 + 8ky — 2k‘5)/30

We use inequality ||5n74H < 5€%/* for accuracy control. Despite the fact that inequality for
accuracy control is obtained with the help of a linear equation, it shows high reliability in solving
non-linear problems.

Now let us construct the inequality for stability control. Applying to k3 — ko the first order
Taylor’s formula with the remainder term written in the Lagrangian form, we have

ks — kg = h[Of (1n) /0y (k2 — k1)/6,
where vector p, is calculated in some vicinity of solution y(tn) Taking into account that
ka — ki = B fi, fa/3+ O(h?),

the inequality ‘

K — k]

K — k]

Vp4 =6+ max
1N

<35 (28)

can be used for stability control of (27), where 3.5 is the approximate length of stability interval.
Let €54 = d,,,4/5. Then inequalities €, 4 < 5¢3/4 and Vpa < 3.5. can be used for accuracy and
stability control of scheme (27), respectively.

7. Numerical results

The computations were performed on Intel(R) Core(TM) i7-8550U CPU. However, coefficients
of stability polynomial were computed with the help of the GM P library whereas solution of
differential problem was determined with double precision. The norm ||&,|| in the inequalities
for the accuracy control was calculated by the formula

lénll = | max 16,1/(lyn| + ),
where i is a number of vector component, 7 is a positive parameter. If inequality |y¢| < r is
satisfied for the component with number i then the absolute error r - ¢ is controlled. Otherwise
we control the relative error €, where ¢ is the required accuracy.
We chose the Van der Pol oscillator (29) as a test example. This problem has the stiffness
ratio approximately equal to 10°:

YL =Y2, Yo :((1 —y})y2 — yl)/10,67

0<t<1, hg=10"% 4 (0)=2, y(0)=0, e=10".

(29)

The efficiency of two algorithms are compared. The first algorithm is the first order 5-stage
Runge-Kutta method described in Section 5. The second algorithm is the traditional 5-stage
Merson method of the forth order of accuracy (27). Both algorithms were applied in two modes:
with stability control and without it. We counted total numbers of steps, repeat computations
of a solution (due to omission of the defined accuracy), and the number computations of the
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right hand side the problem. The accuracy ¢ = 10~2 was supported with the Merson method,
whereas for the first-order method we needed to use € = 107 in order to provide 1072 in fact.
Nevertheless, under these conditions the constructed algorithm shows better efficiency (Fig. 4).

The comparison of two algorithms shows that stability control increases efficiency because
extra repeat computations of solution originating from instability of numerical scheme are elim-
inated. In addition, the constructed first-order algorithm has less computational cost estimated
by the number of computations of the right hand side. Simulations of other test examples show
similar pattern.

e . Flrft—order m?t.h od First-order method Merson met!l?d Merson method with
Criterion without stability . s without stability .
with stability control stability control
control - control i

izp":be" of integration 69433 51414 549 241 556 114

Number of repeated 20 001 1052 187 120 6464

solution calculations

Number of right part 452683 300 948 3494 685 2806 426

computations

Fig. 4. Numerical results for the Van der Pol oscillator problem

Conclusion

Implementation of the algorithm to obtain coefficients of stability polynomial with the use of
the GM P library allowed one to build stability polynomial up to degree m = 40. It provides a
possibility to develop methods with extended stability regions with respective number of stages.
The greater number of stages the larger stability interval is, and therefore the higher efficiency
of numerical scheme is achieved in the case of stiff problems.

Comparing two five-stage methods (the proposed first-order method and the Merson method),
one can see that at the same number of stages extending the stability interval decreases the overall
computational cost.

It is important to say that the first-order methods with extended stability regions allow one
to significantly increase the efficiency in the region where the step is restricted by stability. So
methods described here can be used in adaptive algorithms where number of stages may vary
from one integration step to another. It provides large stability interval where it is needed and
decreases computational cost when numerical scheme is unconditionally stable.

The study was funded by Russian Foundation for Basic Research (project no. 18-31-00375).
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MeToabl IEPBOTO MOPSAIKA C PACHIMPEHHBIMEU 00JIaCTIAMU
YCTOMYMBOCTU AJIsI pacdeTa 33aJia4d JIEKTPUUECKUX Ieneit

Muxana B. PbeiokoB
JIrogmuina B. Kuay6
Hanun B. Xopos

Cubupckuii de1epabHbIl YHIBEPCATET
Poccniickass @enepariust

Ansotauus. Vccieayercs npuMeHeHne KOHTPOJIS YCTOMYUBOCTH YMCJIEHHBIX cxeM Tuita Pyrre-KyrTor
JJ1s1 TIOBBIMIeHNsT 9(M@PEKTUBHOCTH MIPYU WHTEIPUPOBAHUN YKECTKUX 33/1a4. [IpuBeseHa peasm3arust aaro-
puTMa Orpe/iesieHnsT KO3 PUIIMEHTOB MTOJMHOMOB YCTONYNBOCTH, IPU KOTOPBIX METOJl UMeeT 3aJaHHYIO
dopmy u pasmep obJsiacTu ycroirumBocTH, ¢ nomoinbio oubimoreku GMP. ITocTpoerbr HAGOPBI METOIOB
[IEPBOrO HOPSIJIKA C PACHIMPEHHBIMU 00J1acTsiMU ycToiunBocTu. [IpuBeieHbl pe3ysbTarsbl pacueToB 3a1ad
W3 TEOPUH IJIEKTPUIECKUX IIerell, TOKA3hIBAIOIIIE TOBBIIIeHEe 3(PPHEKTUBHOCTH MTOCTPOSHHBIX METO/IOB

EePBOro MOPSIKA TOYHOCTH B CPABHEHUM C METOIAOM 0O0Jjiee BHLICOKOI'O IOPSIIKA.

KuaroueBrbie cioBa: »kecTkas 3aj7a4da, SBHbIE METO/IbI, KOHTPOJIb TOYHOCTH, KOHTPOJIb YCTOMIMBOCTH.
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