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The algebraic classification (up to isomorphism) of algebras of dimension n from a certain
variety defined by some family of polynomial identities is a classic problem in the theory of
non-associative algebras. There are many results related to algebraic classification of small
dimensional algebras in varieties of Jordan, Lie, Leibniz, Zinbiel and many other algebras [16,
17, 18, 19, 25, 28, 37]. Another interesting direction in classifications of algebras is a geometric
classification. There are many results related to geometric classification of Jordan, Lie, Leibniz,
Zinbiel and many other algebras [3, 4, 5, 6, 8, 9, 11, 12, 29, 30, 31, 32, 33, 35, 36, 37, 38, 41]. In
the present paper, we give algebraic and geometric classifications of nilpotent algebras of a new
class of non-associative algebras introduced by Dzhumadildaev in [21].

Zinbiel algebras were introduced by Loday in [39]. They were studied in [15, 20, 22, 23, 35,
40, 44]. Under the Koszul duality, the operad of Zinbiel algebras is dual to the operad of Leibniz
algebras. Zinbiel algebras are related to torkara algebras [21] and tortkara triple systems [10].

An algebra A is called a Zinbiel algebra if it satisfies the identity

(zy)z = x(yz + 2y).
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Every Zinbiel algebra with the commutator multiplication defines a torkara algebra. An anti-
commutative algebra A is called a tortkara algebra if it satisfies the identity

(ab)(cb) = J(a,b,c)b, where J(a,b,c) = (ab)c+ (bc)a + (ca)b.

It is easy to see that every metabelian Lie algebra (i.e., (xy)(zt) = 0) is a torkara algebra and
every Dual Mock-Lie algebra (i.e., antiassociative and anticommutative) is a tortkara algebra.

Our method of classification of nilpotent torkara algebras is based on calculation of central
extensions of smaller nilpotent algebras from the same variety. Central extensions play an impor-
tant role in quantum mechanics: one of the earlier encounters is by means of Wigner “s theorem
which states that symmetry of a quantum mechanical system determines an (anti-)unitary trans-
formation of a Hilbert space. Another area of physics where one encounters central extensions is
the quantum theory of conserved currents of a Lagrangian. These currents span an algebra which
is closely related to so called affine Kac—-Moody algebras, which are the universal central exten-
sion of loop algebras. Central extensions are needed in physics, because the symmetry group of a
quantized system usually is a central extension of the classical symmetry group, and in the same
way, the corresponding symmetry Lie algebra of the quantum system is, in general, a central
extension of the classical symmetry algebra. Kac—-Moody algebras have been conjectured to be
a symmetry groups of a unified superstring theory. The centrally extended Lie algebras play a
dominant role in quantum field theory, particularly in conformal field theory, string theory and
in M-theory. In the theory of Lie groups, Lie algebras and their representations, a Lie algebra
extension is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise
in several ways. There is a trivial extension obtained by taking a direct sum of two Lie alge-
bras. Other types are split extension and central extension. Extensions may arise naturally, for
instance, when forming a Lie algebra from projective group representations. A central extension
and an extension by a derivation of a polynomial loop algebra over finite-dimensional simple Lie
algebra give a Lie algebra which is isomorphic to a non-twisted affine Kac-Moody algebra [7,
Chapter 19]. Using the centrally extended loop algebra one may construct a current algebra in
two spacetime dimensions. The Virasoro algebra is the universal central extension of the Witt
algebra, the Heisenberg algebra is the central extension of a commutative Lie algebra [7, Chapter
18]. The algebraic study of central extensions of Lie and non-Lie algebras has a very rich history
[2, 26, 27, 34, 43, 42, 45]. In particular, Skjelbred and Sund used central extensions of Lie al-
gebras for a classification of nilpotent Lie algebras [42]. Following that, there were described all
non-Lie central extensions of all 4-dimensional Malcev algebras [27], all non-associative central
extensions of 3-dimensional Jordan algebras [26], all anticommutative central extensions of 3-
dimensional anticommutative algebras [13], and all central extensions of 2-dimensional algebras
[14] by means of the method described by Skjelbred and Sund. We also note that the method of
central extensions is an important tool in the classification of nilpotent algebras (see, e.g., [24]).
Using this method, there were described all 4-dimensional nilpotent associative algebras [18], all
5-dimensional nilpotent Jordan algebras [25], all 5-dimensional nilpotent restricted Lie agebras
[17], all 6-dimensional nilpotent Lie algebras [16, 19|, all 6-dimensional nilpotent Malcev algebras
[28], and some others.
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1. The algebraic classification of 5-dimensional nilpotent
tortkara algebras

1. Preliminaries
1. A method for classification of nilpotent algebras

Throughout this paper, we use the notations and methods introduced in [26, 27, 14] and
adapted for the torkara case with some modifications. Below we give some of the most important
definitions.

Let (A,-) be a tortkara algebra over an arbitrary base field k of characteristic not 2 and V a
vector space over the same base field k. Then the k-linear space Z2 (A, V) is defined as the set
of all skew-symmetric bilinear maps 6 : A x A — V such that

0(zy, 2t) + 0(zt, zy) = 0(J(z,y, 2),t) + 0(J(x,t,2),y).

Its elements are called cocycles. For a linear map f: A — V, we define §f: A x A — V
by §f (z,y) = f(zy) so that 6f € Z?(A,V). Define B?(A,V) = {§ =6f: f € Hom (A,V)}.
One can easily check that B2?(A,V) is a linear subspace of Z?(A,V) whose elements are
called coboundaries. We define the second cohomology space H? (A,V) as the quotient space
Z?(A,V) /B%(A,V).

Let Aut(A) be the automorphism group of the tortkara algebra A and let ¢ € Aut (A).
For 0 € Z% (A,V) define ¢ (z,y) = 0 (¢ (x),¢ (y)). Then ¢ € Z% (A,V). So, Aut (A) acts on
Z%(A,V). Tt is easy to verify that B? (A, V) is invariant under the action of Aut (A) and so we
have that Aut (A) acts on H? (A, V).

Let A be a tortkara algebra of dimension m < n over an arbitrary base field k of characteristic
not 2, and V be a k-vector space of dimension n —m. For any 6 € Z? (A, V), define the bilinear
product “ [—, —],,” on the linear space Ag:= A ®V by [z + 2",y +y'],, = 2y + 0 (z,y) for all
x,y € A 2’y € V. The algebra Ay is a tortkara algebra which is called an (n —m)-dimensional
central extension of A by V. Indeed, clearly, Ay is a tortkara algebra if and only if € Z2(A,V).

We also call the set Ann(f) = {z € A : 0 (x, A) = 0} the annihilator of §. Recall that the
annihilator of an algebra A is defined as the ideal Ann(A) = {z € A : zA =0}, and observe
that Ann (Ap) = Ann(d) N Ann (A) & V.

We now state the following key result:

Lemma 1..1 Let A be an n-dimensional tortkara algebra with dim(Ann(A)) = m # 0. Then,
there exists (up to an isomorphism) a unique (n — m)-dimensional tortkara algebra A’ and a
bilinear map 6 € Z*(A,V) with Ann(A)NAnn(6) = 0, where V is a vector space of dimension m
such that A = A} and A/ Ann(A) = A’.

Proof. Let A’ be a linear complement of Ann(A) in A. Define a linear map P : A — A’ by
P(z+wv) =z for x € A’ and v € Ann(A) and define a multiplication on A’ by [z,y]as = P(zy)
for z,y € A’. Then, for z,y € A,

P(zy) = P((x — P(z) + P(2))(y — P(y) — P(y))) = P(P(x)P(y)) = [P(z), P(y)|ar

Since P is a homomorphism, P(A) = A’ is a tortkara algebra and A/ Ann(A) = A’ which gives
us the uniqueness. Now, define the map 6 : A’ x A’ — Ann(A) by 0(z,y) = 2y — [z, y]a’.
Thus, Aj, is A and therefore § € Z%(A,V) and Ann(A) N Ann(#) = 0. The lemma is proved.
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However, in order to solve the isomorphism problem, we need to study the action of Aut (A)
on H? (A,V). To do that, fix eq,...,es, a basis of V, and § € Z? (A, V). Then, there is a unique

representation 6 (z,y) = >.60; (z,y)e; with §; € Z? (A, k). Moreover, Ann(f) = Ann(6;) N
i=1
Ann(62) N--- N Ann(f). Furthermore, § € B2 (A,V) if and only if all §; € B? (A, k).

Given a tortkara algebra A, if A = I ® kx is a direct sum of two ideals, then kx is called an
annihilator component of A.

Definition 1 A central extension of an algebra A without annihilator component is called a
non-split central extension.

It is not difficult to show (see [27, lemma 13]), that given a tortkara algebra Ay, if use the
respresentation 0 (z,y) = >.0; (v,y)e; € Z2 (A, V), and Ann(f) N Ann (A) = 0, then Ay has an

i=1

annihilator component if and only if [¢1],[f2],...,[0s] are linearly dependent in H? (A, k).

Let V be a finite-dimensional vector space over k. The Grassmannian G (V) is a set of
all k-dimensional linear subspaces of V. Let G, (H? (A, k)) be the Grassmannian of subspaces
of dimension s in H? (A, k). There is a natural action of Aut(A) on G, (H?(A,k)). Let
¢ € Aut (A). For W = ([01],[02] , ..., [6s]) € G5 (H? (A k)) define oW = ([¢61], [¢02] , ..., [#05]).-
Then ¢W € G, (H? (A, k)). Denote the orbit of W € G, (H? (A, k)) under the action of Aut (A)
by Orb (W). Since given

Wi = <[91] ) [02] PRRET [93]> 7W2 = <[191} ) [192] PERRE [195]> € Gs <H2 (A’k> 7)

we easily obtain that if W; = W, then _61 Ann(f;) N Ann (A) = _Es]l Ann(9;) N Ann (A) so that

we can introduce the set
T, (&) = {W = (0], 162] ., [0.]) € G, (H? (A,K)) : (1 Ann(6;) N Ann (A) =0},

which is stable under the action of Aut (A).

Now, let V be a s-dimensional linear space. By E (A,V) we denote the set of all non-split
s-dimensional central extensions of A by V. Then,

E(AV)= {Ag 10 (z,y) = Zﬁi (x,y) e;and ([01],[02] , ..., [0s]) € Ts (A)} .

i=1

We now state the following result which can be proved as [27, lemma 17].

Lemma 1..2 Let Ag,Ay € E(A,V). Suppose that 0 (z,y) = >.0;(x,y)e; and 9 (v,y) =

i=1

7

S
9i (x,y) e;. Then the tortkara algebras Ay and Ay are isomorphic if and only if
=1

Orb ([01] ) [92] EEERE) [95]> = Orb <[191] ) [192] ERLEY) [193” :

Consequently, there exists a one-to-one correspondence between the set of Aut (A)-orbits on
T, (A) and the set of isomorphism classes of E' (A, V). We therefore have the following procedure
that allows us, given the tortkara algebras A’ of dimension n, to construct all non-split central
extensions of A’

Procedure
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1. For a given tortkara algebra A’ of dimension n, determine H2(A' k) and Aut(A").
2. Determine the set of Aut(A’)-orbits on T,(A’).

3. For each orbit, construct the non-split tortkara algebra corresponding to its representative.

2. Notations

We now introduce some notations. Let A be a tortkara algebra with a basis ej,es,...,€e,.
Then, by A;; we denote the tortkara bilinear form A;; : A x A — k with A;; (e, e,,) = 0 if
{Z7j} #* {l,m} and Al‘j (ei7ej) = —Aij (6j,€i) = 1. Then, the set {AZJ 1<i<) < n} is a basis
for the linear space of bilinear forms on A. Then, every 6 € Z2 (A,V) can be uniquely written

asf= > c¢;Ai, where ¢;; € k. We use the following notations as well:
1<i<j<n
T — jth i-dimensional torkata algebra,
N, — i-dimensional algebra with zero product,
(A)i; — jthi-dimensional central extension of A.

3. Central extensions of nilpotent low dimensional tortkara algebras

There are no nontrivial 1- and 2-dimensional nilpotent tortkara algebras. There is only one
nontrivial 3-dimensional nilpotent tortkara algebra (it is the non-split central extention of 915,
see T3, below). Thanks to [13], we have a description of all anticommutative central extensions
of 3-dimensional anticommutative nilpotent (tortkara) algebras:

T, : (Ma)s1 : eres = es,

Téz (T%1)4,1 P12 = €3, €163 = €y,

ng . (m3)571 €1€ = €4, €1€e3 = €5,

T4 (T31)s5,1 : eilea =es, eres=ey, eges = es.

2. The algebraic classification of 5-dimensional nilpotent tortkara al-
gebras

1. The algebraic classification of 4-dimensional nilpotent tortkara algebras

| A | multiplication tables | H2(A) | Automorphisms
Y] 0 0
Tg, | erea = es [A3], [A1a], [Ags], [Agd], [Asz4] = 0 0
! ’ ’ ’ ’ v h zu—z2y ¢
I r 0 t
z 0 O 0
0 0
T4 = = Aud], [Ass], [A vos
02 | ere2 = ez erez =eq | [Aral,[Ans], [Azd] v v zz O
h g xv 2%z
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2. 1-dimensional central extensions of 91y

Thanks to [41], we have all non-split 1-dimensional anticommutative central extensions of
5)?4 :
Tos = (Ma)sn : erea=e5, ezeq = es.

3. 1-dimenisonal central extensions of Tg,

a1y + agu — asr)g + (aoy + asu + ash)t
uxr — yz)ast,

Q
N
I

Since
t
x Yy 0 0 0 0 a1 Qo Ty 0 0 0 o ol
z U 0 0 0 0 as oy zZ u 0 o] | -ao" 0 s
v h 2zu—2z2y g -1 —o3 0 oas v h zu—zy g| |-af —a} 0
L r 0 t —ay —og —as 0 L r 0 t —ay —a) —op
where
a* (1z + a3z — asl)h + (—agy — aqu)l + (asx + aqz + asv)r — v(ay + asu)
af = (x4 azz — asl)(ux — yz2)
oy = (x4 aszz—asl)g+ (@ex 4+ agz + asv)t
a3 = (y+agu—asr)(uz —yz)
(
(

we obtain that the action of Aut (T§,) on a subspace
(1[A13] + o[A1a] + as[Ags] + a[Ags] + as[Azs])
is given by
(a1[A1s] + a3[Ava] + a3[Ass] + i[Ags] + a5 [Asd]).
We provide the orbit of every possible case:

1. If a5 # 0, then choosing ¢ = 0, | = —%ﬁaﬁz, v = —%{)‘“Z, r o= —Ly;%u, h =

7%;““, we have a representative {(uxr — yz)tas[As4]}, and the orbit is ([As4]).

2. If a5 = 0,7 = az3 = 0, then we can assume that as # 0 and a4 # 0, and, choosing
u = —<2%, we have a representative {(a2z + a42)t[A14]}, and the orbit is ([Aq4]).
3. If a5 = 0 and a7 # 0 or ag # 0, we can assume that a; # 0 and a3 # 0. Then
(a) if apay = oy, then choosing g = —$4t and = y+ 42 (u—2) we have a representative
{(c1x + asz)(uz — y2)([A13] + [A23])} and the orbit is ([A13] + [Aa3]).

. . 20t
(b) if Cvzoz:; zé a1y, 2h§n we can suppose that ay # 0. Choosing y = —m,
1 &2

z= UL gy = we have a representative {(a1y + asgu)(ur — yz)([A1a] + [A23])}

[0 % (e %)

and the orbit is ([A14] + [Azs)]).

It is easy to verify that all the previous orbits are different so that we arrive at
Ty(T1) = ([as] + [Bas] Y U ([Aua] Y U ([Aa] + [Aas]) U ([Asa]).
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Note that the orbit ([A13] 4+ [Ags]) gives a split central extension and the orbit ([A14]) gives a
non-split central extension with 2-dimensional annihilator (it is a 2-dimensional central extension
of a 3-dimensional algebra). Now we have all non-split 1-dimensional central extensions with 1-
dimensional annihilator of T3, :

TSG : (T31)5,1 . €1 = €3, €1€4 = €5, €2€3 = €5,

To; @ (To)s2 @ erea =e3, eses=es.

4. 1-dimensional central extensions of Tj,

Since
0 o o™ o 20 0 0\ /0 0 0 a\ /z 0 0 0
—a* 0 a; a3z |y z 0 0 0 0 o o3 y 2z 0 0
—a** —ay 0 0| |u v zz 0 0 —ax 0 O u v zz 0
—a —a3 0 0 h g zv 2%z —a; —az3 0 0 h g av 2%z
with

o = (—agu — agh)z + azgy + a1 gz + asyv,

a* = (agz + azv)yx + ajv?,

aof = (a7 + azy)r?z,

oy = (agz+ azv)zz,

* 2,..2

o = agzia?,
we obtain that the action of Aut (T3) on a subspace (a1[A14] + a2[Azs] + a3[Agy]) is given by
(a7 [Ara] + a5 [Ags] + a3[Agl).

We provide the orbit of every possible case:

. o o 1 _ o _ s . .
1. If a5 # 0, then choosing z = 1,z = Ja ¥ = v = NS we have the orbit is
<[A24]>

2. If a5 = 0, then we have one from the following orbits <[A14]>, <[A14] + [A23]>, <[A23]>.

It is easy to verify that all the previous orbits are different so that we arrive at

T(T8y) = ([Aaal) U ([A0a] + [Bas]) U ([Baa]) U ([Baal).

We therefore have all non-split 1-dimensional central extensions with 1-dimensional annihi-
lator of Tg,:

5 . 4 . — — —
Tos - (T02)5,1 i €162 = €3, €1€3 = €4, €164 = €5,
5 . 4 . — — — —
TOQ : (T02)5,2 . €1€2 = €3, €1€3 =64, €14 = €5, €E2€3 = €5,
5 . 4 . — — —
T7y (T02)5,3 €162 = €3, €1€3 = €4, €264 = €5.

5. The algebraic classification of 5-dimesional nilpotent tortkara algebras

Theorem 1.1 Let A be a nontrivial 5-dimensional nilpotent tortkara algebra. Then, A is iso-
morphic to exactly one of the following algebras:
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T81 . ej1e9 = e3.

TS5, : eiea =e3, erez=ey.

T(S)s T e1eg = ey, e1e3 = e€s.

T3, : ejea =e3, €163 =eq, €2€3 = es.

T5; : eiea =e5, ezeq=es.

Tos : e1ea =e3, €164 =e5, €2€3 = €5.

T5; : eiea =e3, ezeq = es.

ng I e1eg =e3, e1e3 = €4, €164 = es.

ng . €19 = €3, €1€3 = €4, €164 = €5, €9€3 = €5.
T3, : e1ea =e3, €13 =eq4, €2e4 = €5.

2. The geometric classification of 5-dimesional nilpotent
tortkara algebras

1. Preliminaries.

1. Definitions and notation

Given an n-dimensional vector space V, the set Hom(V® V,V) 2 V* @ V* ® V is a vector
space of dimension n®. This space has a structure of the affine variety cr’. Indeed, fix a basis
€1,...,en of V. Then, any u € Hom(V ® V, V) is determined by n? structure constants cf,j eC

such that p(e; ®@e;) = > cﬁjek. A subset of Hom(V ®V,V) is Zariski-closed if it can be defined
k=1

by a set of polynomial equations in the variables ci—f ; (1<, 5,k <n).

Let T be a set of polynomial identities. All algebra structures on V satisfying polynomial
identities from T form a Zariski-closed subset of the variety Hom(V ® V,V). We denote this
subset by L(T"). The general linear group GL(V) acts on L(T') by conjugations:

(g*p)(z®y) =gulg 'z g 'y)

for z,y € V, p € L(T) € Hom(V® V,V) and g € GL(V). Thus, L(T) is decomposed into
GL(V)-orbits that correspond to isomorphism classes of algebras. Let O(u) denote the orbit of
i € L(T) under the action of GL(V) and O(x) denote the Zariski closure of O(y).

Let A and B be two n-dimensional algebras satisfying identities from T and p, A € L(T)
represent A and B, respectively. We say that A degenerates to B and denote A — B if A € W
Note that, in this case, we have O(A) C O(u). Hence, the definition of a degeneration does not
depend on the choice of y and A\. If A 22 B, then the assertion A — B is called a proper
degeneration. We write A /£ Bif A & O(p).

Let A be represented by p € L(T). Then A is rigid in L(T) if O(u) is an open subset of
L(T). Recall that a subset of a variety is called irreducible if it cannot be represented as a union
of two non-trivial closed subsets. A maximal irreducible closed subset of a variety is called an
irreducible component. It is well known that any affine variety can be represented as a finite
union of its irreducible components in a unique way. The algebra A is rigid in IL(7") if and only
if O(u) is an irreducible component of L(T).

Given spaces U and W, we write simply U > W instead of dimU > dim W.

2. A method for description of all degenerations of algebras

In the present work we use the methods from [12, 29, 30, 41] applied to Lie algebras. First of
all, if A — B and A % B, then Der(A4) < Der(B), where Der(A) is the Lie algebra of derivations
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of A. We will compute the dimensions of algebras of derivations and will check the assertion
A — B only for such A and B that Det(A) < Der(B). Secondly, if A — C and C — B then
A — B. If there is no C such that A — C and C — B are proper degenerations, then the
assertion A — B is called a primary degeneration. If Det(A) < Der(B) and there are no C
and D such that C — A, B — D, C 4 D and one of the assertions C — A and B — D
is a proper degeneration, then the assertion A 4 B is called a primary non-degeneration. It
suffices to prove only primary degenerations and non-degenerations to describe degenerations in
the variety under consideration. It is easy to see that any algebra degenerates to the algebra
with zero multiplication. From now on, we use this fact without mentioning it.

To prove primary degenerations, we construct families of matrices parametrized by ¢. Namely,
let A and B be two algebras represented by the structures p and A from IL(7T'), respectively. Let
e1,...,ep be abasis of V and cﬁj (1 <14,7,k < n) be the structure constants of \ in this basis. If

. n .
there exist al(t) € C (1 <1i,j <n, t € C*) such that E! = >~ al(t)e; (1 <4 < n) form a basis of
j=1
V for any t € C*, and the structure constants of x in the basis Ef, ..., E! are such polynomials
¢ ;(t) € C[t] that ¢ ;(0) = ¢f;, then A — B. In this case, Ef,..., El is called a parametrized

1,57
basis for A — B.

2. The geometric classification of 5-dimensional nilpotent torkara al-
gebras

The main result of the present section is the following theorem.

Theorem 2.1 The variety of 5-dimensional nilpotent tortkara algebras has one irreducible com-
ponent defined by the rigid algebra T3,. The graph of primary degenerations for 5-dimensional
nilpotent tortkara algebras has the following form:

Proof. Note that the set {Tg,;}1<i<o U {915} gives the variety of all 5-dimensional nilpotent
Malcev algebras. The descrition of all degenerations of 5-dimensional nilpotent Malcev algebras
was obtained in [36]. By calculation of the dimension of the algebra of derivations of T3, we
have the dimension of the orbit closure of T%,,.

The parametrized basis formed by

1 1 1
Ei = tel + ?62, E; = t@g + ;63, Eé = t263 + €4, Eétl = t3€4 + t72€5’ Eé = t€5

gives the degeneration T35, — TJ.
The parametrized basis formed by

t t t t t
El = €1, E2 = €3, E3 = €4, E4 = t€2, E5 = —t€5
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gives the degeneration T, — Tg,. Thus, the theorem is proved.

The first part of this work is supported by the Russian Science Foundation under grant, 18-71-
10007. The second part of this work was supported by UAEU UPAR (9) 2017 Grant G00002599
(Mohamed A. Salim).
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MHoroob6pa3ne HUJIBIIOTEHTHBIX TOPTKapa aJredop

. Topmkor, U. Kaiiroponos, A.A. Keitmano, M.A. Salim

B cmamve daemcs anszebpauneckas U 2e0MEMPUHECKAA KAGCCUPGUKAUUY HUABNOMEHMHOT MOPMKAPG
anzebp pasmeprocmuy 5.

Karuesnie caosa: mopmrapa arzebpa, anzebpauveckes KAGCCUPGURGYUA, YEHMPAABHOE PACULUPEHUE, 2€0-
MEMPUBECKAA KAACCUPUKAUUSA, B8BPOHCIEHUE.
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