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Abstract 15 

Background: The main objectives of this study were sequencing, assembling and annotation 16 

of chloroplast genome of one of the main Siberian boreal forest tree conifer species Siberian 17 

larch (Larix sibirica Ledeb.) and detection of polymorphic genetic markers – microsatellite loci 18 

or simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). 19 

Results: We used data of the whole genome sequencing of three Siberian larch trees from 20 

different regions - Urals, Krasnoyarsk, and Khakassia, respectively. Sequence reads were 21 

obtained using the Illumina HiSeq2000 in the Laboratory of Forest Genomics at the Genome 22 

Research and Education Center in the Siberian Federal University. The assembling was done 23 

using the Bowtie2 mapping program and the SPAdes genomic assembler. The genome 24 

annotation was performed using the RAST service. We used the SciRoKo program for the SSRs 25 

search, and the Bowtie2 and UGENE programs for the SNPs detection. Length of the assembled 26 

chloroplast genome was 122,561 bp, which is similar to 122,474 bp in the closely related 27 

European larch (Larix decidua Mill.). As a result of annotation and comparison of the data with 28 
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existing data available only for three larch species - L. decidua, L. potaninii var. chinensis 29 

(complete genome 122,492 bp) and L. occidentalis (partial genome of 119,680 bp), we 30 

identified 110 genes, 34 of which represented tRNA, 4 rRNA and 72 protein-coding genes. In 31 

total, 13 SNPs were detected; two of them were in the tRNA-Arg and Cell division protein FtsH 32 

genes, respectively. 33 

Conclusions: The complete chloroplast genome sequence was obtained for Siberian larch for 34 

the first time. The reference complete chloroplast genomes, such as one described here would 35 

greatly help in the chloroplast resequencing and search for additional genetic markers using 36 

population samples. The results of this research will be useful for further phylogenetic and gene 37 

flow studies in conifers.I 38 
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 44 

Background 45 

Chloroplast genome in conifers, including larch species [1] has a unique, strictly paternal 46 

inheritance via pollen, unlike angiosperms, where it has a maternal inheritance via seeds [2]. It 47 

allows tracing paternal gene flow and lineages separately from maternal (mitochondrial genes) 48 

and bi-parental (nuclear genes) ones. Therefore, chloroplast DNA sequences are the most 49 

important source of genetic markers to study distribution of paternal genes and paternally based 50 

molecular phylogenetic relationships in conifers. 51 

Larch species, as well as many other conifer species are the main boreal forest tree species, 52 

which comprise ~30% of the world’s forested lands [3]. Boreal forests play very important 53 

ecological role, but are also affected by the global climate change. On one hand, they suffer 54 
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now from more frequent and drastic droughts, but on the other hand their area is expanding in 55 

the northern regions, and their tree line is moving towards north creating an ecotone, a highly 56 

dynamic transition area [4]. It is important to know how much of paternal associated gene flow 57 

by pollen contributes into establishing this zone compared to the maternal and bi-parental 58 

contributions by seeds. Such studies require chloroplast markers. Next generation sequencing 59 

(NGS) technique allows whole chloroplast genome sequencing in multiple individuals and 60 

makes a search for the molecular genetic markers more efficient. For instance, Parks et al. [5] 61 

nearly completely sequenced chloroplast genomes in 37 pine species using NGS. They found 62 

significant amount of variation (especially in two loci ycf1 and ycf2) that provided them with 63 

additional data for inferring intrageneric phylogeny of genus Pinus. 64 

Whole chloroplast genome comparison across different species and genera allows also 65 

studying organelle evolution and how it is associated with speciation and dispersal. Complete 66 

chloroplast genome sequences are available in NCBI Genbank for multiple plant species, 67 

including conifers. However, most of them represent the Pinus genus, and only three chloroplast 68 

genomes are available for the Larix genus: complete for European (Larix decidua Mill.; 69 

AB501189.1) and Chinese (L. potaninii var. chinensis Beissn.; KX808508) larch and partial for 70 

Western larch (L. occidentalis Nutt.; FJ899578.1). 71 

Variation in the chloroplast genome is effectively used in phylogenetics at different levels. 72 

It allowed discriminating different subgenera and genera. For instance, Cronn et al. [6] 73 

compared chloroplast genome sequences of seven pine and one spruce species and found three 74 

regions that have deletions corresponded to the subgenera specific deletions in three genes: 75 

ycf12 (78 bp at the nucleotide starting position 51051), psaM (93 bp at position 51442) and 76 

ndhI (371 bp at position 101988), respectively. These are common deletions in the chloroplast 77 

genome in the pine species of the subgenus Strobus (i.e., P. gerardiana, P. krempfii, P. 78 
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lambertiana, P. longaeva, P. monophylla, P. nelsonii, P. koraiensis); the corresponding genes 79 

were present in the subgenus Pinus (P. contorta, P. ponderosa, P. thunbergii) and in spruce 80 

Picea sitchensis [6]. 81 

Variation in the chloroplast genome can be also effectively used in discriminating different 82 

populations of the same species. For instance, Whittall et al. [7] demonstrated a strong 83 

differentiation between mainland and island populations of Torrey pine (Pinus torreyana) based 84 

on 5 SNPs found in the entire chloroplast genome of 120 Kbp. 85 

Methods 86 

We used data of the whole genome sequencing of three Siberian larch trees generated by 87 

Illumina HiSeq2000 [8]. DNA samples were isolated from needles and haploid callus of three 88 

Siberian larch trees, representing different regions in Russia – Ural Mountains, Krasnoyarsk 89 

Region and Khakassia Republic, respectively. Larix decidua Mill. [9] and L. occidentalis Nutt. 90 

[5] chloroplast genomes were used as reference (NCBI Genbank accession numbers 91 

AB501189.1 and FJ899578.1, respectively). We did not use the chloroplast genome of L. 92 

potaninii [10] as a reference, because it was assembled by using the chloroplast genome of L. 93 

decidua (NC_016058; [9]) as a reference, but we used it in the comparative analysis. The paired-94 

end (PE) and mate-pair (MP) libraries with fragment sizes of 400-500 bp (Ural and Krasnoyarsk 95 

trees) and 300-400 bp (Khakassia tree), respectively, were used for sequencing via 2 × 100 96 

cycles by Illumina HiSeq2000. 97 

The sequence reads were mapped to the reference chloroplast genomes using the Bowtie2 98 

software [11], which is good for mapping short sequence reads to medium-sized and large 99 

genomes. This software implements an algorithm to derive FM-index based on Burrows-100 

Wheeler Transform. The SPAdes genome assembler has been used to assemble the larch 101 
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genome, which implements the De Bruijn graph approach [12]. The Rapid Annotation service 102 

with Subsystem Technology (RAST) has been used for annotation [13]. 103 

The first step in our assembly procedure consisted of mapping short reads to the available 104 

chloroplast genome references of L. decidua and L. occidentalis using the Bowtie2 software. 105 

Then, the aligned reads were assembled by SPAdes. Obtained contigs were aligned again on 106 

the reference of L. decidua using BLAST. At the third step, the selected contigs were verified 107 

to get the “trusted” status. Then, the assembly was carried out using SPAdes. The final step of 108 

the assembly was the scaffolding, which was done using the generated contigs and MP reads 109 

using the SSPACE program [14]. 110 

Considering a well-known fact that chloroplast organelle originated from cyanobacteria, and 111 

that, therefore, chloroplast genes are still very similar to the bacterial ones, the RAST service, 112 

which was designed for annotation of bacterial and archaeal genomes, was used for the larch 113 

genome annotation. The annotation obtained by the RAST contained both confirmed known 114 

genes and predicted genes, potentially coding hypothetical proteins. In order to clarify the roles 115 

of these hypothetical coding regions our annotation was compared with annotations of two 116 

closely related species L. decidua and L. occidentalis, respectively. In addition, some fragments 117 

of the genome have been also selectively aligned with BLAST. Sites of hypothetical proteins 118 

confirmed by BLAST were identified and recorded. 119 

SNPs were search using the Bowtie2 and UGENE [15] software (option Call Variants with 120 

SAMtools). The search was done across the three above mentioned trees. First, reads of Urals 121 

and Khakassian trees were mapped to the finally assembled genome of the Krasnoyarsk tree. 122 

The resulting sam-file together with the assembled genome was used by the UGENE program 123 

to search for SNPs. 124 
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Results 125 

The total length of the final Siberian larch chloroplast genome assembly was 122,560 bp, which 126 

is very close to 122,474 bp in closely related European larch (Larix decidua). The annotation 127 

through the comparison with available data for L. decidua and L. occidentalis identified 110 128 

genes, from which 34 represented tRNA genes, 4 rRNA and 72 protein-coding genes. In three 129 

trees 13 SNPs were detected. Two of them were found in the coding regions of the tRNA-Arg 130 

and Cell division protein ycf2 genes. 131 

We used available software, such as Bowtie2, BLAST and SPAdes to assemble chloroplast 132 

genome using reads generated in the whole genome sequencing of Siberian larch project. We 133 

used SSPACE for scaffolding and the RAST service for annotation of obtained chloroplast 134 

genome. We developed a procedure that allowed us to successfully extract chloroplast genome 135 

specific reads and then assemble and annotate the resulting sequences. We identified and 136 

verified 110 coding regions representing 38 RNA and 72 protein genes, which is equal to the 137 

number of genes in chloroplast sequences of L. decidua and L. potaninii and close to 105 genes 138 

in a partial chloroplast genome sequence of L. occidentalis. A gene map of the genome was 139 

generated using OGDRAW [16] and presented in Fig. 1. Search for SNPs using UGENE 140 

revealed a relatively small number of SNPs (Fig. 2; Additional file 1), but it is only preliminary 141 

data based on a limited sample size. 142 

Discussion 143 

The chloroplast genome variation in most plants is often limited due to a relatively low 144 

frequency of mutations in this organelle. For example, the mutation rate of the chloroplast 145 

genome in pines is approximately 0.2-0.4×10-9 synonymous substitutions per nucleotide per 146 

year [17, 18]. However, with an average length of 120-160 Kbp and 130 genes chloroplast 147 
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genomes are sufficiently large and complex and include structural and point mutations that 148 

reflect population differentiation and evolutionary divergence [6]. 149 

Unlike angiosperms, conifer chloroplast DNA (cpDNA) lacks large inverted repeats (IR), 150 

but contains dispersed repetitive DNA that is associated with structural rearrangements. In 151 

addition to large dispersed repeated sequences, conifer cpDNA also possess a number of small 152 

repeats. It contains variable numbers of tandem repeats of 124 to 150 bp in size, which are 153 

associated with polymorphic rearranged region near trnK-psbA, where the psbA gene has been 154 

duplicated [19]. 155 

Most variation in the chloroplast genome is associated with microsatellite loci [20, 21]. 156 

However, these markers have a too high mutation rate that can lead to the incorrect phylogenetic 157 

inferences [22-24]. SNPs could be better markers for phylogenetic inferences, and comparative 158 

complete chloroplast genome studies are needed to discover these markers. The reference 159 

complete chloroplast genomes, such as one described here would greatly help in the chloroplast 160 

resequencing and search for SNPs using population samples. 161 

Conclusions 162 

The complete chloroplast genome sequence was obtained for Siberian larch for the first time. 163 

Annotation and comparison of the obtained data with data available only for two other larch 164 

species helped us identify and verify 110 coding regions representing 38 RNA and 72 protein 165 

genes. Total 13 SNPs were detected; two of them were in the coding regions of the genome. 166 

The results of this research will be useful for further phylogenetic and gene flow studies in 167 

conifers. 168 

Additional files 169 

Additional file 1: excel file representing the Siberian larch chloroplast genetic variant data. 170 
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 268 

 269 

Fig. 1 Gene map of the Larix sibirica chloroplast genome. Genes belonging to different 270 

functional groups are color-coded. The dark and light grey in the inner circle represents the 271 

GC and AT content, respectively 272 

  273 
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 274 

Fig. 2 Variation detected in the Larix sibirica chloroplast genome (see also Additional file 1) 275 
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