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The algebraic classi�cation (up to isomorphism) of algebras of dimension n from a certain

variety de�ned by some family of polynomial identities is a classic problem in the theory of

non-associative algebras. There are many results related to algebraic classi�cation of small

dimensional algebras in varieties of Jordan, Lie, Leibniz, Zinbiel and many other algebras [16,

17, 18, 19, 25, 28, 37]. Another interesting direction in classi�cations of algebras is a geometric

classi�cation. There are many results related to geometric classi�cation of Jordan, Lie, Leibniz,

Zinbiel and many other algebras [3, 4, 5, 6, 8, 9, 11, 12, 29, 30, 31, 32, 33, 35, 36, 37, 38, 41]. In

the present paper, we give algebraic and geometric classi�cations of nilpotent algebras of a new

class of non-associative algebras introduced by Dzhumadildaev in [21].

Zinbiel algebras were introduced by Loday in [39]. They were studied in [15, 20, 22, 23, 35,

40, 44]. Under the Koszul duality, the operad of Zinbiel algebras is dual to the operad of Leibniz

algebras. Zinbiel algebras are related to torkara algebras [21] and tortkara triple systems [10].

An algebra A is called a Zinbiel algebra if it satis�es the identity

(xy)z = x(yz + zy).
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Every Zinbiel algebra with the commutator multiplication de�nes a torkara algebra. An anti-

commutative algebra A is called a tortkara algebra if it satis�es the identity

(ab)(cb) = J(a, b, c)b, where J(a, b, c) = (ab)c+ (bc)a+ (ca)b.

It is easy to see that every metabelian Lie algebra (i.e., (xy)(zt) = 0) is a torkara algebra and

every Dual Mock-Lie algebra (i.e., antiassociative and anticommutative) is a tortkara algebra.

Our method of classi�cation of nilpotent torkara algebras is based on calculation of central

extensions of smaller nilpotent algebras from the same variety. Central extensions play an impor-

tant role in quantum mechanics: one of the earlier encounters is by means of Wigner�s theorem

which states that symmetry of a quantum mechanical system determines an (anti-)unitary trans-

formation of a Hilbert space. Another area of physics where one encounters central extensions is

the quantum theory of conserved currents of a Lagrangian. These currents span an algebra which

is closely related to so called a�ne Kac�Moody algebras, which are the universal central exten-

sion of loop algebras. Central extensions are needed in physics, because the symmetry group of a

quantized system usually is a central extension of the classical symmetry group, and in the same

way, the corresponding symmetry Lie algebra of the quantum system is, in general, a central

extension of the classical symmetry algebra. Kac�Moody algebras have been conjectured to be

a symmetry groups of a uni�ed superstring theory. The centrally extended Lie algebras play a

dominant role in quantum �eld theory, particularly in conformal �eld theory, string theory and

in M -theory. In the theory of Lie groups, Lie algebras and their representations, a Lie algebra

extension is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise

in several ways. There is a trivial extension obtained by taking a direct sum of two Lie alge-

bras. Other types are split extension and central extension. Extensions may arise naturally, for

instance, when forming a Lie algebra from projective group representations. A central extension

and an extension by a derivation of a polynomial loop algebra over �nite-dimensional simple Lie

algebra give a Lie algebra which is isomorphic to a non-twisted a�ne Kac�Moody algebra [7,

Chapter 19]. Using the centrally extended loop algebra one may construct a current algebra in

two spacetime dimensions. The Virasoro algebra is the universal central extension of the Witt

algebra, the Heisenberg algebra is the central extension of a commutative Lie algebra [7, Chapter

18]. The algebraic study of central extensions of Lie and non-Lie algebras has a very rich history

[2, 26, 27, 34, 43, 42, 45]. In particular, Skjelbred and Sund used central extensions of Lie al-

gebras for a classi�cation of nilpotent Lie algebras [42]. Following that, there were described all

non-Lie central extensions of all 4-dimensional Malcev algebras [27], all non-associative central

extensions of 3-dimensional Jordan algebras [26], all anticommutative central extensions of 3-

dimensional anticommutative algebras [13], and all central extensions of 2-dimensional algebras

[14] by means of the method described by Skjelbred and Sund. We also note that the method of

central extensions is an important tool in the classi�cation of nilpotent algebras (see, e.g., [24]).

Using this method, there were described all 4-dimensional nilpotent associative algebras [18], all

5-dimensional nilpotent Jordan algebras [25], all 5-dimensional nilpotent restricted Lie agebras

[17], all 6-dimensional nilpotent Lie algebras [16, 19], all 6-dimensional nilpotent Malcev algebras

[28], and some others.
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1. The algebraic classi�cation of 5-dimensional nilpotent

tortkara algebras

1. Preliminaries

1. A method for classi�cation of nilpotent algebras

Throughout this paper, we use the notations and methods introduced in [26, 27, 14] and

adapted for the torkara case with some modi�cations. Below we give some of the most important

de�nitions.

Let (A, ·) be a tortkara algebra over an arbitrary base �eld k of characteristic not 2 and V a

vector space over the same base �eld k. Then the k-linear space Z2 (A,V) is de�ned as the set

of all skew-symmetric bilinear maps θ : A×A −→ V such that

θ(xy, zt) + θ(xt, zy) = θ(J(x, y, z), t) + θ(J(x, t, z), y).

Its elements are called cocycles. For a linear map f : A −→ V, we de�ne δf : A × A −→ V
by δf (x, y) = f(xy) so that δf ∈ Z2 (A,V). De�ne B2 (A,V) = {θ = δf : f ∈ Hom (A,V)}.
One can easily check that B2(A,V) is a linear subspace of Z2 (A,V) whose elements are

called coboundaries. We de�ne the second cohomology space H2 (A,V) as the quotient space

Z2 (A,V)
/
B2 (A,V).

Let Aut (A) be the automorphism group of the tortkara algebra A and let φ ∈ Aut (A).

For θ ∈ Z2 (A,V) de�ne φθ (x, y) = θ (φ (x) , φ (y)). Then φθ ∈ Z2 (A,V). So, Aut (A) acts on

Z2 (A,V). It is easy to verify that B2 (A,V) is invariant under the action of Aut (A) and so we

have that Aut (A) acts on H2 (A,V).

LetA be a tortkara algebra of dimensionm < n over an arbitrary base �eld k of characteristic

not 2, and V be a k-vector space of dimension n−m. For any θ ∈ Z2 (A,V), de�ne the bilinear

product � [−,−]Aθ
� on the linear space Aθ := A⊕ V by [x+ x′, y + y′]Aθ

= xy + θ (x, y) for all

x, y ∈ A, x′, y′ ∈ V. The algebra Aθ is a tortkara algebra which is called an (n−m)-dimensional

central extension of A by V. Indeed, clearly, Aθ is a tortkara algebra if and only if θ ∈ Z2(A,V).

We also call the set Ann(θ) = {x ∈ A : θ (x,A) = 0} the annihilator of θ. Recall that the

annihilator of an algebra A is de�ned as the ideal Ann (A) = {x ∈ A : xA = 0}, and observe

that Ann (Aθ) = Ann(θ) ∩Ann (A)⊕ V.

We now state the following key result:

Lemma 1..1 Let A be an n-dimensional tortkara algebra with dim(Ann(A)) = m 6= 0. Then,
there exists (up to an isomorphism) a unique (n − m)-dimensional tortkara algebra A′ and a
bilinear map θ ∈ Z2(A,V) with Ann(A)∩Ann(θ) = 0, where V is a vector space of dimension m
such that A ∼= A′θ and A/Ann(A) ∼= A′.

Proof. Let A′ be a linear complement of Ann(A) in A. De�ne a linear map P : A −→ A′ by

P (x+ v) = x for x ∈ A′ and v ∈ Ann(A) and de�ne a multiplication on A′ by [x, y]A′ = P (xy)

for x, y ∈ A′. Then, for x, y ∈ A,

P (xy) = P ((x− P (x) + P (x))(y − P (y)− P (y))) = P (P (x)P (y)) = [P (x), P (y)]A′

Since P is a homomorphism, P (A) = A′ is a tortkara algebra and A/Ann(A) ∼= A′, which gives

us the uniqueness. Now, de�ne the map θ : A′ × A′ −→ Ann(A) by θ(x, y) = xy − [x, y]A′ .

Thus, A′θ is A and therefore θ ∈ Z2(A,V) and Ann(A) ∩Ann(θ) = 0. The lemma is proved.
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However, in order to solve the isomorphism problem, we need to study the action of Aut (A)

on H2 (A,V). To do that, �x e1, . . . , es, a basis of V, and θ ∈ Z2 (A,V). Then, there is a unique

representation θ (x, y) =
s∑
i=1

θi (x, y) ei with θi ∈ Z2 (A,k). Moreover, Ann(θ) = Ann(θ1) ∩

Ann(θ2) ∩ · · · ∩Ann(θs). Furthermore, θ ∈ B2 (A,V) if and only if all θi ∈ B2 (A,k).

Given a tortkara algebra A, if A = I ⊕ kx is a direct sum of two ideals, then kx is called an

annihilator component of A.

De�nition 1 A central extension of an algebra A without annihilator component is called a
non-split central extension.

It is not di�cult to show (see [27, lemma 13]), that given a tortkara algebra Aθ, if use the

respresentation θ (x, y) =
s∑
i=1

θi (x, y) ei ∈ Z2 (A,V), and Ann(θ) ∩Ann (A) = 0, then Aθ has an

annihilator component if and only if [θ1] , [θ2] , . . . , [θs] are linearly dependent in H2 (A,k).

Let V be a �nite-dimensional vector space over k. The Grassmannian Gk (V) is a set of

all k-dimensional linear subspaces of V. Let Gs
(
H2 (A,k)

)
be the Grassmannian of subspaces

of dimension s in H2 (A,k). There is a natural action of Aut (A) on Gs
(
H2 (A,k)

)
. Let

φ ∈ Aut (A). For W = 〈[θ1] , [θ2] , ..., [θs]〉 ∈ Gs
(
H2 (A,k)

)
de�ne φW = 〈[φθ1] , [φθ2] , ..., [φθs]〉.

Then φW ∈ Gs
(
H2 (A,k)

)
. Denote the orbit ofW ∈ Gs

(
H2 (A,k)

)
under the action of Aut (A)

by Orb (W ). Since given

W1 = 〈[θ1] , [θ2] , ..., [θs]〉 ,W2 = 〈[ϑ1] , [ϑ2] , ..., [ϑs]〉 ∈ Gs
(
H2 (A,k) ,

)
we easily obtain that if W1 = W2, then

s
∩
i=1

Ann(θi) ∩ Ann (A) =
s
∩
i=1

Ann(ϑi) ∩ Ann (A) so that

we can introduce the set

Ts (A) =
{
W = 〈[θ1] , [θ2] , ..., [θs]〉 ∈ Gs

(
H2 (A,k)

)
:
s
∩
i=1

Ann(θi) ∩Ann (A) = 0
}
,

which is stable under the action of Aut (A).

Now, let V be a s-dimensional linear space. By E (A,V) we denote the set of all non-split

s-dimensional central extensions of A by V. Then,

E (A,V) =

{
Aθ : θ (x, y) =

s∑
i=1

θi (x, y) eiand 〈[θ1] , [θ2] , . . . , [θs]〉 ∈ Ts (A)

}
.

We now state the following result which can be proved as [27, lemma 17].

Lemma 1..2 Let Aθ,Aϑ ∈ E (A,V). Suppose that θ (x, y) =
s∑
i=1

θi (x, y) ei and ϑ (x, y) =

s∑
i=1

ϑi (x, y) ei. Then the tortkara algebras Aθ and Aϑ are isomorphic if and only if

Orb 〈[θ1] , [θ2] , ..., [θs]〉 = Orb 〈[ϑ1] , [ϑ2] , ..., [ϑs]〉 .

Consequently, there exists a one-to-one correspondence between the set of Aut (A)-orbits on

Ts (A) and the set of isomorphism classes of E (A,V). We therefore have the following procedure

that allows us, given the tortkara algebras A
′
of dimension n, to construct all non-split central

extensions of A
′
.

Procedure
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1. For a given tortkara algebra A
′
of dimension n, determine H2(A

′
,k) and Aut(A

′
).

2. Determine the set of Aut(A
′
)-orbits on Ts(A

′
).

3. For each orbit, construct the non-split tortkara algebra corresponding to its representative.

2. Notations

We now introduce some notations. Let A be a tortkara algebra with a basis e1, e2, . . . , en.

Then, by ∆ij we denote the tortkara bilinear form ∆ij : A ×A −→ k with ∆ij (el, em) = 0 if

{i, j} 6= {l,m} and ∆ij (ei, ej) = −∆ij (ej , ei) = 1. Then, the set {∆ij : 1 6 i < j 6 n} is a basis
for the linear space of bilinear forms on A. Then, every θ ∈ Z2 (A,V) can be uniquely written

as θ =
∑

16i<j6n
cij∆ij , where cij ∈ k. We use the following notations as well:

Tij � jth i-dimensional torkata algebra,

Ni � i-dimensional algebra with zero product,

(A)i,j � jth i-dimensional central extension of A.

3. Central extensions of nilpotent low dimensional tortkara algebras

There are no nontrivial 1- and 2-dimensional nilpotent tortkara algebras. There is only one

nontrivial 3-dimensional nilpotent tortkara algebra (it is the non-split central extention of N2,

see T3
01 below). Thanks to [13], we have a description of all anticommutative central extensions

of 3-dimensional anticommutative nilpotent (tortkara) algebras:

T3
01 : (N2)3,1 : e1e2 = e3,

T4
02 : (T3

01)4,1 : e1e2 = e3, e1e3 = e4,

T5
03 : (N3)5,1 : e1e2 = e4, e1e3 = e5,

T5
04 : (T3

01)5,1 : e1e2 = e3, e1e3 = e4, e2e3 = e5.

2. The algebraic classi�cation of 5-dimensional nilpotent tortkara al-

gebras

1. The algebraic classi�cation of 4-dimensional nilpotent tortkara algebras

A multiplication tables H2(A) Automorphisms

T4
01 e1e2 = e3 [∆13], [∆14], [∆23], [∆24], [∆34]


x y 0 0

z u 0 0

v h xu− zy g

l r 0 t



T4
02 e1e2 = e3, e1e3 = e4 [∆14], [∆23], [∆24]


x 0 0 0

y z 0 0

u v xz 0

h g xv x2z
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2. 1-dimensional central extensions of N4

Thanks to [41], we have all non-split 1-dimensional anticommutative central extensions of

N4 :

T5
05 : (N4)5,1 : e1e2 = e5, e3e4 = e5.

3. 1-dimenisonal central extensions of T4
01

Since


x y 0 0

z u 0 0

v h xu− zy g

l r 0 t


t

0 0 α1 α2

0 0 α3 α4

−α1 −α3 0 α5

−α2 −α4 −α5 0



x y 0 0

z u 0 0

v h xu− zy g

l r 0 t

 =


0 α∗ α∗1 α∗2
−α∗ 0 α∗3 α∗4
−α∗1 −α∗3 0 α∗5
−α∗2 −α∗4 −α∗5 0

 ,

where

α∗ = (α1x+ α3z − α5l)h+ (−α2y − α4u)l + (α2x+ α4z + α5v)r − v(α1y + α3u)

α∗1 = (α1x+ α3z − α5l)(ux− yz)
α∗2 = (α1x+ α3z − α5l)g + (α2x+ α4z + α5v)t

α∗3 = (α1y + α3u− α5r)(ux− yz)
α∗4 = (α1y + α3u− α5r)g + (α2y + α4u+ α5h)t

α∗5 = (ux− yz)α5t,

we obtain that the action of Aut
(
T4
01

)
on a subspace

〈α1[∆13] + α2[∆14] + α3[∆23] + α4[∆24] + α5[∆34]〉

is given by

〈α∗1[∆13] + α∗2[∆14] + α∗3[∆23] + α∗4[∆24] + α∗5[∆34]〉.

We provide the orbit of every possible case:

1. If α5 6= 0, then choosing g = 0, l = −α1x+α3z
α5

, v = −α2x+α4z
α5

, r = −α1y+α3u
α5

, h =

−α2y+α4u
α5

, we have a representative {(ux− yz)tα5[∆34]}, and the orbit is 〈[∆34]〉.

2. If α5 = 0, α1 = α3 = 0, then we can assume that α2 6= 0 and α4 6= 0, and, choosing

u = −α2y
α4

, we have a representative {(α2x+ α4z)t[∆14]}, and the orbit is 〈[∆14]〉.

3. If α5 = 0 and α1 6= 0 or α3 6= 0, we can assume that α1 6= 0 and α3 6= 0. Then

(a) if α2α3 = α1α4, then choosing g = −α4

α3
t and x = y+α3

α1
(u−z) we have a representative

{(α1x+ α3z)(ux− yz)([∆13] + [∆23])} and the orbit is 〈[∆13] + [∆23]〉.

(b) if α2α3 6= α1α4, then we can suppose that α4 6= 0. Choosing y =
√
− α2

4xt
α3(α2x+α4t)

,

z = −α1x
α3
, u = −α2y

α4
we have a representative {(α1y+ α3u)(ux− yz)([∆14] + [∆23])}

and the orbit is 〈[∆14] + [∆23]〉.

It is easy to verify that all the previous orbits are di�erent so that we arrive at

T1(T4
01) =

〈
[∆13] + [∆23]

〉
∪
〈

[∆14]
〉
∪
〈

[∆14] + [∆23]
〉
∪
〈

[∆34]
〉
.

� 263 �



Journal of Siberian Federal University. Mathematics & Physics 2009, 2(3), 258�270

Note that the orbit 〈[∆13] + [∆23]〉 gives a split central extension and the orbit 〈[∆14]〉 gives a
non-split central extension with 2-dimensional annihilator (it is a 2-dimensional central extension

of a 3-dimensional algebra). Now we have all non-split 1-dimensional central extensions with 1-

dimensional annihilator of T4
01 :

T5
06 : (T4

01)5,1 : e1e2 = e3, e1e4 = e5, e2e3 = e5,

T5
07 : (T4

01)5,2 : e1e2 = e3, e3e4 = e5.

4. 1-dimensional central extensions of T4
02

Since
0 α∗ α∗∗ α∗1
−α∗ 0 α∗2 α∗3
−α∗∗ −α∗2 0 0

−α∗1 −α∗3 0 0

 =


x 0 0 0

y z 0 0

u v xz 0

h g xv x2z


t

0 0 0 α1

0 0 α2 α3

0 −α2 0 0

−α1 −α3 0 0



x 0 0 0

y z 0 0

u v xz 0

h g xv x2z


with

α∗ = (−α2u− α3h)z + α3gy + α1gx+ α2yv,

α∗∗ = (α2z + α3v)yx+ α1v
2,

α∗1 = (α1x+ α3y)x2z,

α∗2 = (α2z + α3v)xz,

α∗3 = α3z
2x2,

we obtain that the action of Aut
(
T4
2

)
on a subspace 〈α1[∆14] + α2[∆23] + α3[∆24]〉 is given by

〈α∗1[∆14] + α∗2[∆23] + α∗3[∆24]〉.

We provide the orbit of every possible case:

1. If α5 6= 0, then choosing x = 1, z = 1√
α3
, y = −α1

α3
, v = − α2√

(α3)3
we have the orbit is〈

[∆24]
〉
.

2. If α5 = 0, then we have one from the following orbits
〈
[∆14]

〉
,
〈
[∆14] + [∆23]

〉
,
〈
[∆23]

〉
.

It is easy to verify that all the previous orbits are di�erent so that we arrive at

T1(T4
02) =

〈
[∆14]

〉
∪
〈

[∆14] + [∆23]
〉
∪
〈

[∆23]
〉
∪
〈

[∆24]
〉
.

We therefore have all non-split 1-dimensional central extensions with 1-dimensional annihi-

lator of T4
02:

T5
08 : (T4

02)5,1 : e1e2 = e3, e1e3 = e4, e1e4 = e5,

T5
09 : (T4

02)5,2 : e1e2 = e3, e1e3 = e4, e1e4 = e5, e2e3 = e5,

T5
10 : (T4

02)5,3 : e1e2 = e3, e1e3 = e4, e2e4 = e5.

5. The algebraic classi�cation of 5-dimesional nilpotent tortkara algebras

Theorem 1.1 Let A be a nontrivial 5-dimensional nilpotent tortkara algebra. Then, A is iso-
morphic to exactly one of the following algebras:
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T5
01 : e1e2 = e3.

T5
02 : e1e2 = e3, e1e3 = e4.

T5
03 : e1e2 = e4, e1e3 = e5.

T5
04 : e1e2 = e3, e1e3 = e4, e2e3 = e5.

T5
05 : e1e2 = e5, e3e4 = e5.

T5
06 : e1e2 = e3, e1e4 = e5, e2e3 = e5.

T5
07 : e1e2 = e3, e3e4 = e5.

T5
08 : e1e2 = e3, e1e3 = e4, e1e4 = e5.

T5
09 : e1e2 = e3, e1e3 = e4, e1e4 = e5, e2e3 = e5.

T5
10 : e1e2 = e3, e1e3 = e4, e2e4 = e5.

2. The geometric classi�cation of 5-dimesional nilpotent

tortkara algebras

1. Preliminaries.

1. De�nitions and notation

Given an n-dimensional vector space V, the set Hom(V ⊗ V,V) ∼= V∗ ⊗ V∗ ⊗ V is a vector

space of dimension n3. This space has a structure of the a�ne variety Cn3

. Indeed, �x a basis

e1, . . . , en of V. Then, any µ ∈ Hom(V⊗ V,V) is determined by n3 structure constants cki,j ∈ C

such that µ(ei⊗ ej) =
n∑
k=1

cki,jek. A subset of Hom(V⊗V,V) is Zariski-closed if it can be de�ned

by a set of polynomial equations in the variables cki,j (1 ≤ i, j, k ≤ n).
Let T be a set of polynomial identities. All algebra structures on V satisfying polynomial

identities from T form a Zariski-closed subset of the variety Hom(V ⊗ V,V). We denote this

subset by L(T ). The general linear group GL(V) acts on L(T ) by conjugations:

(g ∗ µ)(x⊗ y) = gµ(g−1x⊗ g−1y)

for x, y ∈ V, µ ∈ L(T ) ⊂ Hom(V ⊗ V,V) and g ∈ GL(V). Thus, L(T ) is decomposed into

GL(V)-orbits that correspond to isomorphism classes of algebras. Let O(µ) denote the orbit of

µ ∈ L(T ) under the action of GL(V) and O(µ) denote the Zariski closure of O(µ).

Let A and B be two n-dimensional algebras satisfying identities from T and µ, λ ∈ L(T )

represent A and B, respectively. We say that A degenerates to B and denote A→ B if λ ∈ O(µ).

Note that, in this case, we have O(λ) ⊂ O(µ). Hence, the de�nition of a degeneration does not

depend on the choice of µ and λ. If A 6∼= B, then the assertion A → B is called a proper

degeneration. We write A 6→ B if λ 6∈ O(µ).

Let A be represented by µ ∈ L(T ). Then A is rigid in L(T ) if O(µ) is an open subset of

L(T ). Recall that a subset of a variety is called irreducible if it cannot be represented as a union

of two non-trivial closed subsets. A maximal irreducible closed subset of a variety is called an

irreducible component. It is well known that any a�ne variety can be represented as a �nite

union of its irreducible components in a unique way. The algebra A is rigid in L(T ) if and only

if O(µ) is an irreducible component of L(T ).

Given spaces U and W , we write simply U > W instead of dimU > dimW .

2. A method for description of all degenerations of algebras

In the present work we use the methods from [12, 29, 30, 41] applied to Lie algebras. First of

all, if A→ B and A 6∼= B, then Der(A) < Der(B), where Der(A) is the Lie algebra of derivations
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of A. We will compute the dimensions of algebras of derivations and will check the assertion

A → B only for such A and B that Der(A) < Der(B). Secondly, if A → C and C → B then

A → B. If there is no C such that A → C and C → B are proper degenerations, then the

assertion A → B is called a primary degeneration. If Der(A) < Der(B) and there are no C

and D such that C → A, B → D, C 6→ D and one of the assertions C → A and B → D

is a proper degeneration, then the assertion A 6→ B is called a primary non-degeneration. It

su�ces to prove only primary degenerations and non-degenerations to describe degenerations in

the variety under consideration. It is easy to see that any algebra degenerates to the algebra

with zero multiplication. From now on, we use this fact without mentioning it.

To prove primary degenerations, we construct families of matrices parametrized by t. Namely,

let A and B be two algebras represented by the structures µ and λ from L(T ), respectively. Let

e1, . . . , en be a basis of V and cki,j (1 ≤ i, j, k ≤ n) be the structure constants of λ in this basis. If

there exist aji (t) ∈ C (1 ≤ i, j ≤ n, t ∈ C∗) such that Eti =
n∑
j=1

aji (t)ej (1 ≤ i ≤ n) form a basis of

V for any t ∈ C∗, and the structure constants of µ in the basis Et1, . . . , E
t
n are such polynomials

cki,j(t) ∈ C[t] that cki,j(0) = cki,j , then A → B. In this case, Et1, . . . , E
t
n is called a parametrized

basis for A→ B.

2. The geometric classi�cation of 5-dimensional nilpotent torkara al-

gebras

The main result of the present section is the following theorem.

Theorem 2.1 The variety of 5-dimensional nilpotent tortkara algebras has one irreducible com-
ponent de�ned by the rigid algebra T5

10. The graph of primary degenerations for 5-dimensional
nilpotent tortkara algebras has the following form:

T5
09 T5

08 T5
04

T5
06T5

07

T5
05

161718 15 14 13 10 9 0

T5
10 T5

02 T5
03 T5

01 N5

Proof. Note that the set {T5
0i}16i69 ∪ {N5} gives the variety of all 5-dimensional nilpotent

Malcev algebras. The descrition of all degenerations of 5-dimensional nilpotent Malcev algebras

was obtained in [36]. By calculation of the dimension of the algebra of derivations of T5
10, we

have the dimension of the orbit closure of T5
10.

The parametrized basis formed by

Et1 = te1 +
1

t2
e2, E

t
2 = te2 +

1

t
e3, E

t
3 = t2e3 + e4, E

t
4 = t3e4 +

1

t2
e5, E

t
5 = te5

gives the degeneration T5
10 → T5

09.

The parametrized basis formed by

Et1 = e1, E
t
2 = e3, E

t
3 = e4, E

t
4 = te2, E

t
5 = −te5
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gives the degeneration T5
10 → T5

07. Thus, the theorem is proved.
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Ìíîãîîáðàçèå íèëüïîòåíòíûõ òîðòêàðà àëãåáð

È. Ãîðøêîâ, È. Êàéãîðîäîâ, À.À. Êûòìàíîâ, M.A. Salim

Â ñòàòüå äàåòñÿ àëãåáðàè÷åñêàÿ è ãåîìåòðè÷åñêàÿ êëàññèôèêàöèè íèëüïîòåíòíûõ òîðòêàðà

àëãåáð ðàçìåðíîñòè 5.

Êëþ÷åâûå ñëîâà: òîðòêàðà àëãåáðà, àëãåáðàè÷åñêàÿ êëàññèôèêàöèÿ, öåíòðàëüíîå ðàñøèðåíèå, ãåî-

ìåòðè÷åñêàÿ êëàññèôèêàöèÿ, âûðîæäåíèå.
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