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Abstract 21 

European beech (Fagus sylvatica L.) is one of the most important forest tree species in 22 

Europe, and its genetic adaptation potential to climate change is of great interest. Saplings 23 

and adults from 12 European beech populations were sampled along two steep precipitation 24 

gradients in Switzerland. All individuals were genotyped at 13 microsatellite markers and 70 25 

SNPs in 24 stress response and phenology related candidate genes. Both SSR and SNP 26 

markers had high genetic diversity in the studied populations and low but statistically 27 

significant population differentiation. Two approaches were used to discover SNPs with 28 
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signatures of selection: search for FST SNP outliers and analyses of SNP associations with 29 

environmental variables such as temperatures, precipitation and humidity. Three (4.3%) 30 

SNPs were consistently identified as outliers in the adults by more than one method, and they 31 

were very likely under positive selection. Twenty (28.6%) SNPs in the saplings and 10 32 

(14.3%) SNPs in the adults were associated with environmental variables found by more than 33 

one method. In general, there were 22 (31.4%) SNPs in 17 (70.8%) candidate genes in the 34 

saplings, and 16 (22.9%) SNPs in 10 (41.6%) candidate genes in the adults, consistently 35 

identified by at least two of the five methods used, indicating that they are very likely under 36 

selection. Genes with SNPs showing signatures of selection are involved in a wide range of 37 

molecular functions, such as oxidoreductases (IDH), hydrolases (CysPro), transferases 38 

(XTH), transporters (KT2), chaperones (CP10) and transcription factors (DAG, NAC 39 

transcription factor). The obtained data will help us better understand the genetic variation 40 

underlying adaptation to environmentally changing conditions in European beech, which is of 41 

great importance for the development of scientific guidelines for the sustainable management 42 

and conservation of this important species. 43 

Keywords: Adaptation • Climate change • Environmental association analysis • 44 

Microsatellite • Outlier analysis • SNP 45 

Introduction 46 

Climate change scenarios predict not only higher annual temperatures, but also changes in 47 

precipitation patterns, increasing the risk of extreme events, such as floods and droughts 48 

(Trenberth 2011). In Central Europe, an increment in the temperature of 1.3°C has been 49 

observed during the first decade of the 21st century compared to the last half of the 19th 50 

century. Similarly, the frequency of hot days, tropical nights and heat waves has increased 51 
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since the last half of the 20th century, whereas cold periods and frost days have been reduced 52 

(Kovats et al. 2014). Additionally, an increase in the duration and intensity of summer 53 

droughts has also been observed, and this trend is expected to continue through the 21st 54 

century (Beniston and Goyette 2007; Kovats et al. 2014). 55 

Changes in climate will very likely affect the survival of forest trees, altering the 56 

composition and distribution of forests (Allen et al. 2010; Crookston et al. 2010; Chmura et 57 

al. 2011). European beech (Fagus sylvatica L.) is one of the most important and widely 58 

distributed forest tree species in Europe (Ellenberg 1988). In Switzerland, F. sylvatica is the 59 

second most important tree species, being predominant in the sub-montane and lower 60 

montane range (Weber et al. 2011). Similar to other beech species, its distribution depends 61 

mainly on temperature, followed by moisture availability (Fang and Lechowicz 2006). Under 62 

climate change, the distribution of beech is expected to be affected, with a reduction in the 63 

south and expansion in the north, and a shift in distribution towards higher elevations 64 

(Kramer et al. 2010; Bugmann et al. 2014). 65 

Genetic variation is needed for a species to cope with environmental changes. Genetic 66 

studies on beech using isozyme, RAPD, AFLP and microsatellite (SSR) markers have found 67 

high genetic variation, high gene flow and low population structure in European beech 68 

(Sander et al. 2000; Emiliani et al. 2004; Jump and Peñuelas 2007; Kraj and Sztorc 2009; 69 

Pluess and Weber 2012). However, those markers have limited potential to study adaptation. 70 

In particular, SSR markers are mainly located in non-coding regions (random genomic SSRs) 71 

and thus, likely represent selectively neutral genetic variation, i.e., not being under natural 72 

selection (Holderegger et al. 2006). Instead, single nucleotide polymorphisms (SNPs) in 73 

coding sequences are the most common polymorphisms in genes that can be under selection. 74 

They are considered to be more suitable markers to study adaptive genetic variation (Morin et 75 

al. 2004). Recently, multiple SNP markers have been developed in climate adaptation related 76 
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candidate genes in F. sylvatica (Seifert et al. 2012; Lalagüe et al. 2014; Müller et al. 2015a), 77 

but so far, only a few studies have used them to detect genetic variation showing signatures 78 

of selection (Csilléry et al. 2014; Müller et al. 2015b; Pluess et al. 2016; Krajmerová et al. 79 

2017). 80 

Different approaches can be used to identify genetic variation under selection. FST outlier 81 

tests are among the most broadly used methods. They rely on the assumption that non-82 

selective processes have the same effect on all loci in genome, while selection would affect 83 

only certain loci (Lewontin and Krakauer 1973). Thus, loci with genetic differentiation 84 

(measured by the FST parameter) higher or lower than expected under neutrality are 85 

considered to be under positive or balancing selection, respectively (Vitti et al. 2013). 86 

Environmental association analyses (EAA) are among the most efficient approaches to 87 

detect signatures of selection, since they include directly the environmental variables that 88 

could drive adaptation (Schoville et al. 2012). They aim at identifying associations between 89 

allele frequencies and environmental variables (Rellstab et al. 2015; Stephan 2016), relying 90 

on the assumption that alleles in a locus under selection and affected by a particular 91 

environmental factor might demonstrate a change in allele frequency following 92 

environmental change (Holderegger et al. 2010). Using this approach in plants, associations 93 

between genetic variation with temperature and precipitation have been detected in different 94 

species, such as Quercus lobata (Sork et al. 2010), Arabis alpina (Poncet et al. 2010; Manel 95 

et al. 2010), Pseudotsuga menziesii (Eckert et al. 2009), Pinus taeda (Eckert et al. 2010a,b), 96 

P. pinaster and P. halepensis (Grivet et al. 2011). Likewise, in F. sylvatica, genetic variation 97 

at AFLP markers has been associated with temperature (Jump et al. 2006) and water 98 

availability (Pluess and Weber 2012). More recently, SNPs in candidate genes that might be 99 

under climate induced selection have been found (Csilléry et al. 2014; Lalagüe et al. 2014), 100 

and their associations with environmental variables such as temperature, precipitation and 101 



5 

drought have been determined (Pluess et al. 2016). However, the genetic variation underlying 102 

adaptation to different environmental conditions in F. sylvatica remains insufficiently 103 

studied. 104 

Precipitation gradients may cause differences in water availability for plants, and thus, 105 

reflect differences in selection pressure acting on forest populations. In this study, 106 

populations of F. sylvatica occurring along two steep precipitation gradients in Switzerland 107 

were selected, and the patterns of selectively neutral genetic variation and population genetic 108 

structure were studied by using 13 SSR markers. Additionally, SNPs in candidate genes 109 

potentially involved in important traits such as phenology and stress response were used for 110 

the detection of genetic variation showing signatures of selection. Firstly, outlier SNPs 111 

showing genetic differentiation higher or lower than expected under neutrality were identified 112 

by using three different methods implemented in LOSITAN, Arlequin, and BayeScan 113 

software. Secondly, SNPs showing association with important environmental variables such 114 

as precipitation, temperature and humidity were tested using two different methods: LEA (an 115 

R package for Landscape and Ecological Associations studies) and Samβada. SNPs identified 116 

by at least two of the five methods were considered very likely to be under selection. 117 

Materials and methods 118 

Plant material 119 

Twelve populations of F. sylvatica located in the dry inner-alpine Rhone and Rhine valleys in 120 

Switzerland were used in this study (six populations per valley). The populations were 121 

located at similar elevations (550-850 m above sea level), with a mean annual temperature 122 

between 9.8 and 10.1 °C. The mean annual precipitation ranged between 849 and 1334 mm 123 

in the Rhine valley, and between 603 and 1012 mm in the Rhone valley (Table 1). Leaves 124 

from 2-4 saplings underneath the same adult tree were collected, for a total of 60-64 saplings 125 
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sampled per population. Additionally, leaves from 25 adult trees per population were 126 

collected. In total, 755 saplings and 300 adult trees were sampled. The leaves were 127 

dehydrated with silica gel and stored at room temperature. 128 

DNA isolation 129 

DNA was isolated from dry leaves using the DNeasyTM 96 Plant Kit (Qiagen, Hilden, 130 

Germany). The amount and quality of the DNA were examined using electrophoresis in 131 

agarose gel at 1% with 1X TAE as running buffer. DNA was stained with Roti®-Safe 132 

GelStain (Roth, Karlsruhe, Germany), visualized by UV illumination, and compared with a 133 

Lambda DNA size ladder (Roche, Mannheim, Germany). 134 

SSR amplification and genotyping 135 

Individuals were genotyped at 13 SSR loci. Ten SSR loci were random genomic SSRs 136 

representing noncoding regions: Six of them were originally developed for F. sylvatica: FS3-137 

04 (Pastorelli et al. 2003), msf11 (Vornam et al. 2004), csolfagus_06, csolfagus_19 (Lefèvre 138 

et al. 2012), Fagsyl_002929 and Fagsyl_003994 (Pluess and Määttänen 2013). Four markers 139 

- sfc0018, sfc0161, sfc1063 and sfc1143 - were originally developed for F. crenata (Asuka et 140 

al. 2004). The other three SSR loci - GOT066, FIR065 and FIR004 - were EST-linked (EST-141 

SSRs). They were originally developed for Quercus robur (Durand et al. 2010), and 142 

successfully used for F. sylvatica in this study. 143 

The PCR amplifications were performed using fluorescent dye labeled primers as follows: 144 

6-carboxyfluorescein (FAM) dye for mfs11, sfc0161, sfc1063, csolfagus_06, csolfagus_19, 145 

Fagsyl_003994 and FIR004; and 6-hexachlorofluorescein (HEX) dye for sfc0018, sfc1143, 146 

Fagsyl_002929, GOT066, FIR065 and FS3-04. This allowed us to assemble four different 147 

PCR amplification multiplexes. The 1st multiplex was composed of the FS3-04 and msf11 148 
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markers, the 2nd multiplex - all four sfc markers, the 3rd - the csolfagus and Fagsyl markers, 149 

and the 4th - all three EST markers. The PCR amplifications were performed in a total volume 150 

of 15 μL containing 2 μL of genomic DNA (about 10 ng), 1X reaction buffer (0.8 M Tris-151 

HCl pH 9.0, 0.2 M (NH4)2SO4, 0.2% w/v Tween-20; Solis BioDyne, Tartu, Estonia), 2.5 mM 152 

MgCl2, 0.2 mM of each dNTP, 0.3 μM of each forward and reverse primer and 1 unit of Taq 153 

DNA polymerase (HOT FIREPol® DNA Polymerase, Solis BioDyne, Tartu, Estonia). The 154 

amplification conditions were as follows: an initial denaturation step at 95 °C for 15 min, 155 

followed by 30 cycles consisting of a denaturing step at 94 °C for 1 min, an annealing step at 156 

55 °C (first, second and third multiplexes) or at 47 °C (EST multiplex) for 30 s and an 157 

extension step at 72 °C for 1 min. After 30 cycles, a final extension step at 72 °C for 20 min 158 

was executed. The PCR fragments were separated and sized on an ABI PRISM® 3100 159 

Genetic Analyzer (Applied Biosystems, Foster City, USA). The GS 500 ROXTM (Applied 160 

Biosystems, Foster City, USA) was used as an internal size standard. The genotyping was 161 

done using the GeneMapper 4.1® software (Applied Biosystems, Foster City, USA). 162 

Candidate genes and SNPs 163 

SNPs in candidate genes involved in phenology and drought stress tolerance from previously 164 

published studies for F. sylvatica were selected (Seifert et al. 2012; Lalagüe et al. 2014; 165 

Müller et al. 2015a). For the candidate genes that contained several SNPs, linkage 166 

disequilibrium (LD) blocks were identified using the htSNPer 1.0 software (Ding et al. 2005), 167 

and a subset of SNPs representing the majority of haplotypes (haplotype tag SNPs) was 168 

selected for further genotyping. In addition, SNPs showing signatures of natural selection in 169 

previous studies (Csilléry et al. 2014; Müller et al. 2015b) were also selected. Finally, 24 170 

genes and 76 SNPs (21 non-synonymous, 27 synonymous and 28 non-coding SNPs) were 171 

selected for genotyping (Supplementary material 1 Table S1). Nucleotide sequences 172 
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neighboring selected SNPs were sent to LGC Genomics Ltd. for primer design and SNP 173 

genotyping using the PCR-based KASPTM genotyping assay (Hoddesdon, UK). 174 

Environmental data 175 

Data on climatic variables collected by meteorological stations located near the populations 176 

were downloaded from the website of the Federal Office of Meteorology and Climatology 177 

MeteoSwiss (http://www.meteoswiss.admin.ch). Climate normals for the reference period 178 

1961-1990 were used as a proxy for the climate that imposed selection pressure on the early 179 

life stages of adult trees, whereas climate normals for the reference period 1981-2010 were 180 

used for the saplings. The environmental variables included data on annual and growing 181 

season (May-September) temperature and precipitation, heat days (HD) and summer days 182 

(SD), as well as latitude and longitude (Table 2). Three derived climatic variables were 183 

additionally calculated: potential annual direct incident solar radiation (ASR), the 184 

Thornthwaite’s moisture index (Im) (Thornthwaite 1948) and the Ellenberg’s climatic 185 

quotient (EQ) (Jahn 1991) (Table 2). ASR was calculated using data on latitude, slope and 186 

aspect according to McCune and Keon (2002). To calculate Im, first, monthly potential 187 

evapotranspiration (PET) was calculated according to (Thornthwaite 1948) using the R 188 

package SPEI 1.6 (R Core Team 2016). Then, Im was calculated according to the formula 189 

𝐼𝑚 = 100𝑠−60𝑑

𝑛
 , where s is the sum of surplus water for the months when precipitation exceeds 190 

PET, d is the sum of water deficiency for the months when PET exceeds precipitation, and n 191 

is water need (annual PET) (Thornthwaite 1948; Maliva and Missimer 2012). According to 192 

(Thornthwaite 1948), moist climates have positive values of Im, and dry climates have 193 

negative values. The Ellenberg’s climatic quotient (EQ), which is widely used to describe 194 

habitats suitable for the genus Fagus, was calculated as EQ = Temperature of July (℃)

Annual precipitation (mm)
 ×  1000, 195 

(Jahn 1991; Fang and Lechowicz 2006). According to Jahn (1991), regions with values of EQ 196 
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below 20 represent a pure beech climate, while the beech competitiveness slowly decreases 197 

in regions with EQ values between 20 and 30 and disappears in regions with EQ > 30. 198 

Information about the environmental variables per population and for the reference periods 199 

1961-1990 and 1981-2010 are presented in Supplementary material 1—Table S2. 200 

Spearman’s rank correlation coefficients between all pairs of environmental variables 201 

were calculated. Principal component analysis (PCA) was used to reduce dimensionality of 202 

the environmental variables; variables were standardized to a mean of 0 and standard 203 

deviation of 1 before PCA analysis. Principal components (PCs) with eigenvalues greater 204 

than 1 were kept for the environmental association analysis; these PCs will be referred further 205 

as environmental PCs. All analyses were conducted using the software Statistica 12 (Dell Inc 206 

2015). Environmental PCs as well as individual environmental variables were used further to 207 

find their association with SNPs. 208 

Data analysis 209 

Tentative neutral genetic variation (SSRs) 210 

Allelic richness was calculated taking into account differences in sample size with the HP-211 

Rare program (Kalinowski 2005) using a sample size of 50 individuals. Additionally, the 212 

diversity parameters, such as observed (Ho) and expected (He) heterozygosities and the 213 

fixation index (FIS), as well as deviation from Hardy-Weinberg equilibrium, were calculated 214 

using the GenAlEx 6.5 software (Peakall and Smouse 2006, 2012). Furthermore, the 215 

MICRO-CHECKER software (Van Oosterhout et al. 2004) was used to identify and correct 216 

genotyping errors, such as null alleles. Differences in genetic diversity parameters between 217 

saplings and adults were tested for significance using the FSTAT 2.9.3.2 software (Goudet 218 

1995). The GENEPOP 4.2 program (Raymond and Rousset 1995; Rousset 2008) was used to 219 
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test for linkage disequilibrium (LD) between pairs of the SSR loci using 10000 220 

dememorizations, 1000 batches and 10000 iterations per batch for Markov chain parameters. 221 

To assess genetic differentiation, FST and Hedrick’s standardized G’’ST (Meirmans and 222 

Hedrick 2011) were calculated with the GenAlEx 6.5 software (Peakall and Smouse 2006, 223 

2012) using 999 permutations. Population structure was inferred using the Bayesian approach 224 

implemented in the STRUCTURE 2.3.4 software (Pritchard et al. 2000); the analysis was 225 

done for genomic SSRs and EST-SSR separately, and for all SSR together. The admixture 226 

model with correlated allele frequencies was used. We used 100000 iterations for both the 227 

MCMC (Markov chain Monte Carlo) burn-in period and the following MCMC. We tested 228 

from 1 to 20 possible populations or clusters (K), using 20 iterations for each of them. The 229 

most likely number of clusters K was determined considering mean posterior probability of 230 

the data (LnP(D)) and also according to the ΔK method (Evanno et al. 2005), which is 231 

implemented in the STRUCTURE HARVESTER 0.6.94 software (Earl and vonHoldt 2012). 232 

The CLUMPAK software (Kopelman et al. 2015) was used for summation and graphical 233 

representation of the results obtained by STRUCTURE. 234 

Tentative adaptive genetic variation (SNPs) 235 

The genetic diversity parameters Ho and He, the index FIS and deviations from Hardy-236 

Weinberg equilibrium, LD between pairs of SNP loci, FST and Hedrick’s standardized G’’ST 237 

and population structure were analyzed the same way as it is described above for the SSR 238 

markers.  239 

Signatures of natural selection 240 

Two different approaches were used to detect SNPs showing signatures of selection: outlier 241 

detection and environmental association analyses, respectively. For the detection of outlier 242 

SNPs three different methods with different demographic assumptions were used. The first 243 
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method was developed by Beaumont and Nichols (1996) and is implemented in the 244 

LOSITAN software (Antao et al. 2008). This method determines the expected thresholds for 245 

distribution of FST along HE for loci with selectively neutral variation under an island model 246 

of migration. The analysis was done using the infinite allele model with 200000 simulations, 247 

a confidence interval of 95% and a false discovery rate (FDR) of 0.1. To run LOSITAN we 248 

used a procedure typically used in similar studies (Krutovsky et al. 2009). LOSITAN was run 249 

first using all loci to estimate the mean neutral FST. After the first run, all loci outside the 95% 250 

confidence interval were removed, and using only putatively neutral loci that were not 251 

removed, LOSITAN was run again to estimate a second mean neutral FST.  Finally, a third run 252 

was done using all loci and the second mean neutral FST. This procedure lowers the bias when 253 

estimating the mean neutral FST by removing, at the end of the first run, the most extreme loci 254 

from the estimation (Antao et al. 2008). LOSITAN analysis was done taking into account the 255 

entire set of populations, and also for each region (Rhine or Rhone) separately. 256 

The second method is implemented in the Arlequin 3.5 software (Excoffier and Lischer 257 

2010) and is similar to the one implemented in LOSITAN, but considers a hierarchical island 258 

model of migration, in which populations exchange more migrants within groups than 259 

between groups (Excoffier et al. 2009). Populations of saplings and adults were grouped 260 

hierarchically according to the region; furthermore, populations of saplings were also 261 

grouped according to the groups suggested by the STRUCTURE analysis based on the all 262 

SSR markers. Then, 50000 simulations were carried out, using 10 groups of 100 demes as 263 

running conditions as recommended by Excoffier et al. (2009). A FDR of 0.1 was applied 264 

using the Benjamini & Hochberg (1995) method implemented in the R script “p.adjust” (R 265 

Core Team 2016). 266 

The third outlier detection method is implemented in the BayeScan 2.1 software (Foll and 267 

Gaggiotti 2008). It assumes that populations diverged from an ancestral gene pool, and their 268 
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allele frequencies show different degrees of differentiation from it. Running conditions used 269 

in BayeScan were as follows: a burn-in period with 50000 iterations, a thinning interval of 270 

10, a sample size of 5000 and 20 pilot runs with 5000 iterations each, for a total of 100000 271 

iterations. A locus was considered outlier if its q value was less than FDR < 0.05 or 0.1. The 272 

BayeScan analysis was done taking into account the entire set of populations, and also for 273 

each region separately.  274 

Environmental PCs as well as individual environmental variables were used for the 275 

detection of associations with SNPs. Two different methods were used – one implemented in 276 

an R package for Landscape and Ecological Associations (LEA) studies (Frichot and 277 

François 2015; http://membres-timc.imag.fr/Olivier.Francois/LEA/software.htm) and another 278 

implemented in the software Samβada (Stucki et al. 2016; https://lasig.epfl.ch/sambada). 279 

The LEA method tests for associations between allele frequencies and environmental 280 

variables based on latent factor mixed models (LFMM), in which associations are tested 281 

while estimating the effects of hidden confounding factors, such as population structure and 282 

spatial autocorrelation (Frichot et al. 2013). A burning period of 5000 and a total number of 283 

10000 cycles were used. Based on the results of the STRUCTURE analysis using all SSR 284 

markers (see Results), the number of clusters (K) was set to 2 in the saplings and 1 in the 285 

adults. Five runs were performed; the z-scores obtained from the different runs were 286 

combined using a robust variant of the Stouffer method (Whitlock 2005), and the genomic 287 

inflation factor λ (Devlin and Roeder 1999) was computed. P-values from the combined z-288 

scores were calibrated by the computed λ as described in the manual of LEA, and if 289 

necessary, further calibrated manually by using different values of λ until the histograms 290 

showed that the P-values were uniformly distributed (François et al. 2016). The Benjamini-291 

Hochberg procedure (Benjamini and Hochberg 1995) with an expected FDR equalled to 10% 292 

was used to correct the P-values for multiple testing. 293 
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The Samβada method tests for associations between genotypes and environmental 294 

variables using logistic regressions, and allows for the inclusion of population structure 295 

(Stucki et al. 2016). SNPs were coded as presence/absence of a given genotype in each 296 

individual. Given the results obtained with STRUCTURE 2.3.4 software (Pritchard et al. 297 

2000) for all SSR markers, a multivariate analysis was run in the saplings including 298 

population structure as the coefficients of membership (Q) for each individual; the G scores 299 

to assess significance were calculated according to Samβada manual. For the adults, a 300 

univariate analysis (without including population structure, see Results) was run. The G 301 

scores obtained in both multivariate and univariate analyses were used to compute the 302 

corresponding P-values using a χ2 distribution with one degree of freedom. Correction for 303 

multiple testing was done by adjustment of P-values for a FDR equal to 0.1 using the 304 

Benjamini & Hochberg (1995) method implemented in the R function “p.adjust” (R Core 305 

Team 2016). A SNP was considered to be candidate under selection if at least one of its tree 306 

genotypes showed significant association with an environmental PC or environmental 307 

variable (Stucki et al. 2016). Graphical representation of logistic regression fits was done 308 

with the software JMP®, Version 13.1.0 SAS Institute Inc., Cary, NC, 1989-2007. 309 

Results of the five different methods (LOSITAN, Arlequin, BayeScan, LEA and 310 

Samβada) were compared, and loci detected by two or more of them were considered as 311 

likely true candidates under selection. 312 

Results 313 

Relationships between environmental variables 314 

Latitude was strongly positively correlated with minimum temperatures, precipitation 315 

variables and the moisture index Im, and moderately negatively correlated with maximum 316 

temperatures, SD, HD and EQ based on Spearman’s rank correlation coefficients 317 
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(Supplementary material 2—Fig. S1). Longitude had either no correlation or weak positive 318 

correlations with most of the variables, most of which were not significant. Maximum 319 

temperatures were strongly and positively correlated with SD and HD, while negatively 320 

correlated with minimum temperatures and precipitation variables. The Thornthwaite’s 321 

moisture index Im was strongly negatively correlated with maximum temperatures and SD and 322 

HD, and strongly positively correlated with precipitation. In contrast, the EQ index was 323 

positively correlated with maximum temperatures and SD and HD, and negatively correlated 324 

with minimum temperatures and precipitation. ASR had either weak or no correlation with all 325 

the environmental variables (Supplementary material 2—Fig. S1). 326 

The PCA showed that the top three PCs had eigenvalues higher than 1 and captured the 327 

most of the overall variance of the environmental variables for both reference periods: 328 

95.54% for 1961-1990, and 95.99% for 1981-2010 (Table 3). To interpret each 329 

environmental PC, environmental variables showing strong correlation coefficients with 330 

values more than |0.8| with a given environmental PC were considered (Supplementary 331 

material 1—Table S3). Thus, for both reference periods, the environmental PC1 was strongly 332 

and positively correlated with latitude, minimum temperatures, precipitation variables and the 333 

moisture index Im, whereas negatively correlated to maximum temperatures, SD, HD and the 334 

EQ index (Table 3; Supplementary material 1—Table S3). This indicates that positive values 335 

of PC1 represent more humid/colder environments, while negative values indicate 336 

drier/warmer environments. The environmental PC2 was strongly correlated only with mean 337 

annual temperature, and the environmental PC3 was strongly and positively correlated only 338 

with solar radiation (Table 3; Supplementary material 1—Table S3). 339 

Tentative neutral genetic variation (SSRs) 340 
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For 13 SSR markers, 4-19 alleles were detected in the saplings and 3-17 alleles were detected 341 

in the adults. The FIS indices per locus were close to zero and overall, no significant 342 

deviations from Hardy-Weinberg equilibrium were found (Supplementary material 1—Table 343 

S4). No loci showed evidence of null alleles. In general, EST-SSRs demonstrated lower 344 

genetic diversity than genomic SSRs (Supplementary material 1—Table S4). Analysis of 345 

genetic diversity revealed no significant differences between saplings and adults: A = 6.36 vs. 346 

6.37 (P = 0.9), He = 0.649 vs. 0.645 (P = 0.6) (Table 4). Likewise, there were no significant 347 

differences between the two regions neither in the saplings: A = 6.49 vs. 6.23 (P = 0.3), 348 

He = 0.656 vs. 0651 (P = 0.1) nor in the adults: A = 6.59 vs. 6.14 (P = 0.1), He = 0.651 vs. 349 

0.650 (P = 0.8) (Table 4). The FIS indices were close to zero, and no significant deviations 350 

from Hardy-Weinberg equilibrium were found, except for the adult trees in the Saxon 351 

population. Significant LD was observed for 15 pairs of all 78 possible pairs (19.2%) of the 352 

13 SSR loci in the populations of saplings (Supplementary material 2—Fig. S2), but only for 353 

the Sfc0018-FIR065 pair (1.3%) in the populations of adults. This pair was in LD also in the 354 

saplings. 355 

Genetic differentiation among populations was low but significant for saplings 356 

(FST = 0.017, P < 0.001; G’’ST = 0.029, P < 0.001) and adults (FST = 0.027, P < 0.001; 357 

G’’ST = 0.027, P < 0.001). Analysis of population structure based on all SSR together, as well 358 

as based on genomic SSRs and EST-SSR separately, revealed that there is no strong 359 

clustering neither among saplings nor adults or possibly two clusters (K) in the saplings due 360 

to Chamoson as a population likely the most genetically different from others (Fig. 1a,b and 361 

Supplementary material 2—Fig. S3 - S7), which is supported also by its high pairwise FST 362 

and G’’ST values in the adults (Supplementary material 2—Fig. S8). 363 

Tentative adaptive genetic variation (SNPs) 364 
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Among the 76 SNPs genotyped, 6 were monomorphic (APX1_2, PhyB, 50_320, 52_1_249, 365 

92_166, 110_1_111). Based on the remaining 70 SNPs, both observed and expected 366 

heterozygosities were not much different between each other and between saplings and 367 

adults: Ho = 0.301 vs. 0.311, He = 0.309 vs. 0.310 for saplings vs. adults, respectively (Table 368 

5 and Supplementary material 1—Table S5). Overall, FIS was close to zero, and no 369 

significant deviations from Hardy-Weinberg equilibrium were found, except for the Mastrils, 370 

Sargans and Ollon populations in the saplings, and the population Mastrils in the adults 371 

(Table 5). 372 

In both saplings and adults, LD was mainly found between SNPs in the same gene. In the 373 

saplings, significant LD was observed for 134 pairs of all 2415 possible pair combinations of 374 

SNPs (5.5%), and 68 of them were found between SNPs in the same gene (Supplementary 375 

material 2—Fig. S9). Similarly, for populations of adults, 107 pairs (4.4%) of all the possible 376 

pairs showed significant LD, and 59 of them were found between SNPs in the same gene 377 

(Supplementary material 2—Fig. S9). 378 

Genetic differentiation was low but significant for populations of both saplings (FST = 379 

0.020, P < 0.001; G’’ST = 0.020, P < 0.001) and adults (FST = 0.028, P < 0.001; 380 

G’’ST = 0.016, P < 0.001). Likewise, analysis of population structure using SNP markers 381 

revealed that there is a weak population structure in both saplings and adults (Fig. 1c and d 382 

and Supplementary material 2—Fig. S10). 383 

Signatures of natural selection 384 

In the saplings, no outlier SNPs were identified by LOSITAN when doing the analysis with 385 

all populations together and with populations from the Rhine valley. However, the analysis 386 

including populations from the Rhone valley detected the SNP ALDH_4 as outlier possibly 387 

being under balancing selection in (Table 6 and Supplementary material 2—Fig. S11). 388 
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Arlequin identified the SNPs ERD, CysPro_202 and NAC_962 as outliers that are likely 389 

under positive selection (Table 6 and Supplementary material 2—Fig. S11). No significant 390 

outlier SNPs were identified by BayeScan. 391 

More outlier SNPs were identified in the adults than in the saplings. In the LOSITAN 392 

analysis for adults, 15 SNPs fell outside the 95% confidence interval when analyzing all 393 

populations and populations from each valley separately (Table 6 and Supplementary 394 

material 2—Fig. S12). In the Arlequin analysis, 5 SNPs fell outside the 95% interval (Table 6 395 

and Supplementary material 2—Fig. S12), but no significant outliers were detected by 396 

BayeScan in the adults. Thus, among the detected outliers, 3 (4.3%) SNPs (CysPro_202, 397 

NAC_962 and 92_352 SNPs) are very likely true outliers under selection, because they were 398 

detected by both LOSITAN and Arlequin methods in the adults (Table 6). Interestingly, the 399 

SNPs CysPro_202 and NAC_962 were also detected by Arlequin in the saplings. 400 

EAA carried out with LEA and Samβada identified additional SNPs showing significant 401 

association with the environmental variables and PCs, indicating that they are potentially 402 

subject to selection. LEA detected 25 (35.7%) and 27 (38.6%) SNPs in the saplings and 403 

adults, respectively (Table 7), while Samβada identified 44 (62.9%) and 16 (22.9%) SNPs in 404 

the saplings and adults, respectively (Table 7). Details of the genotypes per SNP showing 405 

significant associations with the environmental variables as detected by Samβada can be 406 

found in Supplementary material 1—Table S6 and S7. We considered SNPs identified by 407 

both LEA and Samβada as very likely under selection: in the saplings, 20 (28.6%) SNPs in 408 

16 (66.6%) genes were detected by both methods, while 10 (14.3%) SNPs in 7 (29.2%) genes 409 

were identified by both methods in the adults (Table 7). SNPs detected by both methods 410 

showed differences in allele and genotype frequencies along the environmental gradient. For 411 

instance, the frequency of the allele G in the CP10_442 SNP declined with increasing 412 

moisture in the saplings (Fig. 2a); similarly, the allele C in the 52_1_235 SNP decreases in 413 
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frequency with increasing AP in the adults (Fig. 2b). On the other hand, in the 50_232 SNP, 414 

the frequency of allele A increases with MaxAT in the saplings (Fig. 2b), while in the adults 415 

the frequency of the allele T in the IDH_1 SNP increases with positive values of PC1, i.e., in 416 

populations with humid/colder environments (Fig. 2d). Such differences in allele frequencies 417 

were also reflected in differences in genotype frequencies (Fig. 3). 418 

Comparing the results from the five different methods used to detect candidate SNPs 419 

under selection (LOSITAN, Arlequin, BayeScan, LEA and Samβada), it was found that 22 420 

(31.4%) SNPs in the saplings and 16 (22.9%) SNPs in the adults were detected by at least 421 

two methods, and thus, they were considered as very likely true candidates under selection. 422 

These SNPs are located in 17 (70.8%) and 10 (41.6%) genes in saplings and adults, 423 

respectively. 424 

Discussion 425 

Putative neutral genetic variation (SSRs) 426 

A high genetic variation was found in all the studied populations of F. sylvatica (Table 4). No 427 

significant differences in genetic variation between saplings and adults were found, 428 

suggesting that the saplings represent the genetic variation of the adult populations. Similar 429 

levels of genetic variation have been found in other studies based on similar sets of SSR loci 430 

(Seifert 2012; Müller 2013; Bontemps et al. 2013; Rajendra et al. 2014), and slightly lower 431 

when compared to the studies based on other SSR loci (Buiteveld et al. 2007; Kraj and Sztorc 432 

2009; Chybicki et al. 2009; Bilela et al. 2012). It is known that a high genetic variation, 433 

characteristic of woody plants, is due to their large geographic ranges, long lives, outcrossing 434 

mating systems and wide pollen and seed dispersal (Hamrick et al. 1992). Among SSRs, 435 

EST-SSRs presented lower variation than genomic SSRs (Supplementary material 1—Table 436 

S4). Similar results have been reported in other studies (Seifert 2012; Müller 2013), and can 437 
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be attributed to the location of EST-SSRs in coding regions, making them more conserved 438 

and thus, less polymorphic (Varshney et al. 2005; Ellis and Burke 2007). 439 

Null alleles are alleles that fail to amplify due to mutations in the primer annealing site, 440 

causing misgenotyping heterozygotes as homozygotes and resulting in a biased estimation of 441 

allele frequencies and a reduced observed heterozygosity (Ellis and Burke 2007). They are 442 

more likely to occur when SSR loci are transferred from other species. Although seven SSR 443 

loci used in this study were transferred from F. crenata and Q. robur, no loci showed 444 

evidence of null alleles, which is supported by the fixation indices (FIS) close to zero 445 

(Supplementary material 1—Table S4). These results confirmed the observations from other 446 

studies indicating that the transferability of SSR loci among species of the genus Fagus is 447 

relatively high (Pastorelli et al. 2003; Lefèvre et al. 2012) and that transferability of EST-SSR 448 

can be successful even in species from different genus but the same family (Ellis and Burke 449 

2007), as was the case for the EST-SSR transferred from Q. robur. 450 

LD between SSR loci was found for 19.2% of all the possible pairs in the saplings. In 451 

contrast, 1.3% of all the possible pair combinations were in LD in the adults, which is 452 

comparable to the low percentage found in a similar study (Lefèvre et al. 2012). The higher 453 

percentage of SSR loci in LD in the saplings could be an effect of relatedness, since groups 454 

of 2-4 saplings were collected underneath the same adult tree. In fact, those saplings had 455 

higher pairwise relatedness coefficient than saplings collected under different trees (data not 456 

shown). Furthermore, since there are no genetic linkage data for the studied loci, it is 457 

impossible to see if observed LD is due to close linkage. 458 

The low FST and G’’ST values and the STRUCTURE analysis demonstrated that population 459 

differentiation was very weak in the studied populations of F. sylvatica (Fig. 1). These 460 

findings are in consensus with other studies in beech that also reported low genetic 461 

differentiation in Germany (Sander et al. 2000; Rajendra et al. 2014; Müller et al. 2015b), 462 
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Italy (Paffetti et al. 2012), France (Csilléry et al. 2014) and other parts of Europe (Buiteveld 463 

et al. 2007). High gene flow may explain the low differentiation even in populations from 464 

different valleys, since F. sylvatica is an outcrossing wind-pollinated tree species with long 465 

distance pollen flow (Oddou-Muratorio et al. 2011; Piotti et al. 2012). In fact, beech pollen 466 

can travel for thousands of kilometers, from Germany and North Italy to Catalonia in Spain 467 

(Belmonte et al. 2008). This high pollen dispersal capability can explain the low genetic 468 

differentiation, even between populations from the two different valleys. However, despite 469 

the low genetic differentiation in general, STRUCTURE analysis with SSRs identified 470 

Chamoson as a genetically distinct population (Fig. 1a); additionally, Chamoson also had the 471 

highest pairwise population differentiation in the adults. Some past forest management 472 

cannot be ruled out as a reason for this pattern. 473 

Tentative adaptive genetic variation (SNPs) 474 

Similar to the SSR markers, SNPs also revealed high genetic variation in the studied 475 

populations of European beech (Table 5), comparable to the genetic variation found in other 476 

studies using SNP markers (Seifert et al. 2012; Müller et al. 2015a). LD analysis revealed 477 

that 5.5% and 4.4% of all the possible SNP pairs were found to be in LD in the saplings and 478 

adults, respectively. These values are comparable to the percentage (5.01%) reported by 479 

Pluess et al. (2016), but considerably lower than 18.45% reported by Müller et al. (2015b). 480 

Furthermore, the low FST and G’’ST values and the inferred population structure also 481 

demonstrated that there is a weak population differentiation (Fig. 1c,d). In general, low LD 482 

and weak population differentiation should be expected for a highly outcrossing, wind-483 

pollinated tree species, such as European beech (Jump et al. 2006; Aitken et al. 2008). 484 

Signatures of natural selection 485 
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The FST outlier tests are among the most commonly used methods to detect adaptive genetic 486 

variation. They assume that loci with genetic differentiation higher or lower than expected 487 

under neutrality could be under positive or balancing selection, respectively (Vitti et al. 488 

2013). However, one of the disadvantages of outlier detection tests is that they can produce 489 

false outliers due to hidden population structure and other confounding effects such as 490 

migrations, recent demographic expansions and bottlenecks (Schoville et al. 2012; Vitti et al. 491 

2013). To address this problem, outlier methods with different demographic assumptions can 492 

be used (Li et al. 2012). Thus, loci appearing as outliers when considering different methods 493 

will be more likely to be real loci under selection. In this study, three different outlier 494 

detection methods were used, and they detected only partly overlapping sets of outlier SNPs 495 

(Table 6). Discrepancies between different outlier detection methods are common and have 496 

been reported also in other studies (Russello et al. 2012; Tsumura et al. 2014; Konijnendijk et 497 

al. 2015). This can be attributed, on the one hand, to the different demographic assumptions 498 

underlying each method, and, on the other hand, to the different rates of type I (false 499 

positives) and type II (false negatives) errors (Narum and Hess 2011). Interestingly, no SNPs 500 

were identified as outliers by BayeScan. Indeed, BayeScan is considered more conservative 501 

in identifying outlier SNPs than other methods (Narum and Hess 2011). In total, only three 502 

SNPs (4.3%) were detected as outliers under positive selection by at least two methods in the 503 

adults - CysPro_202, NAC_962 and 92_352 (Table 6). We consider them as likely true 504 

outlier SNPs under selection. The first two of them were also detected as outliers in the 505 

saplings. The small proportion of outlier loci detected is in line with other studies carried out 506 

in forest trees, such as boreal black spruce (Prunier et al. 2011), Cryptomeria japonica 507 

(Tsumura et al. 2014) and Quercus petraea (Alberto et al. 2013). This may be due to the 508 

limited sensitivity of outlier methods to identify markers under weak selection (Narum and 509 

Hess 2011). Indeed, detection of outliers can be difficult, if there are subtle changes in allele 510 
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frequencies, such as in the case of polygenic traits, in which adaptation involves subtle 511 

changes in allele frequencies at the loci controlling the polygenic trait, or when there is a high 512 

gene flow counteracting selection (Rellstab et al. 2015; Stephan 2016). 513 

Unlike outlier detection tests, EAA are more sensitive to detect subtle changes in allele 514 

frequencies caused by weak selection (De Mita et al. 2013; Stephan 2016); this would explain 515 

the higher number of SNPs potentially under selection detected by EAA when compared to 516 

outlier methods (Table 6 and 7). However, EAA approaches could be prone to false positives, 517 

especially if a hidden population structure is unaccounted (Rellstab et al. 2015). In this study, 518 

weak population structure was found both in saplings and adults, although there are possibly 519 

two clusters in the saplings (Fig. 1a). Thus, the potential confounding effect of neutral genetic 520 

structure in the saplings was accounted for in the analysis with LEA and Samβada. In 521 

general, the two methods detected different sets of SNPs as potential candidates under 522 

selection (Table 7); similar findings have been reported in other studies (Christmas et al. 523 

2016; Stucki et al. 2016), and are expected given the different statistical frameworks of the 524 

methods (Frichot et al. 2013; Lotterhos and Whitlock 2015; Frichot and François 2015; 525 

Stucki et al. 2016). Consequently, when a marker is detected by several methods, it could be 526 

considered a very likely true positive (de Villemereuil et al. 2014). Thus, we considered 527 

SNPs detected simultaneously by LEA and Samβada as the most likely true candidates to be 528 

under selection. In total, 28.6% and 14.3% of the 70 SNPs were consistently identified by 529 

both EAA methods in saplings and adults, respectively (Table 7), and they showed 530 

differences in allele and genotype frequencies in contrasting environments, as demonstrated 531 

for some example SNPs in Figs 2 and 3. 532 

In total, 31.4% and 22.9% SNPs were detected by at least two of the five methods 533 

(LOSITAN, Arlequin, BayeScan, LEA and Samβada) in saplings and adults, respectively, 534 

and were considered as the most likely true candidates under selection in the studied 535 
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populations. Some of these SNPs have also shown evidence of selection in other studies of 536 

European beech; for example, the CP10_442, CysPro_728, DAG_289, NAC_854, NAC_1300 537 

and PPC2C_1200 SNPs have been associated with the important trait - bud burst (Müller et 538 

al. 2015b), and the 50_232, 52_1_235, 52_1_368, 68_277, 91_2_57, 91_2_141 and 539 

91_2_479 SNPs have shown evidence of epistatic selection (Csilléry et al. 2014). Although 540 

the rest of the SNPs found to be very likely under selection in this study have not been 541 

reported as such by other studies on European beech where they were genotyped, those 542 

studies showed that other SNPs from the same genes could be under selection (Csilléry et al. 543 

2014; Müller et al. 2015b; Pluess et al. 2016; Krajmerová et al. 2017), stressing the 544 

importance of the studied candidate genes in the adaptation of European beech to different 545 

environmental conditions. Besides, SNPs in these genes have also shown signatures of 546 

selection in other plant species. For example, SNPs in the Dhn gene have been associated 547 

with temperature in Pinus pinaster (Grivet et al. 2011), SNPs in the NAC gene have been 548 

detected as potentially under selection by outlier analyses in white and black spruce 549 

(Namroud et al. 2008; Prunier et al. 2011), SNPs in the CAT gene have been identified as 550 

outliers in Quercus petraea (Alberto et al. 2013), and SNPs in the DAG and PP2C genes 551 

have been associated with environmental variables such as temperature and water availability 552 

in Dodonaea viscosa (Christmas et al. 2016). 553 

Interestingly, some different SNPs showing signatures of selection were detected in 554 

saplings and adults (Table 6 and Table 7). Not only the environment can exert different 555 

selection pressures at different life stages (Petit and Hampe 2006), but also different sets of 556 

genes could be involved in the same trait at different stages (Prunier et al. 2013). Therefore, 557 

different SNPs could be under selection at the different ages. Moreover, due to high 558 

competition and mortality, only a small fraction of seeds survive until the adult stage (Petit 559 

and Hampe 2006), which means that adult trees have passed through different selection 560 
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pressures during their life, and this could be reflected in the different set of SNPs showing 561 

signatures of selection  in saplings and adults. 562 

Not only non-synonymous SNPs showed signatures of selection, but also synonymous and 563 

non-coding SNPs. Since non-synonymous SNPs represent amino acid replacements and thus, 564 

a change in protein sequence, they have been traditionally thought to be the main target of 565 

natural selection. However, some studies indicated that synonymous substitutions may affect 566 

mRNA splicing, stability and translation kinetics (Chamary et al. 2006; Komar 2007), and 567 

thus, also affect the production of the final protein (Pagani et al. 2005). Similarly, SNPs in 568 

non-coding regions may also be involved in regulation of gene expression (Barrett et al. 569 

2012). Therefore, synonymous and non-coding SNPs can also be subjected to natural 570 

selection directly, and not only due to a tight linkage with selective loci. 571 

SNPs showing signatures of selection were located in 70.8% and 41.6% of the studied 572 

candidate genes in saplings and adults, respectively. They are involved in a wide range of 573 

cellular functions and represent oxidoreductases, hydrolases, oxidases, transferases, 574 

transporters, chaperones and transcription factors. This is expected since many traits in plants 575 

are polygenic, involving complex interactions among several genes (Ingvarsson and Street 576 

2011). In addition, several SNPs at the same gene showed signatures of selection in this 577 

study, and even though some of them were identified only by one method and could be 578 

considered false positives, they should not be disregarded for further investigation, especially 579 

since some of them have been found to be associated with important climate-related traits and 580 

environmental variables in other studies (Müller et al. 2015b; Pluess et al. 2016). Thus, to 581 

determine their participation in the adaptation to different environmental conditions of 582 

populations of European beech, other approaches could be used. For example, haplotypes can 583 

have a substantial advantage over single SNP analysis for the detection of adaptive genetic 584 
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variation (Balding 2006; Rajora et al. 2016), as well models incorporating polygenic and 585 

epistatic selection (Pritchard and Di Rienzo 2010; Fu and Akey 2013; Csilléry et al. 2014). 586 

Additionally, it is possible that other environmental factors that were not accounted for 587 

could also exert selection pressure on the studied populations. In this study, climate data were 588 

taken from stations less than 10 km away from the actual populations. However, the Alps 589 

have high variation in topography, and climatic factors such as temperature and precipitation 590 

can vary over short distances (Baruck et al. 2016). Therefore, small-scale heterogeneity and 591 

microclimatic conditions specific to a respective population that were not accounted for, 592 

could explain some of the differences in allele frequencies. Furthermore, although 593 

precipitation and temperature are the main climatic factors influencing plants’ distribution, 594 

which is supported by several studies that showed their association with potential adaptive 595 

genetic variation in the Alps (Poncet et al. 2010; Manel et al. 2012; Pluess et al. 2016), soil 596 

properties might also affect plants’ distribution because water availability depends on the 597 

interaction between climatic variables and soil characteristics (Piedallu et al. 2013). For 598 

example, (Gärtner et al. 2008) found that lower humidity can be compensated for by greater 599 

available soil water storage capacity (ASWSC) that allows the growth of beech. Low soil 600 

water availability affects survival and competitive interactions between beech and other 601 

species (Fotelli et al. 2002; Fotelli et al. 2004) and determines the transition from beech to 602 

Quercus pubescens, a more drought tolerant tree species (Gärtner et al. 2008). In the Alps, 603 

soil properties affect not only the present distribution of plants, but also determined the 604 

migration pathways during the post-glacial recolonization (Alvarez et al. 2009). Thus, the 605 

identification of adaptive genetic variation might be improved by including not only climatic 606 

variables but also soil characteristics and microclimatic conditions. However, characteristics 607 

of alpine soils vary considerably over short spatial ranges, and soil information is still limited 608 

(Baruck et al. 2016). 609 



26 

In this study, a candidate gene approach was used to investigate adaptive genetic variation 610 

in beech. By combining genetic variation in SNPs in candidate genes, outlier detection tests 611 

and environmental association analysis, it was possible to identify loci showing signatures of 612 

selection. This opens new perspectives for understanding the genetic basis of adaptation of F. 613 

sylvatica to different environmental conditions. 614 
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Fig. 1  Structure analysis based on the 13 SSR markers (a and b) and the 70 SNPs (c and d) 1016 

for K = 2. Bar plot indicates the assignment probability of each individual to two different 1017 

clusters (K) in saplings (a and c) and adults (b and d). Population name abbreviations: Fel - 1018 

Felsberg; Chu - Chur; Mal - Malans; Mas - Mastrils; Sar - Sargans; Mel - Mels; Ard - Ardon; 1019 

Cha - Chamoson; Sax - Saxon; Mar - Martigny; Col - Collombey; Oll – Ollon 1020 

Fig. 2  Examples of some SNP allele frequencies calculated for each population and plotted 1021 

against of environmental variables AP, Im and MaxAt and environmental PC1 that were 1022 

identified as being very likely under selection by EAA. Black and open circles denote Rhine 1023 

and Rhone populations, respectively 1024 

Fig. 3  Examples of logistic regression fit of SNP allele frequencies along environmental 1025 

variables AP, Im and MaxAt and environmental PC1 for four SNPs identified as being very 1026 

likely under selection by EAA (P < 0.1) 1027 
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