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Introduction

Distribution theory steams from weak solutions of linear differential equations and it is hardly
efficient for nonlinear equations. The use of distributions is actually difficult in linear boundary
value problems, for no canonical duality theory is available for manifolds with boundary X . The
scale of Sobolev-Slobodetskij spaces W s,p(X ) makes it possible to consider the restrictions of
functions to the boundary surface, however, these latter are defined only if s − 1/p > 0. To go
beyond this range, one applies integral equalities obtained by manipulation of the Green formula.
The study of general boundary value problems for differential equations in Sobolev-Slobodetskij
spaces of negative smoothness goes back at least as far as [22].

For a boundary value problem, the Green formula is determined uniquely up to the counter-
part of boundary data within the entire Cauchy data, see [26, 9.2.2]. This allows one to avoid
much ambiguity in the choice of formal adjoint boundary value problem and to set up duality.
As a result one is in a position to introduce weak solutions of the boundary value problem, see
for instance Section 9.3.1 ibid. and elsewhere. The Cauchy data of a weak solution to an overde-
termined elliptic system in the interior of X are proved to possess weak boundary values at ∂X
if and only if the solution is of finite order of growth near the boundary surface, see [26, 9.3.6].

When considering a boundary value problem for a nonlinear equation, one has no good guide
to an appropriate concept of weak solution. Perhaps one has to pass to the linearised problem.
In any case the definition of a weak solution is implicitly contained in the variational setting
of the boundary value problem. If the problem itself fails to be Lagrangian, it can be relaxed
to variational one. It is just the task of experienced researcher to recover the concept of weak
solution in the variational formulation, see [2].
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As but one tool of this work we introduce the concept of weak boundary values for solutions
of nonlinear differential equations. We restrict the discussion to those equations which appear as
Euler-Lagrange equations for a variational problem of minimasing the discrepancy Au− f in the
problem of finding a function u in X , such that Au = f(x, u) in X and Bu = u0 at ∂X . Here,
A is an overdetermined elliptic operator of order one and B is a matrix of functions at ∂X . The
direct approach of variational calculus of [17] applies well to search for a solution in the Sobolev
spaces W 1,p(X ) with non-extreme 1 < p < ∞. However, the Euler-Lagrange equations include
the boundary condition B∗|Au− f |p−2(Au− f) = 0 at ∂X . The function |Au− f |p−2(Au− f) is
of class Lp′

(X ), where 1/p+ 1/p′ = 1, and hence B∗|Au− f |p−2(Au− f) has no clear meaning
at the boundary. We give this expression a weak meaning using the variational setting and an
appropriate Green formula.

On specifying the spaces of weak boundary values one is in a position to consider the nonlinear
mapping of Banach spaces or, more generally, Banach manifolds corresponding to the Lagrangian
problem. The tangent mapping is a morphism of tangent (Banach) bundles and it is given by the
linearisation of the nonlinear mapping at the points of X . The nonlinear mapping is called elliptic
if its tangent mapping is elliptic at each tangent space, cf. [20]. In this sense the Lagrangian
boundary value problems are never elliptic but for p = 2, for they degenerate at each boundary
point where Au = f(x, u). By a Hodge theory for a nonlinear mapping is meant the Hodge
theory for the corresponding morphism of tangent (Banach) bundles. This bundle is Hilbert, if
p = 2, in which case the problem arises if the Hodge decompositions depend continuously on
the point of the underlying Hilbert manifold. To treat this problem of differential geometry on
Hilbert manifold we exploit the results of [27].

Any Lagrangian boundary value problem proves to be a quasilinear Fredholm mapping. To
the best of our knowledge, this class of nonlinear mappings was first introduced in [24]. The
quasilinear Fredholm mappings admit a reasonable degree theory elaborated in [9]. As but
one consequence of our results we show that the degree theory of [9] applies to the Lagrangian
boundary value problems.

1. Lagrangian boundary value problems

By Lagrangian boundary value problems are meant those arising as the Euler-Lagrange equa-
tions for functionals minimising discrepancy in overdetermined problems.

Let X be a bounded closed domain with C∞ boundary in Rn. Consider the boundary value
problem {

Au = f(x, u) in X ,
Bu = u0 at ∂X ,

(1.1)

where A is a (possibly, overdetermined) elliptic linear partial differential operator of the first
order near X , f a function of its numerical variables (x, u) ∈ X × Rℓ with values in Rm, and B
an (ℓ′ × ℓ) -matrix of smooth functions on the boundary of X whose rank is ℓ′ for all x ∈ ∂X .

The operator A is given by an (m× ℓ) -matrix of scalar differential operators in a neighbour-
hood U of X , and the principal symbol of A has rank ℓ for all (x, ξ) ∈ U × (Rn \ {0}). Our
standing requirement on f is that u 7→ f(x, u) be a continuous mapping of W 1,p(X ,Rℓ) into
Lp(X ,Rm).

Remark 1.1. Classical elliptic boundary value problems correspond to the case m = ℓ and
ℓ′ = ℓ/2.

The most conventional Banach space setting of this problem is W 1,p, where 1 < p < ∞.
Hence, we pick u0 in W 1−1/p,p(∂X ,Rℓ′) and look for a u ∈ W 1,p(X ,Rℓ) satisfying (1.1).
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If the operator

A =
( A

B

)
: W 1,p(X ,Rℓ) → Lp(X ,Rm)×W 1−1/p,p(∂X ,Rℓ′)

has a left parametrix P = (G,P ), then on applying P to (1.1) from the left we obtain

u = Gf(·, u) + Pu0 + (PA− I)u (1.2)

in X for all u ∈ W 1,p(X ,Rℓ) satisfying (1.1). (Note that A possesses a left parametrix if and only
if its null space is finite dimensional and its range is complemented, see [18]. In this case PA− I
can be thought of as projection onto the null space.) The operator u 7→ G ◦ f(·, u) is known as
the Hammerstein operator. If u 7→ f(·, u) maps W 1,p(X ,Rℓ) compactly into Lp(X ,Rm), then the
Leray-Schauder theory applies to equation (1.2). However, the solutions of the latter equation
need not satisfy (1.1).

Moreover, if A is overdetermined (i.e. m > ℓ) then there is a nonzero differential operator
A1, such that A1A = 0. Then, for the equation Au = f(·, u) to be solvable, it is necessary that
A1f(·, u) = 0 in X for some function u ∈ W 1,p(X ,Rℓ). Another obstacle to the existence of
solutions of problem (1.1) is possible overdeterminacy of boundary conditions. This is the case,
e.g., if ℓ′ = ℓ, i.e. Bu represents the whole Cauchy data of u with respect to A − f(x, ·) at
the boundary surface ∂X . This gives evidence of replacing the exact equation Au = f(·, u) in
X by minimising the discrepancy Au − f(·, u) in the norm of Lp(X ,Rm). For this purpose, we
introduce the functional

I(u) =

∫
X
|Au− f(x, u)|p dx (1.3)

whose domain is the affine subspace DI of W 1,p(X ,Rℓ) consisting of all u, such that Bu = u0 at
∂X . Obviously, every solution of (1.1) minimises (1.3). The converse assertion is not true.

Write m for the infimum of I(u) over u ∈ DI . In order that u ∈ DI may satisfy I(u) = m it
is necessary that u would fulfill the so-called Euler-Lagrange equations. We now describe these.

Lemma 1.2. Let C be an ((ℓ− ℓ′)× ℓ) -matrix C of smooth functions on ∂X , such that

rank
(
B(x)
C(x)

)
= ℓ

for all x ∈ ∂X . Then there are unique matrices B∗ and C∗ of continuous functions on ∂X with
the property that∫

∂X

(
(Bu,C∗g)x − (Cu,B∗g)x

)
ds =

∫
X

(
(Au, g)x − (u,A∗g)x

)
dx (1.4)

for all u ∈ W 1,p(X ,Rℓ) and g ∈ W 1,p′
(X ,Rm), where ds is the surface measure on the boundary.

As usual, A∗ stands for the formal adjoint of the differential operator A in a neighbourhood
of X .

Proof. For an explicit construction of matrices B∗ and C∗ we refer the reader to [2].

Formula (1.4) is usually referred to as the Green formula. On arguing as in Section 3 of [2]
one sees that if functional (1.3) has a local extremum at a function u ∈ DI then∫

X

(
(A− f ′

u)v, |Au− f |p−2(Au− f)
)
x
dx = 0 (1.5)
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for all v ∈ W 1,p(X ,Rℓ) such that Bv = 0 at ∂X . Here, f ′
u is the Jacobi matrix of f(x, u) with

respect to u = (u1, . . . , uℓ), i.e., the (m× ℓ) -matrix whose entries are f ′
i,uj

.
If g = |Au− f |p−2(Au− f) is of class W 1,p′

(X ,Rm), then we can apply formula (1.4) on the
left-hand side and move A− f ′

u from v to |Au− f |p−2(Au− f), thus obtaining∫
∂X

(Cv,B∗g)x ds+

∫
X
(v, (A− f ′

u)
∗g)x dx = 0

for all v ∈ W 1,p(X ,Rℓ) satisfying Bv = 0 at the boundary. We first choose v to be arbitrary
with compact support in the interior of X and so we conclude by the main lemma of variational
calculus that (A − f ′

u)
∗g vanishes almost everywhere in X . Hence, the boundary integral is

equal to zero for all v ∈ W 1,p(X ,Rℓ), such that Bv = 0 on ∂X . It is a simple matter to see
that the boundary integral actually vanishes for all functions v ∈ W 1,p(X ,Rℓ). Hence it follows
immediately that B∗g = 0 on ∂X .

Lemma 1.3. For the variational problem I(u) → min over u ∈ DI , Euler-Lagrange’s equations
just amount to  (A− f ′

u)
∗(|Au− f |p−2(Au− f)

)
= 0 in X ,

Bu = u0 at ∂X ,
B∗(|Au− f |p−2(Au− f)

)
= 0 at ∂X .

(1.6)

Proof. If u ∈ DI and |Au − f |p−2(Au − f) is of class W 1,p′
(X ,Rm) then this is precisely what

has been proved above. For general u ∈ DI equalities (1.6) are understood in the weak sense
suggested by (1.5). To wit, the differential equation is satisfied in the sense of distributions in the
interior of X . The interpretation of the second boundary condition in (1.6) is more sophisticated.
This will be discussed in detail in Section 2.

The differential equation of (1.6) represents a system of ℓ second order partial differential
equations for ℓ unknown functions. The number of boundary conditions just amounts to ℓ.

Example 1.4. The variational problem of minimising the functional

I(u) :=

∫
X

(
|du|p + |d∗u|p

)
dx

over the set of all i-forms u of class W 1,p(X ) with normal part ν(u) = u0 at the boundary leads
to the Lp -setting of the Neumann problem for the de Rham complex in X . To wit, d∗(|du|p−2du) + d(|d∗u|p−2d∗u) = 0 in X ,

ν(u) = u0 at ∂X ,
ν(|du|p−2du) = 0 at ∂X ,

cf. [16].

2. Weak boundary values

In (1.6), u is an element of W 1,p(X ,Rℓ), and so g = |Au−f |p−2(Au−f) belongs to Lp′
(X ,Rm),

where p′ = p/(p− 1) is the dual exponent for p. Hence, the differential equation (A− f ′
u)

∗g = 0
is readily interpreted in the sense of distributions in the interior of X , just as it comes from
(1.5) into consideration. One encounters difficulties in interpreting the equality B∗g = 0 at the
boundary surface ∂X , for g is defined almost everywhere in X . To give a meaning to B∗g at ∂X ,
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we strongly invoke the fact that g satisfies (A− f ′
u)

∗g = 0 weakly in the interior of X . Namely,
if g ∈ W 1,p′

(X ,Rm), then∫
∂X

(
(Bv,C∗g)x − (Cv,B∗g)x

)
ds =

∫
X

(
((A− f ′

u)v, g)x − (v, (A− f ′
u)

∗g)x
)
dx (2.1)

holds for all v ∈ W 1,p(X ,Rℓ), which is due to Green formula (1.4). Since (A− f ′
u)

∗g vanishes in
the interior of X , we may neglect the second term on the right-hand side and use (2.1) to specify
both C∗g and B∗g at the boundary in the general case g ∈ Lp′

(X ,Rm).

Definition 2.1. Let g ∈ Lp′
(X ,Rm) satisfy (A − f ′

u)
∗g = 0 weakly in the interior of X . Then

we define ∫
∂X

(
(v0, C

∗g)x − (v1, B
∗g)x

)
ds =

∫
X

(
(A− f ′

u)v, g
)
x
dx

for all v0 ∈ W 1/p′,p(∂X ,Rℓ′) and v1 ∈ W 1/p′,p(∂X ,Rℓ−ℓ′), where v ∈ W 1,p(X ,Rℓ) is an arbitrary
function satisfying Bv = v0 and Cv = v1 at ∂X .

Note that the equalities Bv = v0 and Cv = v1 at the boundary surface just amount to

v =
( B

C

)−1( v0
v1

)
at ∂X , where the right-hand side belongs to W 1/p′,p(∂X ,Rℓ). Hence, the existence of a function
v ∈ W 1,p(X ,Rℓ) with the property that Bv = v0 and Cv = v1 at ∂X and

∥v∥W 1,p(X ,Rℓ) 6 C
(
∥v0∥W 1/p′,p(∂X ,Rℓ′ ) + ∥v1∥W 1/p′,p(∂X ,Rℓ−ℓ′ )

)
(2.2)

follows from the Sobolev trace theorem.

Theorem 2.2. Definition 2.1 is correct and specifies the boundary values C∗g and B∗g in the
dual spaces W−1/p′,p′

(∂X ,Rℓ′) and W−1/p′,p′
(∂X ,Rℓ−ℓ′), respectively.

Proof. Suppose v and w are two functions in W 1,p(X ,Rℓ) satisfying Bv = Bw and Cv = Cw at
∂X . Set z = v − w. Then z ∈ W 1,p(X ,Rℓ) satisfies Bz = 0 and Cz = 0 at the boundary. By
the spectral synthesis theorem for Sobolev spaces, there is a sequence

zν ∈ C∞
comp(

o

X ,Rℓ)

which approximates z in the W 1,p(X ,Rℓ) -norm. Hence it follows that∫
X

(
(A− f ′

u)v, g
)
x
dx =

∫
X

(
(A− f ′

u)w, g
)
x
dx+

∫
X

(
(A− f ′

u)z, g
)
x
dx =

=

∫
X

(
(A− f ′

u)w, g
)
x
dx+ lim

ν→∞

∫
X

(
(A− f ′

u)zν , g
)
x
dx,

where the last integral on the right-hand side vanishes, for g satisfies (A − f ′
u)

∗g = 0 weakly in
the interior of X . We have thus proved that Definition 2.1 is correct, i.e. it does not depend on
the choice of v. Finally, combining Definition 2.1 and estimate (2.2) yields∣∣∣∫

∂X
((v0, C

∗g)x − (v1, B
∗g)x) ds

∣∣∣ 6 ∥(A− f ′
u)v∥Lp(X ,Rm)∥g∥Lp′ (X ,Rm)

6 C (∥v0∥W 1/p′,p(∂X ,Rℓ′ )+∥v1∥W 1/p′,p(∂X ,Rℓ−ℓ′ ))

for all v0 ∈ W 1/p′,p(∂X ,Rℓ′) and v1 ∈ W 1/p′,p(∂X ,Rℓ−ℓ′), the constant C being independent of
v0 and v1. Hence it follows that C∗g ∈ W−1/p′,p′

(∂X ,Rℓ′) and B∗g ∈ W−1/p′,p′
(∂X ,Rℓ−ℓ′), as

desired.
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Thus, for each u ∈ W 1,p(X ,Rℓ) satisfying (A−f ′
u)

∗(|Au−f |p−2(Au−f)) = 0 weakly in the
interior of X , both C∗(|Au−f |p−2(Au−f)) and B∗(|Au−f |p−2(Au−f)) have weak values at the
boundary surface ∂X which belong to W−1/p′,p′

(∂X ,Rℓ′) and W−1/p′,p′
(∂X ,Rℓ−ℓ′), respectively.

This completes, in particular, the result of [23].
For a thorough treatment of weak boundary values of solutions to linear overdetermined

elliptic equations we refer the reader to [26, 9.4].

3. Variational boundary value problems after Browder
By the very nature, the function (A−f ′

u)
∗(|Au−f |p−2(Au−f)) appears as distribution in the

interior of X , i.e. as element of ( o

W 1,p(X ,Rℓ)
)′
.

Since
o

W 1,p(X ,Rℓ) is not dense in W 1,p(X ,Rℓ), the continuous extension of this functional
to all of W 1,p(X ,Rℓ) is not uniquely determined. In fact, any continuous extension of
(A−f ′

u)
∗(|Au−f |p−2(Au−f)) to a closed subspace V of W 1,p(X ,Rℓ) containing C∞ functions

of compact support in the interior of X with values in Rℓ defines a variational boundary value
problem in the sense of [7]. We confine the discussion to (1.5).

Corresponding to the representation (1.5) for the critical points of functional (1.3), we have
the nonlinear Dirichlet form a(u, v) defined for all u and v in W 1,p(X ,Rℓ) by

a(u, v) =
(
|Au− f |p−2(Au− f), (A− f ′

u)v
)
,

where (g, h) stands for the natural sesquilinear pairing between g in Lp′
(X ,Rm) and h in

Lp(X ,Rm). By assumption, a(u, v) is well defined for all u and v in W 1,p(X ,Rℓ) and

|a(u, v)| 6 c
(
∥u∥W 1,p(X ,Rℓ)

)
∥v∥W 1,p(X ,Rℓ)

by Hölder’s inequality, where c(r) is a continuous function of the real variable r depending on A
and f .

Let V be the closed subspace of W 1,p(X ,Rℓ) that consists of all v satisfying Bv = 0 at the
boundary ∂X , and V ∗ be the conjugate space of V , i.e. the space of all bounded conjugate linear
functionals on V . For w ∈ V ∗ and v ∈ V , the value of w at v is denoted by (w, v). In particular,
if w ∈ Lp′

(X ,Rℓ), the bounded conjugate linear functional (w, v) on V yields an element of V ∗

which we may again denote by w.
We are now in a position to define the variational boundary problem corresponding to (a, V ).

Denote by F the mapping V → V ∗ given by (Fu, v) := a(u, v) for all v ∈ V . In particular, we
get

Fu = (A− f ′
u)

∗ (|Au− f |p−2(Au− f)
)

(3.1)

in the sense of distributions in the interior of X . Given w ∈ V ∗, the variational boundary
problem corresponding to (a, V ) consists in finding u ∈ V such that Fu = w. Hence it follows
that Fu = w holds weakly in the interior of X and Bu = 0 at the boundary. As usual, in order
to include also inhomogeneous conditions Bu = u0 at ∂X , one solves these first in functions
u ∈ W 1,p(X ,Rℓ) which need not satisfy Fu = w.

If u ∈ V satisfies Fu = w with w ∈ V ∗, then w is a relevant extension of the distribution
(A−f ′

u)
∗(|Au−f |p−2(Au−f)) in the interior of X to a continuous linear functional on V . Then

Definition 2.1 for the weak value of B∗g at ∂X transforms to

−
∫
∂X

(B∗g, v1)x ds =

∫
X

(
g, (A− f ′

u)v
)
x
dx− (w, v) =

= a(u, v)− (w, v)

– 10 –



Ammar Alsaedy, Nikolai Tarkhanov A Degree Theory for Lagrangian Boundary Value Problems . . .

for all v1 ∈ W 1/p′,p(∂X ,Rℓ−ℓ′), where v ∈ W 1,p(X ,Rℓ) is an arbitrary function satisfying Bv = 0
and Cv = v1 at ∂X . Since a(u, v) = (w, v) for all v ∈ V , it follows that B∗g = 0 at the boundary.
Thus, the study of Euler-Lagrange’s equations (1.6) can be carried out within the framework of
mapping properties of F : V → V ∗.

To formulate the hypothesis of our existence theorem, we need an additional concept. Namely,
by an admissible lower order operator is meant u → ∆f(x, u), where ∆f is a continuous function
of its numerical arguments satisfying an inequality of the form

|∆f(x, u)| 6 c
(
∥u∥W 1,p(X ,Rℓ)

)(
|u(x)|(p−1)+Q + 1

)
where 0 6 Q <

p2

n− p
, if p 6 n, and Q = 0, if p > n.

Theorem 3.1. Suppose that there exists an admissible lower order operator ∆f and a continuous
function c(r) of the real variable r with c(r) → +∞ as r → ∞, such that

1) If ∆a(u, v) := (∆f(x, u), v) is the nonlinear Dirichlet form corresponding to ∆f , then

ℜ
(
a(u, u− v)− a(v, u− v) +∆a(u, u− v)−∆a(v, u− v)

)
> 0

for all u and v of V .
2) For all u in V ,

ℜa(u, u) > c
(
∥u∥W 1,p(X ,Rℓ)

)
∥u∥W 1,p(X ,Rℓ).

Then, for every w in V ∗, the variational boundary problem for Fu = w with null V-boundary
conditions has at least one solution u.

Proof. The proof is along the lines of Theorem 1 of [7].

Note that in the case f ≡ 0 and ∆f = 0 the condition 1) is fulfilled. Indeed, we get

ℜ
(
a(u, u− v)− a(v, u− v)

)
=

=

∫
X

(
|Au|p − |Au|p−2ℜ(Au,Av)x − |Av|p−2ℜ(Av,Au)x + |Av|p

)
dx >

>
∫
X

(
|Au|p − |Au|p−1|Av| − |Av|p−1|Au|+ |Av|p

)
dx >

>
∫
X

(
|Au|p−1 − |Av|p−1

)(
|Au| − |Av|

)
dx

which is obviously nonnegative for all u, v ∈ V . Furthermore, the condition 2) reduces to

∥Au∥pLp(X ,Rm) > c
(
∥u∥W 1,p(X ,Rℓ)

)
∥u∥W 1,p(X ,Rℓ)

for all u ∈ V .

4. Hodge theory for nonlinear mappings

Let V and W be Banach manifolds and F a differentiable mapping of V to W, i.e. we have
a short complex

0 → V F→ W → 0. (4.1)

– 11 –
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Given an arbitrary point v ∈ V, the tangent mapping F ′(v) : TvV → TwW is a bounded linear
mapping of tangent spaces to V and W at v and w = F (v), respectively. These mappings are
gathered together to form the Banach bundle morphism

0 → TV F ′

→ TW → 0,

see [27].

Definition 4.1. A differentiable mapping F : V → W is said to be Fredholm if the linear
mappings F ′(v) : TvV → TF (w)W are Fredholm for all v ∈ V.

By the Hodge theory for the nonlinear mapping F we mean the Hodge theory for the tangent
bundle morphism. According to the properties of Fredholm mappings, there are bounded linear
projections P (v) and Q(v) in TvV and TwW, respectively, such that

TvV = N(F ′(v)) ⊕ R(I − P (v)),
TwW = R(Q(v)) ⊕ R(F ′(v)),

(4.2)

P (v) being a projection onto the finite-dimensional null-space of F ′(v) and Q(v) being a projec-
tion onto a finite-dimensional direct complement of the range of F ′(v) in TwW.

Using the inverse mapping theorem of Banach we conclude that the restriction of F ′(v) to
R(I − P (v)) is an isomorphism of this Banach space onto R(F ′(v)). The mapping

Π (v) =
(
F ′(v) �R(I−P (v))

)−1(
I −Q(v)

)
is therefore a bounded linear operator from TwW to TvV satisfying

Π (v)F ′(v) = I − P (v),
F ′(v)Π (v) = I −Q(v),

i.e. Π (v) is a parametrix of F ′(v) for each v ∈ V. Note that if V is contractible then the
parametrix Π (v) can be chosen to depend continuously on the point v ∈ V, see [9, 27].

If V and W are Hilbert manifolds, there is a canonical way for the choice of P (v) and Q(v).
Namely, P (v) is the orthogonal projection onto N(F ′(v)) and I−Q(v) is the orthogonal projection
onto R(F ′(v)). By the lemma on the annihilator of the kernel of operator,

R(I − P (v)) = R(F ′(v)∗),
R(Q(v)) = N(F ′(v)∗),

where F ′(v)∗ is the Hilbert space adjoint for F ′(v) : TvV → TwW. We have thus proved

Theorem 4.2. If F : V → W is a Fredholm mapping of Hilbert manifolds, then the tangent
bundles of V and W split as

TV = N(F ′) ⊕ R(F ′∗),
TW = N(F ′∗) ⊕ R(F ′).

These decompositions are scarcely useful to characterise the range of the global nonlinear
mapping (4.1).

Example 4.3. Let F be a differentiable selfmapping of Rn, such that detF ′ ≡ 1 in all of Rn.
Then the decompositions of Theorem 4.2 reduce to TRn = R(F ′∗) and TRn = R(F ′), however,
F need not be surjective in general. This is related to Jacobian problems, cf. [15].
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5. Quasilinear Fredholm mappings
Let V and W be real Banach spaces. Throughout we assume that V is compactly embedded

into another Banach space V −. When we refer to topological properties of a set U ⊂ V , we will
mean the topology induced by V , unless we explicitly refer to the topology induced by V −.

A mapping F : V → W is called quasilinear Fredholm if it can be written in the form

F (v) = L(v)v + C(v) (5.1)

for v ∈ V , where L is the restriction to V of a continuous mapping L− of V − into the subset of
L(V,W ) consisting of Fredholm operators of index zero, and C : V → W is compact. Of course,
quasilinear Fredholm mappings need not be differentiable.

Quasilinear Fredholm mappings were introduced in [24] in the study of the nonlinear Riemann-
Hilbert problem. Another typical situation in which quasilinear Fredholm mappings arise quite
naturally is the study of the Dirichlet problem for quasilinear elliptic equations. By [3], fully
nonlinear elliptic equations with general nonlinear Shapiro-Lopatinskii boundary conditions in-
duce quasilinear Fredholm mappings between appropriate function spaces, provided that the
"coefficients" are sufficiently smooth.

If F : V → W is any C1 mapping, we may write F as F (v) = L(v)v+ F (0) for v ∈ V , where
L(v) ∈ L(V,W ) is defined by

L(v) =

∫ 1

0

F ′(tv)dt,

which is a curve integral in the space of bounded linear operators from V to W . Thus, the
algebraic representation of (5.1) is not very restrictive. The crucial point is that each L(v) is a
Fredholm operator of index zero and that the family L(v) is defined and depends continuously on
v for v belonging to a larger space V − in which V is compactly embedded. The latter property
implies that v 7→ L(v) factors through a compact embedding V ↪→ V −, and so it is a compact
mapping from V to L(V,W ).

We now establish several general properties of quasilinear Fredholm mappings, following [9].
The mapping L is usually referred to as a principal part of f . Note that if L : V → L(V,W )
is continuous at v0 ∈ V then the mapping of V to W given by v 7→ L(v)(v − v0) is Fréchet
differentiable at v0 and its Fréchet derivative at v0 just amounts to L(v0).

Lemma 5.1. Two principal parts of a quasilinear Fredholm mapping F : V → W differ by
a family of compact operators.

Proof. Suppose that F : V → W is represented by F (v) = Lj(v)v + Cj(v), for j = 1, 2. Fix
v0 ∈ V and set Gj(v) = Lj(v)(v − v0) for v ∈ V . As mentioned, we get G′

j(v0) = Lj(v0), for
j = 1, 2. From the equality of both representations it follows that the difference

G1(v)−G2(v) = −
(
C1(v)− C2(v)

)
−
(
L1(v)− L2(v)

)
v0

is a compact mapping of V to W . But the Fréchet derivative of a compact mapping is compact,
so that G′

1(v0)−G′
2(v0) = L1(v0)− L2(v0) is compact.

Lemma 5.2. Let F : V → W be quasilinear Fredholm and be represented by F (v) = L(v)v+C(v)
for v ∈ V . If F : V → W is Fréchet differentiable at v0 ∈ V , then F ′(v0)− L(v0) is compact.

Proof. Write
R(v) = F (v)− L(v)(v − v0)

for v ∈ V . The differentiability of F at v0 implies that R′(v0) = F ′(v0)−L(v0). Since R : V → W
is compact, it follows that F ′(v0)− L(v0) is compact, too, as desired.
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So far we have not used the property of L : V → L(V,W ) to take on its values in Fredholm
operators of index zero. Our next lemma makes use of this property. The Fredholm operators
of index zero possess parametrices which are invertible mappings of W onto V . We confine
ourselves to formulation of this result, referring the reader to [27] and [9] for a proof. Recall that
an operator A ∈ L(V,W ) is Fredholm of index zero if and only if there exists P ∈ GL(W,V )
with PA − I ∈ K(V ). Let A(λ) be a family of Fredholm operators of index zero acting from
V to W and continuously depending on a parameter λ ∈ Λ, Λ being a topological space. By
a strong parametrix for A(λ) is meant any continuous family P : Λ → GL(W,V ) satisfying
P (λ)A(λ) − I ∈ K(V ) for all λ ∈ Λ. In general, a family A(λ) has no strong parametrix.
For instance, when Λ is the unit circle in the plane, the non-existence of strong parametrices
for certain continuous families A(λ) of Fredholm operators of index zero just amounts to the
nontriviality of the Poincaré group of the Fredholm operators of index zero in L(V,W ). However,
if Λ is a contractible paracompact Hausdorff space, then any continuous family A(λ) of λ ∈ Λ
with values in Fredholm operators of index zero in L(V,W ) possesses a strong parametrix, see
Theorem 2.1 of [9] which is referred to as a fundamental result.

Lemma 5.3. Suppose F : V → W is a quasilinear Fredholm mapping represented by
F (v) = L(v)v + C(v) for v ∈ V . Let Π− : V − → GL(W,V ) be a continuous mapping with

the property that Π−(v)L−(v)− I ∈ K(V ) for all v ∈ V −. Then Π−(v)F (v) = v −K(v) holds
valid for all v ∈ V , where K : V → V is a compact mapping.

Proof. We get Π−(v)L−(v) = I − R−(v) for v ∈ V −, where R− : V − → K(V ) is continuous.
Hence,

Π−(v)F (v) = Π−(v) (L(v)v + C(v)) =

=
(
I −R−(v)

)
v +Π−(v)C(v) =

= v −K(v)

for all v ∈ V , where K(v) = R−(v)v−Π−(v)C(v). Since V is compactly embedded into V − and
both

R− : V − → L(V,W ),
Π− : V − → L(V,W )

are continuous, the compactness of K : V → V follows from the compactness of C : V → W and
of each R−(v) for v ∈ V −.

Theorem 5.4. Let F : V → W be a quasilinear Fredholm mapping. Then F can be represented
as

F (v) = T−(v) (v −K(v)) (5.2)

for v ∈ V , where T− : V − → GL(V,W ) is a continuous family of isomorphisms and K is a
compact mapping of V .

Proof. Write F in the form F (v) = L(v)v + C(v) for v ∈ V . On applying Theorem 2.1 of [9] we
choose Π− : V −→ GL(W,V ) to be any strong parametrix for the family L−. Set

T−(v) :=
(
Π−(v)

)−1

for v ∈ V − and use Lemma 5.3 to get (5.2), as desired.

If A ∈ L(V,W ) is a Fredholm operator of index zero, then the restriction of A to any bounded
closed subset of V is proper. The following lemma is a generalisation of this assertion to nonlinear
mappings, which is of independent interest as a quite general criterion for establishing properness.
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Lemma 5.5. Assume that F : V → W is a quasilinear Fredholm mapping. If Σ ⊂ V is closed
and bounded, then F : Σ → W is proper.

Proof. Let F : V → W be represented by (5.1). Then the properness of F : Σ → W follows
from the compactness of the embedding of V into V −, the compactness of C : V → W and the
continuity of L− : V − → L(V,W ), together with the properness of L−(v) : Σ → W for each
v ∈ V −.

We now turn to the boundary value problem composed in Lemma 1.3. The advantage of
using quasilinear Fredholm mappings lies in the fact that they require no linearisation of the
problem, which may be cumbersome. To illustrate the results explicitly, we restrict our attention
to the case p = 2, for the theory for p ̸= 2 does not fit immediately the framework of quasilinear
Fredholm operators. If p = 2 then (1.6) transforms to

(A− f ′
u)

∗(Au− f) = 0 in
◦
X ,

Bu = u0 at ∂X ,
B∗(A− f) = 0 at ∂X ,

(5.3)

cf. [2]. The differential equation of (5.3) is understood in the sense of distributions in the
interior of X . While the direct methods of variational calculus apply to look for a solution
u ∈ H1(X ,Rℓ), direct constructions along more classical lines deal with solutions in H2+s(X ,Rℓ),
where s = 0, 1, . . .. Under obvious assumption on f , the problem corresponds to

F : Hs+2(X ,Rℓ) →

Hs(X ,Rℓ)
⊕

Hs+3/2(∂X ,Rℓ′)
⊕

Hs+1/2(∂X ,Rℓ−ℓ′)

given by F (u) = L(u)u+ C(u), where

L(v)u =

 A∗Au
Bu

B∗Au

 , C(u) =

 −A∗f − (f ′
u)

∗(Au− f)
0

−B∗f


for v ∈ H1(X ,Rℓ).

Denote by Hs+2
B,B∗A(X ,Rℓ) the subspace of Hs+2(X ,Rℓ) that consists of all functions

u ∈ Hs+2(X ,Rℓ) satisfying Bu = 0 and B∗(Au) = 0 at ∂X . Applying Theorem 5 of [1] we con-
clude that the boundary value problem L(v) is formally selfadjoint relative to the Green formula
for the Laplacian ∆ := A∗A. Hence it follows that the operator ∆ : Hs+2

B,B∗A(X ,Rℓ) → Hs(X ,Rℓ)

has index zero. We may select a compact operator K : Hs+2
B,B∗A(X ,Rℓ) → Hs(X ,Rℓ) such that

∆+K : Hs+2
B,B∗A(X ,Rℓ) → Hs(X ,Rℓ) is a bijection. The surjectivity of the boundary operators

{B,B∗A} then implies that the perturbation of L(v) by {KP, 0, 0} is bijective, where P is the
projection of Hs+2(X ,Rℓ) onto the kernel of {B,B∗A}. Since the Fredholm index is invariant
under compact perturbation, we deduce that L(v) is Fredholm of index zero, cf. Lemma 10.11
of [9]. Hence, F is a quasilinear Fredholm mapping.

6. Mapping degree of Lagrangian problems
In [9], an additive integer-valued degree theory for quasilinear Fredholm mappings is con-

structed. The theory is based upon a modification of the well-known techniques of [14] for
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formulating the solutions of the Dirichlet problem for a quasilinear second order elliptic equation
as the zeroes of a compact perturbation of the identity, i.e., fixed points of a compact mapping.
Following an idea of [3], it is shown in [9] that general elliptic boundary value problems with
sufficiently smooth "coefficients", induce quasilinear Fredholm mappings both in Sobolev and
Hölder spaces.

The definition of degree in [9] turns upon first assigning a degree to each linear isomorphism
and then extending the degree to general quasilinear Fredholm mappings.

If V and W are finite dimensional of the same dimension, the choice of orientation of V and
W defines the determinant detT for all T ∈ GL(V,W ). Then ε : GL(V,W ) → {±1}, defined by
ε(T ) = sgn detT , distinguishes the two connected components of GL(V,W ). Of course, ε(T ) is
the Brower degree of T with respect to the choice of orientations.

If V = W is infinite dimensional, then the group of compact perturbations of the identity
in GL(V, V ) also has two components, which are distinguished by the function ε(T ) = (−1)N

where N is the number of the negative eigenvalues of T counted with their algebraic multiplicities.
Obviously, ε(T ) just amounts to the Leray-Schauder degree of T .

For general spaces V and W the “group” GL(V,W ) may be connected. If we divide GL(V,W )
into equivalence classes under the Calkin equivalence relation, to wit T ∼ S if T − S is com-
pact, then each equivalence class has two connected components. In fact, if T − S = K then
I − T−1S = T−1K, and so T−1S is a compact perturbation of the identity. The Leray-Schauder
degree of T−1S distinguishes two connected components of the equivalence class indeed. It is
reasonable to define the degree so that it would distinguish the components of each Calkin equiv-
alence class. If T and S in GL(V,W ) are equivalent, then they lie in the same component of
their equivalence class if and only if the Leray-Schauder degree of T−1S is equal to 1. Accord-
ingly, [9] defines a function ε : GL(V,W ) → {±1} to be an orientation provided that ε(T )ε(S)
just amounts to the Leray-Schauder degree of T−1S, if T, S ∈ GL(V,W ) are equivalent. An
orientation of GL(V, V ) is always required to assign 1 to the identity.

Once an orientation ε is chosen, the degree of F on an open set U ⊂ V is defined by

deg(F,U) = ε(T−(0)) deg(I −K,U, 0), (6.1)

where T− and K are as in (5.2) and deg(I −K,U, 0) is the Leray-Schauder degree of I −K in U
with respect to the value 0. The right-hand side of (6.1) is independent of representation (5.2).

The degree defined by (6.1) has the usual additivity, existence and Borsuk-Ulam properties,
see [9]. If V = W and GL(V, V ) is connected, then any integer-valued degree theory on a class of
mappings which includes all linear isomorphisms and which coincides with the Leray-Schauder
degree on the class of compact perturbation of the identity can neither be homotopy invariant
nor can the classical regular value formula hold.

In [10] a rather different construction of mapping degree is given which uses a stronger notion
of orientation than the one used in [9]. If F : V → W is a C2 quasilinear Fredholm map which
has 0 as a regular point, then the function o defined by o(x) = ε(F ′(x))σ(F ′ ◦ γ), where γ is
any path between 0 and the regular point x and σ(F ′ ◦ γ) the parity of the family F ′ along γ, is
an orientation of the map F in the sense of [10]. Moreover, for any admissible set U in V , the
degree of F with respect to o is

dego(F,U,w) :=
∑

x∈F−1(w)∩U

o(x)

provided that w ̸∈ F (∂U) is a regular value of F : U → W . We write it dego(F,U) for short, if
w = 0.

A major breakthrough came with the paper [11] which remedied the shortcomings of [10].
Indeed, the theory of [10] has required C2 mappings whereas C1 mappings would be more natural.
The paper [4] is inspired by the approach of [10] though the details are different. The authors
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define the orientation of a linear Fredholm operator T : V → W of index zero between Banach
spaces as the choice of either of the connected components of the set of all finite rank operators
K such that T + K is invertible. They succeed in defining the degree deg(F,U,w) whenever
F : U → W is a C1 oriented Fredholm map of index zero between Banach manifolds and f−1(w)
is compact, and this degree satisfies the expected properties including invariance under oriented
homotopies. For a further progress we refer the reader to [5, 6].

We now turn to the Euler-Lagrange equations of Lemma 1.3. In the initial setting the operator

u 7→ (A−f ′
u)

∗(|Au−f |p−2(Au−f))

is given the domain W 1,p(X ,Rℓ) and maps it to (
o

W 1,p(X ,Rℓ))′. Our objective is to single out
the principal part of the operator containing all second order derivatives of u. For this reason
our computations will be modulo terms which include the derivatives up to the first order of u.
Under obvious conditions on f they can be comprehended as nonlinear compact operators in the
relevant Banach spaces. We first write

Au =

n∑
j=1

Aj ∂ju+A0u,

where Aj and A0 are (m× ℓ) -matrices of smooth functions on X . On using this formula we get

(A−f ′
u)

∗(|Au−f |p−2(Au−f)
)
=

= |Au−f |p−2A∗Au−
n∑

j=1

Aj∗ (Au−f) ∂j |Au−f |p−2 (6.2)

modulo first order terms. The function Au takes on its values in Rm, and we think of Au as an
m -column with entries A1u, . . . , Amu. By the definition, each Ak is an ℓ -row of scalar partial
differential operators of the first order on X . More precisely, we obtain

Aku =
n∑

i=1

Ai
k ∂iu+A0

ku

for k = 1, . . . ,m, where Ai
k and A0

k are the k th rows of the matrices Ai and A0, respectively.
Now a trivial verification shows that

∂j |Au−f |p−2 = ∂j

( m∑
k=1

(Aku−fk)
2
) p−2

2

=

=
p−2

2
|Au−f |p−4

( m∑
k=1

2 (Aku−fk) ∂j(Aku−fk)
)
=

= (p−2) |Au−f |p−4
( m∑

k=1

(Aku−fk)
n∑

i=1

Ai
k∂j∂iu

)
modulo nonlinear terms which include the derivatives of u of order not exceeding one. On the
other hand, we have

Aj∗ =
(
Aj

1
∗ . . . Aj

m
∗
)

for all j = 1, . . . , n, whence

Aj∗ (Au−f) =
m∑
l=1

Aj
l
∗ (Alu−fl).
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Substituting these equalities into (6.2) yields

(A−f ′
u)

∗(|Au−f |p−2(Au−f)
)
=

= |Au−f |p−2
(
A∗Au− (p−2)

m∑
k,l=1

Alu−fl
|Au−f |

Aku−fk
|Au−f |

n∑
i,j=1

Aj
l
∗Ai

k∂j∂iu
)

modulo nonlinear terms containing the derivatives of u of order 6 1. It is easily seen that

−
n∑

i,j=1

Aj
l
∗Ai

k∂j∂iu = A∗
lAku

up to terms containing the derivatives of u of order at most one. This gives the final formula

(A−f ′
u)

∗(|Au−f |p−2(Au−f)
)
=

= |Au−f |p−2
(
A∗Au+ (p−2)

m∑
k,l=1

Alu−fl
|Au−f |

Aku−fk
|Au−f |

A∗
lAku

)
(6.3)

up to terms containing the derivatives of u of order 6 1. Formula (6.3) gains in interest if we
observe that

A∗A =
n∑

k=1

A∗
kAk.

Remark 6.1. For the classical p -Laplace operator in Rn equality (6.3) takes the form

∆pu = |∇u|p−2
(
−∆u− (p−2)

n∑
k,l=1

∂lu

|∇u|
∂ku

|∇u|
∂l∂ku

)
modulo terms containing the derivatives of u up to order one.

Summarising we conclude that the operator corresponding to the Euler-Lagrange equa-
tions (1.6)

F : W 1,p(X ,Rℓ) →

W−1,p′
(X ,Rℓ)
⊕

W 1/p′,p(∂X ,Rℓ′)
⊕

W−1/p′,p′
(∂X ,Rℓ−ℓ′)

can be written in the form F (u) = L(u)u+ C(u), where

L(v)u =


|Av−f |p−2

(
A∗Au+ (p−2)

m∑
k,l=1

Alv−fl
|Av−f |

Akv−fk
|Av−f |

A∗
lAku

)
Bu

|Av−f |p−2B∗Au


for v ∈ W 1,p(X ,Rℓ), and C is a nonlinear compact operator. One sees readily that, if Av−f(·, v)
vanishes at some point of X , then the boundary value problem L(v) is degenerate.

Theorem 6.2. Let Av(x)− f(x, v) ̸= 0 for all x ∈ X . Then the differential equation of L(v) is
elliptic in X .
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Proof. The theorem just amounts to saying that the second order partial differential operator

L = A∗A+ (p−2)
m∑

k,l=1

ālak A
∗
lAk

is elliptic in X , where ak =
Akv−fk
|Av−f |

for k = 1, . . . ,m.

Fix x ∈ X and denote by σ(L) = σ2(L)(x, ξ) the principal symbol of L at a point (x, ξ) ∈ T ∗X ,
where ξ ∈ T ∗

xX is different from zero. An easy computation shows that

σ(L) =
m∑

k=1

(σ(Ak))
∗σ(Ak) + (p− 2)

( m∑
l=1

al σ(Al)
)∗( m∑

k=1

ak σ(Ak)
)
,

where σ(Ak) = σ1(Ak)(x, ξ) is the principal symbol of Ak at (x, ξ). The invertibility of σ(L) :
Rℓ → Rℓ will be established once we prove that (σ(L)u, u) > 0 for each nonzero vector u ∈ Rℓ.

We get

(σ(L)u, u) =

m∑
k=1

|σ(Ak)u|2 + (p− 2)
∣∣∣ m∑
k=1

ak σ(Ak)u
∣∣∣2,

which is obviously nonnegative if p > 2. Furthermore, if 1 < p < 2, then using the Cauchy
inequality yields

(σ(L)u, u) >
m∑

k=1

|σ(Ak)u|2 + (p− 2)

m∑
k=1

|σ(Ak)u|2 >

> 0, (6.4)

for 1 + (p− 2) > 0.
It remains to show that (σ(L)u, u) = 0 for u ∈ Rℓ implies u = 0. If p > 2, then from

(σ(L)u, u) = 0 it follows that σ(Ak)u = 0 for all k = 1, . . . ,m. Since the principal symbol
mapping of A is injective, we conclude that u = 0, as desired. The same proof remains valid for
1 < p < 2, for if σ(A)u ̸= 0, then (σ(L)u, u) > 0, which is due to (6.4).

Thus, if the system of boundary operators {B,B∗A} satisfies the Shapiro-Lopatinskii con-
dition, then L(v) is actually an elliptic boundary value problem. To get rid of degeneracy it
suffices to cancel the scalar factor |Av − f |p−2, thus obtaining a problem essentially selfadjoint
with respect to the Green formula, see Theorem 5 of [1]. Therefore, the theory of [4, 11] still
applies to Lagrangian boundary value problems.

7. Perturbed Dirichlet problem

In this section we consider the Dirichlet problem for the perturbed Laplace equation and
prove criteria which are needed to apply the degree.

Let X be a bounded closed domain with smooth boundary in Rn. Consider the problem{
∆u = f(x, u, u′) in X ,
u = 0 at ∂X ,

(7.1)

where f is a nonlinear C1 function of its numerical arguments (x, u, p) ∈ X × R× Rn satisfying

|f | 6 C ⟨p⟩γ , |f ′
u| 6 C ⟨p⟩γ , |f ′

p| 6 C, (7.2)
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with γ < 1 and C a constant independent of x, u and p. Here, we use the designation
⟨p⟩ = (1 + |p|r)1/r with r = 2 or with any other r > 0, for all the expressions are equivalent.

Choose V :=
o

H1(X ) and W := H−1(X ) with norms

∥u∥V =
(∫

X
|u′|2dx

)1/2

,

∥f∥W = sup
∥u∥V =1

∣∣∣ ∫
X
fū dx

∣∣∣.
Then, F (u) := ∆u− f(x, u, u′) maps V continuously into W and it is an elliptic operator.

Lemma 7.1. The Laplace operator ∆ : V → W is an isomorphism and C1, and so a C1

Fredholm operator of index 0.

Proof. To show that ∆ : V → W is an isomorphism, note that if u ∈ V and ∆u = 0 then u = 0,
for u is a harmonic function vanishing at the boundary. Thus, ∆ : V → W is one to one. We
now assume that f ∈ H−1(X ). The equation ∆u = f for u ∈ V is understood in the weak sense,
i.e., a(u, v) = f(v̄) for every v ∈ V , where

a(u, v) =

∫
X
(u′, v′)xdx

stands for the inner product in V . By the Riesz representation theorem there is a unique u ∈ V
satisfying a(u, v) = f(v̄) for all v ∈ V . Hence it follows that ∆ : V → W is onto. Moreover, ∆ is
a linear operator and hence C1. Thus, ∆ : V → W is a C1 isomorphism.

Lemma 7.2. Under assumptions (7.2) the Nemytskii map u 7→ f(x, u, u′) is a C1 compact
operator.

Proof. We first observe that, for a fixed u ∈ V , the function x 7→ f(x, u(x), u′(x)) belongs to
Lp(X ) with any p > 1. Consider the map

o

H1(X ) → L2(X )× L2(X )n
Nf→ L2(X ) ↪→ H−1(X ), (7.3)

where by the first arrow is meant the map u 7→ (u, u′) and by the second arrow the map
(u, u′) 7→ f(x, u, u′). The first map is linear and bounded, hence it is continuous and C1. On
the other hand, from Theorem 10.58 of [21] and the first inequality of (7.2) it follows that Nf

is a continuous map from L2(X )× L2(X )n to L2(X ). And finally the embedding of L2(X ) into
H−1(X ) is also continuous and C1. Therefore, (7.3) is a composition of continuous maps and
thus is continuous. Moreover, since the last embedding is compact, (7.3) is a compact map from
V to W . On the other hand, the remaining estimates of (7.2) together with Theorem 10.58
of [21] imply that Nf is C1, and so (7.3) is C1 as composition of C1 maps.

We conclude that the map F : V → W is of the form L + C, where Lu := ∆u is a linear
Fredholm operator of index zero and Cu := −f(x, u, u′) is a compact operator. If u is a smooth
function with compact support in the interior of the closed domain X , then

∥∆u∥W = sup
∥v∥V =1

∫
X
∆u v̄dx.

On integrating by parts we get

∥∆u∥W = sup
∥v∥V =1

∣∣∣ ∫
X
(u′, v′)xdx

∣∣∣ = sup
∥v∥V =1

∣∣(u, v)V ∣∣
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and choosing

v =
u

∥u∥V

yields ∥∆u∥W > ∥u∥V . On the other hand, ∥∆u∥W 6 ∥u∥V , which is clear from the Cauchy-
Schwarz inequality. Thus,

∥∆u∥W = ∥u∥V

which extends by continuity to all functions u ∈
o

H1(X ).
If u ∈ V is a solution of (7.1) then ∆u = f(x, u, u′), hence

∥u∥V = ∥f(x, u, u′)∥W 6
6 c ∥f(x, u, u′)∥L2(X )

with c a constant independent of u. Furthermore, applying the first estimate of (7.2) on f we
get

∥f(x, u, u′)∥2L2(X ) 6 C2

∫
X
⟨u′⟩2γ dx 6

6 C2
(∫

X
dx

)1−γ(∫
X
⟨u′⟩2dx

)γ

6

6 C
(
1 + ∥u∥2V

)γ
,

where C is a constant independent of u which may be different in diverse applications. Thus,

∥u∥V 6 C
(
1 + ∥u∥2V

)γ/2
for all u ∈ V satisfying (7.1). Since the right hand side is a sublinear function of ∥u∥V , such
an a priori estimate occurs only if ∥u∥V is bounded, i.e. ∥u∥V 6 R for some constant R > 0
independent of u.

We may now appeal to the concept of mapping degree to show the existence of a solution to
problem (7.1). The specific concept we use here is that of regular point degree clarified in [11, 7.1].

Let U be the ball of radius 2R with centre at the origin in V . By Lemmata 7.1 and 7.2, F is
a C1 map from U to W . By the above a priori estimate, F−1(0) belongs to the ball U/2, and
hence F does not vanish at ∂U . It follows that the mapping degree deg (F,U) is well defined.
To compute this degree, we consider the homotopy

Ft(u) = ∆u− t f(x, u, u′)

for t ∈ [0, 1]. Obviously, Ft is a C1 map, for each t ∈ [0, 1], and the same a priori estimate shows
that F−1

t (0) ⊂ U/2. Therefore, Ft does not vanish at ∂U for all t ∈ [0, 1]. Then, the homotopy
invariance of the mapping degree implies that deg (F,U) = deg (∆, U).

By Lemma 7.1, ∆ : V → W is a (linear) isomorphism, and so the mapping degree deg (∆, U)
is different from zero. This implies immediately that deg (F,U) ̸= 0. On using the normalisation
property of mapping degree [11] we conclude that the set F−1(0) is nonempty, i.e., problem (7.1)
has at least one solution u ∈ V , as desired.

This result extends in an obvious way to the Dirichlet problem for perturbations of the
Laplace operator ∆ = A∗A, where A is a first order overdetermined elliptic differential operator
satisfying the uniqueness condition for the local Cauchy problem (U)s, see [26].
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8. The Dirichlet problem for the p -Laplace equation
In this section we consider the Dirichlet problem for the perturbed p -Laplace equation. Let

X be a bounded closed domain with smooth boundary in Rn. Consider the problem{
∆pu = f(x, u, u′) in X ,

u = 0 at ∂X ,
(8.1)

where ∆pu := ∇∗(|∇u|p−2∇u). The right hand side f is assumed to be a nonlinear C1 function of
its numerical arguments (x, u, p) ∈ X ×R×Rn satisfying inequalities (7.2) with some γ < p− 1.

Choose V :=
o

W 1,p(X ) and W := W−1,p′
(X ) with norms

∥u∥V =
(∫

X
|u′|pdx

)1/2

,

∥f∥W = sup
∥u∥V =1

∣∣∣ ∫
X
fū dx

∣∣∣,
where 1/p+ 1/p′ = 1. Then, F (u) := ∆pu− f(x, u, u′) maps V continuously into W and it is a
degenerate elliptic operator.

Lemma 8.1. The map F : V → W is C1 and it admits a regular point u0 in V , i.e., F ′(u0) ∈
GL(V,W ).

Proof. Using the chain rule we see that the Fréchet derivative of the p -Laplace operator at a
point u0 ∈ V is given by

∆′
p(u0)u = ∇∗

(
|∇u0|p−2

(
En + (p− 2)

∇u0

|∇u0|

( ∇u0

|∇u0|

)∗)
∇u

)
=

= ∇∗ (a(x)∇u)

for u ∈ V . Note that a(x) is a symmetric (n × n) -matrix with entries in L
p

p−2 (X ). By Theo-
rem 6.2, ∆′

p(u0) is a second order elliptic operator away from the critical points of u0 in X .
On the other hand, the Fréchet derivative of the map f̂ : V → W given by u 7→ f(x, u, u′) is

f̂ ′(u0)u = f ′
u(x, u0,∇u0)u+ f ′

p(x, u0,∇u0)∇u

for u ∈ V . The inhomogeneous equation F ′(u0)u = w with w ∈ W just amounts to finding a
u ∈ V which satisfies

∇∗(a(x)∇u)− f ′
u(x, u0,∇u0)u− f ′

p(x, u0,∇u0)∇u = w

weakly in X .
We now refer to [12] to see that in any ball around the origin in V there is a function u0,

such that F ′(u0)u = w has a unique solution u ∈ V for each right hand side w ∈ W . In other
words, F ′(u0) ∈ GL(V,W ), i.e., u0 is a regular point of F , as desired.

If u is a smooth function with compact support in the interior of the closed domain X , then

∥∆pu∥W = sup
∥v∥V =1

∫
X
∆pu v̄dx.

On integrating by parts we get

∥∆pu∥W = sup
∥v∥V =1

∣∣∣ ∫
X
(∆pu, v)xdx

∣∣∣ = sup
∥v∥V =1

∣∣∣ ∫
X
|∇u|p−2 (∇u,∇v)xdx

∣∣∣.
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Let
v =

u

∥u∥V
,

then ∫
X
|∇u|p−2 (∇u,∇v)xdx =

1

∥u∥V

∫
X
|∇u|p−2 (∇u,∇u)xdx =

=
1

∥u∥V

∫
X
|∇u|p dx =

= ∥u∥p−1
V

whence ∥∆pu∥W > ∥u∥p−1
V . On the other hand, if v ∈

o

W 1,p(X ) and ∥v∥V = 1, then

∣∣ ∫
X
|∇u|p−2 (∇u,∇v)xdx

∣∣ 6 ∥∇v∥Lp(X )

(∫
X
|∇u|(p−1)p′

(∇u,∇v)xdx
)1/p′

=

= ∥u∥p−1
V ,

the first estimate being due to the Hölder inequality. Thus,

∥∆pu∥W = ∥u∥p−1
V

which extends by continuity to all functions u ∈
o

W 1,p(X ).
If u ∈ V is a solution of (8.1) then ∆pu = f(x, u, u′), hence

∥u∥p−1
V = ∥f(x, u, u′)∥W 6

6 c ∥f(x, u, u′)∥Lp(X )

with c a constant independent of u. Furthermore, on applying the first estimate of (7.2) on f we
obtain

∥f(x, u, u′)∥pLp(X ) 6 Cp

∫
X
⟨u′⟩pγ dx 6

6 C
(∫

X
⟨u′⟩pdx

)γ

6

6 C (1 + ∥u∥pV )
γ ,

where C is a constant independent of u which may be different in diverse applications. Thus,

∥u∥V 6 C (1 + ∥u∥pV )
γ/p(p−1)

for all u ∈ V satisfying (8.1). Since γ < p−1, the right hand side of this inequality is a sublinear
function of ∥u∥V . On arguing as in Section 7. we see that there is a constant R > 0 with the
property that ∥u∥V 6 R is fulfilled for all u ∈ V satisfying (8.1).

Let U be the ball of radius 2R with centre at the origin in V . By Lemma 8.1, F is a C1

map from U to W and it has a regular point u0 ∈ U . By the above a priori estimate, F−1(0)
belongs to the ball U/2, and hence F (u) ̸= 0 for all u ∈ ∂U . It follows that the mapping degree
degu0

(F,U) is well defined, see [11, 7.1]. To compute this degree, we consider the homotopy

Ft(u) = ∆pu− t f(x, u, u′)

for t ∈ [0, 1]. Obviously, Ft is a C1 map, for each t ∈ [0, 1], and the same a priori estimate shows
that F−1

t (0) ⊂ U/2. Therefore, Ft does not vanish at ∂U for all t ∈ [0, 1]. Then, the homotopy
invariance of the mapping degree implies that deg (F,U) = deg (∆p, U).
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The mapping ∆p : V → W is well known to be an isomorphism, see for instance [23] and
elsewhere. This allows one to conclude that the mapping degree deg (∆p, U) is different from zero.
Hence it follows that deg (F,U) ̸= 0, which implies immediately that F−1(0) ̸= ∅. Therefore,
problem (8.1) has at least one solution u ∈ V , as desired.

For a deeper discussion of the Dirichlet problem for compact perturbations of the p -Laplace
equation along more classical lines with f : X × R → R a Carathéodory function we refer the
reader to [8].

No attempt has been made here to generalise this result to the Dirichlet problem for the
p-Laplace operator u 7→ A∗(|Au|p−2Au) related to a first order overdetermined elliptic differential
operator A satisfying the uniqueness condition for the local Cauchy problem (U)s.

Conclusion
As a byproduct of our study of Lagrangian boundary value problems in X we derived a

linearisation of the nonlinear Laplace operator in general outline up to first order terms. It looks
like

∆(v)u = A∗Au+ λ
m∑

k,l=1

Alv−fl(·, v)
|Av−f(·, v)|

Akv−fk(·, v)
|Av−f(·, v)|

A∗
lAku,

where A is an (m × ℓ) -matrix of first order partial differential operators on X and A1, . . . , Am

the rows of A. If the principal symbol mapping of A is injective away from the zero section of
T ∗X and λ > −1, then ∆(v) is elliptic. This operator is supplied with two boundary operators
B and B∗A and the problem of solvability of the corresponding boundary value problem in X is
of central interest in the present paper.
Remark 8.2. The operator ∆(v) is elliptic for all real λ > −1 and it coincides with A∗A for
λ = 0. Hence, the index of the boundary value problem {∆(v), B,B∗A} amounts to that of
{A∗A,B,B∗A} if the boundary operators satisfy the Shapiro-Lopatinskii condition.

The first author gratefully acknowledges the financial support of the Deutscher Akademischer
Austauschdienst.
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Теория степени для лагранжевых краевых задач
Аммар Аль-Саеди

Университет Анахрайна
Багдад, Ирак

Николай Тарханов
Потсдамский университет

Потсдам, Германия

Аннотация. Мы изучаем те нелинейные уравнения с частными производными, которые возника-
ют как уравнения Эйлера-Лагранжа вариационных задач. Определяя слабые граничные значения
решений таких уравнений, мы инициируем теорию лагранжевых краевых задач в функциональ-
ных пространствах подходящей гладкости. Мы также анализируем, применяется ли современная
концепция степени отображения к лагранжевым проблемам.

Ключевые слова: нелинейные уравнения, лагранжева система, слабые граничные значения, ква-
зилинейные операторы Фредхольма, степень отображения.
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