Functions with the one-dimensional holomorphic extension property

Simona G.Myslivets

Siberian Federal University, Krasnoyarsk, Russia

This paper presents some results related to the holomorphic extension of functions f, defined on the boundary of a domain $D \subset \mathbb{C}^n$, n > 1, into this domain. It's about a functions with the one-dimensional holomorphic extension property along the complex lines.

The first result related to our subject was received M.L.Agranovsky and R.E.Valsky in [1], who studied the functions with a one-dimensional holomorphic continuation property into a ball. The proof was based on the automorphism group properties of a sphere.

E.L.Stout in [2] used complex Radon transformation to generalize the Agranovsky and Valsky theorem for an arbitrary bounded domain with a smooth boundary. An alternative proof of the Stout theorem was obtained by A.M.Kytmanov in [3] by applying the Bochner-Martinelli integral. The idea of using the integral representations (Bochner - Martinelli, Cauchy - Fantappiè, logarithmic residue) has been useful in the study the functions with one-dimensional holomorphic continuation property (see review [4]).

The question of finding the different families of complex lines, sufficient for holomorphic extension was put in [5]. As shown in [6], the family of complex lines passing through a finite number of points also, generally speaking, is not sufficient. Thus, a simple analogy theorem of Hartogs should be not expected.

Various other families are given in [7] - [11]. In [12] - [16] it is shown that for holomorphic extension of continuous functions defined on the boundary of the ball, enough n + 1 points inside the ball, do not lie on a complex hyperplane. By the author and A.Kytmanov this result was generalized on the *n*-circular [17] and circular domains.

Now we formulate some results about the different sufficient families of complex lines for holomorphic extension.

Let D be a bounded domain in \mathbb{C}^n with a smooth boundary. Consider the complex line of the form

$$l_{z,b} = \{ \zeta \in \mathbb{C}^n : \zeta = z + bt, t \in \mathbb{C} \} = \{ (\zeta_1, \dots, \zeta_n) : \zeta_j = z_j + b_j t, j = 1, 2, \dots, n, t \in \mathbb{C} \},\$$

where $z \in \mathbb{C}^n$, $b \in \mathbb{CP}^{n-1}$.

We will say that the function $f \in \mathcal{C}(\partial D)$ has the one-dimensional holomorphic extension property along the complex line $l_{z,b}$, if $\partial D \cap l_{z,b} \neq \emptyset$ and there exists a function $F_{l_{z,b}}$ with the following properties:

1) $F_{l_{z,b}} \in \mathcal{C}(\overline{B} \cap l_{z,b}),$

2) $F_{l_{z,b}} = f$ on the set $\partial D \cap l_{z,b}$,

3) function $F_{l_{z,b}}$ is holomorphic at the interior (with respect to the topology of $l_{z,b}$) points of set $\overline{D} \cap l_{z,b}$.

Let Γ is a set in \mathbb{C}^n . Denote by \mathfrak{L}_{Γ} the set of all complex lines $l_{z,b}$ such that $z \in \Gamma$, and $b \in \mathbb{CP}^{n-1}$, i.e., the set of all complex lines passing through $z \in \Gamma$. We will say that a function $f \in \mathcal{C}(\partial D)$ has the one-dimensional holomorphic extension property along the family \mathfrak{L}_{Γ} , if it has the one-dimensional holomorphic extension property along any complex line $l_{z,b} \in \mathfrak{L}_{\Gamma}$.

We will say set \mathfrak{L}_{Γ} sufficient for holomorphic extension, if the function $f \in \mathcal{C}(\partial D)$ has the one-dimensional holomorphic extension property along all complex lines of the family \mathfrak{L}_{Γ} , and then the function f extends holomorphically into D (i.e., f is a CR-function on ∂D).

In what follows we will need the definition of a domain with the Nevanlinna property [18]. Let $G \subset \mathbb{C}$ be a simply connected domain and $t = k(\tau)$ be a conformal mapping of the unit circle $\Delta = \{\tau : |\tau| < 1\}$ on G.

Domain G is a domain with the Nevanlinna property, if there are bounded holomorphic functions u and v in G such that almost everywhere on $S = \partial \Delta$, the equality

$$\bar{k}(\tau) = \frac{u(k(\tau))}{v(k(\tau))}$$

holds in terms of the angular boundary values. Essentially this means

$$\bar{t} = \frac{u(t)}{v(t)}$$
 on ∂G .

Give a characterization of a domains with the Nevanlinna property (Proposition 3.1 in [18]). Domain G is a domain with the Nevanlinna property if and only if $k(\tau)$ admits a holomorphic pseudocontinuation through S in $\overline{\mathbb{C}} \setminus \overline{\Delta}$, i.e., there are bounded holomorphic functions u_1 and v_1 such that the function $\tilde{k}(\tau) = \frac{u_1(\tau)}{v_1(\tau)}$ coincides almost everywhere with the function $k(\tau)$ on S.

The above definition and statement will be applied to bounded domains G with a boundary of class \mathcal{C}^2 , therefor (due to the principle of correspondence of boundaries) the function $k(\tau)$ extends to $\overline{\Delta}$ as a function of class $\mathcal{C}^1(\overline{\Delta})$ and $\tilde{k}(\tau)$ extends to $\mathbb{C} \setminus \overline{\Delta}$ as a function of class $\mathcal{C}(\mathbb{C} \setminus \overline{\Delta})$. Therefor in whole the function $\overline{t} = \frac{u(\tau)}{v(\tau)}$ is a meromorphic function in \mathbb{C} . Various example of domains with the Nevanlinna property are given in [18]. For example, if ∂G is a real-analytic, then $k(\tau)$ is a rational function with no poles on the closure Δ .

In our further consideration we will need the domain G to possess the strengthened Nevanlinna property, that is the function $u_1(\tau) \neq 0$ in $\mathbb{C} \setminus \Delta$ and \tilde{k} has at infinity zero of no more than first order. If $G = \Delta$ then $\overline{\tau} = \frac{1}{\tau}$ on $\partial \Delta$. Therefor meromorphic function 1

 $\frac{1}{\tau}$ has a zero of the first order at ∞ .

For example, such domain will include domains for which $k(\tau)$ is a rational function with no poles on $\overline{\Delta}$ and no zeros in $\mathbb{C} \setminus \Delta$.

We will to say that the domain $D \subset \mathbb{C}^n$ possess the strengthened Nevanlinna property in the point $z \in D$ if the section $D \cap l_{z,b}$ possess the strengthened Nevanlinna property for any $b \in \mathbb{CP}^{n-1}$. We formulate some results about the different families of complex lines sufficient for holomorphic extension.

Now we consider families of complex lines passing through a generic manifold. The real dimension of such a manifold is at least n. Recall that a smooth manifold Γ of class \mathcal{C}^{∞} is said to be *generic* if the complex linear span of the tangent space $T_z(\Gamma)$ coincides with \mathbb{C}^n for each point $z \in \Gamma$. We denote the family of all complex lines intersecting Γ by \mathfrak{L}_{Γ} .

Theorem 1. Let Γ be a germ of a generic manifold in $\mathbb{C}^n \setminus \overline{D}$ and the function $f \in \mathcal{C}(\partial D)$ have the one-dimensional holomorphic extension property along the family \mathfrak{L}_{Γ} , then the function f extends holomorphically into the domain D.

Here we consider a generic manifold Γ lying in the domain D.

Theorem 2. Let Γ be a germ of a generic manifold in D and a function $f \in C(\partial D)$ have the one-dimensional holomorphic extension property along the family \mathfrak{L}_{Γ} and the connected components of the intersection $D \cap l$ be domains with the strengthened Nevanlinna property, then the function f extends holomorphically into the domain D.

Let Γ be the germ of a complex manifold of dimension (n-1) in \mathbb{C}^n , which lies outside \overline{D} . Having done the shift and unitary transformation, we can assume that $0 \in \Gamma$, $0 \notin \overline{D}$ and that the complex hypersurface Γ in some neighborhood U of 0 has the form

$$\Gamma = \{ z \in U : z_n = \varphi(z'), z' = (z_1, \dots, z_{n-1}) \},\$$

where φ is the holomorphic function in a neighborhood of zero in \mathbb{C}^{n-1} and $\varphi(0) = 0$, $\frac{\partial \varphi}{\partial z_{*}}(0) = 0, \ k = 1, \dots, n-1.$

We will assume that there is a direction $b^0 \neq 0$ such that

$$\langle b^0, \bar{\zeta} \rangle \neq 0 \quad \text{for all} \quad \zeta \in \overline{D}.$$
 (1)

Theorem 3. Let D be a simply connected bounded domain and condition (1) be fulfilled and the function $f \in C(\partial D)$ have the one-dimensional holomorphic extension property along the family \mathfrak{L}_{Γ} , then the function f extends holomorphically into the domain D.

Let $B = \{z \in \mathbb{C}^n : |z| < 1\}$ be a unit ball in \mathbb{C}^n centered at the origin and let $S = \partial B$ be the boundary of the ball.

We denote by \mathfrak{A} the set of points $a_k \in D \subset \mathbb{C}^n$, $k = 1, \ldots, n+1$, which do not lie on the complex hyperplane in \mathbb{C}^n .

Theorem 4. Let a function $f \in C(S)$ have the one-dimensional holomorphic extension property along the family $\mathfrak{L}_{\mathfrak{A}}$, then the function f extends holomorphically into the ball B.

This theorem was proved for circular domains with the strengthened Nevanlinna property.

Theorem 5. Let D be a bounded strictly convex circular domain with twice smooth boundary in \mathbb{C}^n and possess the strengthened Nevanlinna property in the points from the set \mathfrak{A} and a function $f \in \mathcal{C}(\partial D)$ have the one-dimensional holomorphic extension property along the family $\mathfrak{L}_{\mathfrak{A}}$, then the function f extends holomorphically into the domain D.

References

- M.L.Agranovsky and R.E.Valsky, Maximality of invariant algebras of functions, Sib. Mat. J. 12(1), 3–12 (1971).
- [2] E.L.Stout, The boundary values of holomorphic functions of several complex variables, Duke Math. J. 44(1), 105–108 (1977).
- [3] L.A.Aizenberg and A.P.Yuzhakov, Integral Representations and Residues in Multidimensional Complex Analysis, Tranclantions of Mathematical Monographs Vol. 58 (American Mathematical Society, Providence, RI, 1983).
- [4] A.M.Kytmanov and S.G.Myslivets, Higher-dimensional boundary analogs of the Morera theorem in problems of analytic continuation of functions, J. Math. Sci. 120(6), 1842–1867 (2004).
- [5] J.Globevnik and E.L.Stout, Boundary Morera theorems for holomorphic functions of several complex variables, Duke Math. J. 64(3), 571–615 (1991).
- [6] A.M.Kytmanov and S.G.Myslivets, On the families of complex lines, sufficient for holomorphic continuations, Math. Notes, 83(4), 545 - 551 (2008).
- [7] A.M.Kytmanov, S.G.Myslivets and V.I.Kuzovatov, Families of complex lines of the minimal dimension, sufficient for holomorphic continuation of functions, Sib. Math. J. 52(2), 256-266 (2011).
- [8] M.Agranovsky, Propagation of boundary CR-foliations and Morera type theorems for manifolds with attached analytic discs, Advan. in Math. **211**(1), 284-326 (2007).
- [9] M.Agranovsky, Analog of a theorem of Forelli for boundary values of holomorphic functions on the unit ball of \mathbb{C}^n , J. d'Anal. Math. **13**(1), 293-304 (2011).
- [10] L.Baracco, Holomorphic extension from the sphere to the ball, J. Math. Anal. Appl. 388(2), 760-762 (2012).
- [11] J.Globevnik, Small families of complex lines for testing holomorphic extendibility, Am. J. Math. 134(6), 1473-1490 (2012).
- [12] L.Baracco, Separate holomorphic extension along lines and holomorphic extension from the sphere to the ball, Am. J. Math. 135(2), 493-497 (2013).
- [13] J.Globevnik, Meromorphic extensions from small families of circles and holomorphic extensions from spheres, Trans. Am. Math. Soc. 364(11), 5857-5880 (2012).
- [14] A.M.Kytmanov and S.G.Myslivets, Holomorphic extension of functions along finite families of complex linea in a ball, J. Sib. Fed. Univ. Math. and Phys. 5(4), 547–557 (2012).

- [15] A.M.Kytmanov and S.G.Myslivets, An analog of the Hartogs theorem in a ball of \mathbb{C}^n , Math. Nahr. **288**(2-3), 224-234 (2015).
- [16] A.M.Kytmanov and S.G.Myslivets, Multidimensional Integral Representations (Springer Inter. Publ. Switzarland, 2015).
- [17] A.M.Kytmanov and S.G.Myslivets, Holomorphic extension of functions along finite families of complex linea in a *n*-circular domain, Sib. Math. J. 57(4), 618-631 (2016).
- [18] J.J.Carmona, P.V.Paramonov, K.Yu.Fedorovskii, On uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions, Sb. Math. 193, 1469-1492 (2002).