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Abstract — The algorithm for coefficients determination for 

stability polynomials of degree up to m = 35 is developed. 

The coefficients correspond to explicit Runge-Kutta methods 

of the first accuracy order. Dependence between  values of a 

polynomial at the points of extremum and both size and 

form of a stability domain is shown. Numerical results are 

given. 
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I.  INTRODUCTION 

Heterogeneous algorithms are applied to solving stiff 
problems in a number of situations. Such algorithms are 
designed using the fact that on the settling and transition 
regions the integration stepsize is limited according to the 
requirements of stability and accuracy, respectively. 
Efficiency growth can be achieved by applying an explicit 
scheme over the transition region and a L-stable scheme 
over the settling region. Switch between methods is 
performed using an inequality for stability control. The 
problem is that the size of stability domains of the known 
methods is too small. Some monographs and papers 
present explicit methods with extended stability domains 
[1, 2]. The way how to obtain stability polynomials 
providing the maximal length of a stability domain is 
considered in [3]. In [2] there is proposed the algorithm for 
obtainment of polynomials coefficients that allows to 
design explicit methods with predefined form and size of a 
stability domain. Furthermore, stability polynomials 
coefficients of degree up to m=13 are found there. Here is 
developed the algorithm for obtainment of the coefficients 
of stability polynomials  of degree up to m=27. The 
coefficients correspond to the Runge-Kutta methods of the 
first accuracy order. It is shown that the form, size, and 
structure of a stability domain depend on position  of the 
roots of stability polynomial on the complex plane. 

 

II. EXPLICIT METHODS OF THE RUNGE-KUTTA TYPE 

To solve a stiff problem 

( )y f t y  , 0 0( )yt y , 0 kt t t  , 

where y and f are smooth real N-dimensional  
vector-functions, t is an independent variable, in [2] 
explicit methods 
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are considered, where ki, 1  i  m, are stages of the 

method, h is the integration stepsize, pmi, ij, and ij are 
numerical coefficients defining accuracy and stability 
properties of this numerical scheme. For simplicity, let us 
consider the following Cauchy problem for the 
autonomous system of ODEs  

( )y f y , 0 0( )yt y , 0 kt t t  .  (1) 

We apply methods of the form 
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to solve (1), where ki = hf(yn,i–1), 1  i  m, yn,0 = yn. All the 
findings those are to obtained below can be used for 
non-autonomous problems, if 
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Stability of one-step methods is widely studied on the 

Dahlquist equation y =y, y(0) = y0, t  0 with complex λ, 
Re(λ) < 0 (see [4]). Applying the second formula from (2) 

to solve y =y, we get 
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where z = h. Hence, the stability function of a m-stage 
explicit Runge-Kutta method is polynomial Qm(z) of 
degree m. Order conditions for methods of form (2) are 
given in [2] and, particularly, a method has the first 
accuracy order, if pm1 + … + pmm = cm1 = 1. Further, 
consider the problem of finding such coefficients that a 
stability domain had the predefined form and size. 

 

III. STABILITY POLYNOMIALS OVER INTERVAL [M, 0] 

Let k and m be given integers, k≤m. Consider 
polynomials  
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where ci, 1 ≤ i ≤ k, are defined, and ci, k + 1 ≤ i ≤ m, are 
arbitrary. Usually ci, 1 ≤ i ≤ k, are determined according to 
the requirements of accuracy. Therefore, let us assume 
that ci = 1/i!, 1 ≤ i ≤ k.  

Denote points of extremum of (3) by x1, … , xm–1, at 
that x1 > x2 > … > xm–1. Define unknown coefficients ci,  
k + 1 ≤ i ≤ m, so that polynomial (3) has predefined values 
in extreme points xi, k ≤ i ≤ m−1, i.e. Qm,k(xi) = Fi,  

k  i  m–1, where F(x) is some given function, Fi = F(xi). 
For this purpose, consider the system of algebraic 
equations 
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in variables xi, k ≤ i ≤ m − 1, and cj, k + 1 ≤ j ≤ m. 

Rewrite (4) in the form, suitable for calculations on 
the computer. Denote through  y, z, g, and r vectors with 
components 
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through E1, E2, E3 − diagonal matrices with elements 
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and through A – a matrix with elements aij = yi
k+j

,  
1 ≤ i, j ≤ m–k. Using these notations problem (4) can be 
written as follows  

2 10 0Az g EAEz r     .  (5) 

System (5) is ill-conditioned that leads to some 
difficulties while solving it with the fixed point iteration 
method. For convergence of the Newton's method is 
necessary to somehow obtain good initial conditions (in 
this case is a separate difficult problem). If we assume in 
(4) that Fi = (–1)

i
, k ≤ i ≤ m–1, we find the polynomial 

with the maximal length of stability interval. In this case 
the problem of computation of initial value y

0
 is solved by 

using values of the Chebyshev polynomial at extreme 
points over interval [–2m

2
, 0], where m is degree of 

polynomial (3). That values can be computed using the 
formula 

2[cos( / ) 1]iy m i m  , 1 1i m   . (6) 

Substituting (6) in the system (5), get coefficients of 

the Chebyshev polynomial, for that |Qm1(x)|  1 on 

x[–2m
2
, 0]. For any k (6) can be taken as initial values 

and, as numerical results show, there is good convergence 

rate in this case. If Fi  (–1)
i
, k ≤ i ≤ m−1, then the choice 

of initial values is a separate difficult problem.  

Let us describe a way to solve (5) that does not require 
good initial values. Apply the relaxations for the 
numerical solution of (5). The main idea of the relaxations 
is that for a steady-state problem we run unsteady-state 
process which solution settles to the solution of the initial 
problem. Consider the Cauchy problem  

1
3 2 1 0( ) (0)y E EAEA g r y y    .  (7) 

Apparently, after the determination of stationary point of 
(7) the stability polynomial coefficients can be computed 
from the system (5). Notice, that due to using matrix E3 all 
the eigenvalues of the Jacobi matrix of (7) have negative 
real components, i.e. problem (7) is stable. From the 
numerical results follows that (7) is a stiff problem. 
Applying methods that require evaluation of the Jacobi 
matrix may cause difficulties while solving (7). Therefore, 
let us apply the second accuracy order method using 
numerical computation and freezing (i.e. using same 
matrix over several steps) the Jacobi matrix [5] to solve 

(7). When this method is applied to the problem y = f(y), 
y(0) = y0  it takes the form  
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Here, a = 1 − 0.5√2, k1 and k2 are stages of the method, E 
is the identity matrix, hn is the integration stepsize, An is a 
matrix representable in the form An = fn′ + hnRn + O(hn

2
), 

fn′ = ∂f(yn)/∂y is the Jacobi matrix of (7), Rn is the 
integration stepsize independent matrix. Since matrix Rn is 



arbitrary, then problems of numerical integration and 
freezing the Jacobi matrix can be concerned 
simultaneously. To control accuracy of (8) the inequality  

1
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can be applied, where ε is the required accuracy of 
calculations, ||∙|| is some norm in R

N
, and integer variable 

jn is chosen minimum for which inequality (9) is satisfied. 
The numerical differentiation step sj, 1 ≤ j ≤ N, is chosen 
using the formula sj = max{10

−14
, 10

−7
|yj|}. In this case j-th 

column an
j
 of matrix An is computed using the formula  
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i.e. it is required to perform N computations of the right 
part of problem (7) to define An. An attempt to use 
previous matrix Dn is performed after each successful 
integration step. To preserve stability properties of the 
numerical scheme, on freezing matrix Dn the integration 
stepsize is kept permanent. Recomputation of the matrix is 
carried out in the following cases: 1) accuracy of 
calculations is degenerated, 2) quantity of steps with 
frozen matrix has reached maximal number Ih, 3) the 
predicted step is greater than the previous successful one in 
Qh times. 

IV. STABILITY POLYNOMIALS OVER INTERVAL [‒1, 1] 

It is not difficult to see that the coefficients of a 
stability polynomial approach zero as m increases. 
Coefficients ci, k+1 ≤ i ≤ m, for polynomials of degree up 
to m=13 are presented in [2]. Now consider the algorithm 
for the obtainment of polynomials with predefined 
properties over the interval [−1, 1]. In this case 
coefficients ci grow not that much, and it is possible to 

derive polynomials for m>13. Denote through |m| the 
length of stability interval of m-stage explicit formula of 

the Runge-Kutta type, i.e. the inequality |Qm,k(x)|  1 over 

interval [m, 0] is satisfied. Then, substituting x = 1 − 2z/m 

we can map [m, 0] into [−1, 1] and obtain the polynomial 
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Coefficients di, 0 ≤ i ≤ m of polynomial (10) and 
coefficients ci, 0 ≤ i ≤ m, of (3) satisfy the relation 

,c UVd    (11) 

where d = (d0, … , dm)
T
, c = (c0, … , cm)

T
, U is a diagonal 

matrix with elements u
ii 

= (–2/m)
i–1

, 1 ≤ i ≤ m+1. 
Elements v

ij
  of V are defined by 

1 1jv  , 1 1j m   ; 
, 1 1, 1ij i j i jv v v    , 

2 1i j m    ; 0ijv  , i j . 

It is easy to see that V represents the Pascal's triangle 
which elements are easily computed using a recurrent 
formula. Therefore, after deriving the polynomial (10) over 
interval [–1, 1], using (11) it is easy to compute 
coefficients of polynomial (3). 

Now let us construct polynomial (10). We denote the 
extreme points of (10) through z1, … , zm–1, at that  
z1 > z2 > … > zm–1. We determine coefficients di, 0 ≤ i ≤ m, 
under condition that polynomial (10) has predefined 
values in extreme points zi, 1 ≤ i ≤ m − 1, i.e. 

( ) 1 1m i iQ z F i m     , 

where F(z) is some given function, Fi = F(zi). For that, 
consider the following system of algebraic equations 
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here the normality conditions Qm(−1) = (−1)
m
 and 

Qm(1) = 1 are satisfied.  

Rewrite (12) in the form, suitable for calculations on 
the computer. For this purpose, denote through y, w, g, 
and r vectors with components 

j jy z , 0jr  , 1 1j m   ; 1i iw d , 1 1i m   , 

i ig F , 1 1i m   ; 1ig  , i m ; ( 1)mig   , 

1i m  ; 

through E1 and E2 matrices of dimension (m + 1)(m + 1) 

and (m – 1)(m + 1), respectively, with elements of the 
form 

1 1jje j  , 1 1j m   ; 2 1/
ii

ie y , 1 1i m   , 

and through A – a matrix of dimension (m + 1)(m + 1) 
with elements 

1ij j
ia y  , 1 1i m   , 1 1j m   ; 

, 1m ja  , 
1, 1( 1)m j ja    , 1 1j m   . 

Now problem (12) can be written as follows  

0Aw g  , 2 1 0EAEw r  .  (13) 

For the numerical solution of (13) we use the 
relaxations [2]. After the determination of polynomial 
(10) coefficients, compute the coefficients of polynomial 

(3) using relation (11). Find value m under assumption 
that the polynomial to be obtained corresponds to the first 
order method, i.e. c1 = 1. Having written the second 
relation and having made necessary transformations, we 
get 
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V. FORM AND SIZE OF STABILITY DOMAINS 

Let us describe how the choice of values Fi  affects the 
size and form of the stability domain. If we let Fi = (–1)

i
, 

k ≤ i ≤ m–1, then the stability interval length is known and 

computed using the formula |m| = 2m
2
. In this case for 

given m we get the maximal length of a stability domain 
along the real axis. Level curves |Qm,k(x)| = 1, 
|Qm,k(x)| = 0.8, |Qm,k(x)| = 0.6, |Qm,k(x)| = 0.4, and |Qm,k(x)| = 
0.2 in complex plane {hλ} for the stability domain of the  
four-stage method on m = 4,  k = 1, F = {–1, 1, –1} is 
shown in fig. 1. The stability interval length of the method 

equals |m| = 32. In case if the stability interval length is 
maximal, the stability domain is almost multiconnected, so 
rounding errors may lead to stepping out of the stability 
domain. 

To solve this problem it is necessary to stretch the 
stability domain along the imaginary axis in tangency 
points of parts of the stability domain. For this purpose, we 

can let Fi = (–1)
i, 1 ≤ i ≤ m – 1, 0 <  < 1. Numerical 

results show that if  = 0.9, then the length of stability 
interval decreases by 5–8% comparing to maximal 
possible length equal to 2m

2
. At that, the stability domain 

stretches along imaginary axis at the tangency points. This 
provides better stability properties of method to rounding 
errors on significant reducement of the stability interval 

length. If we assume  = 0.95, then the length of stability 
interval reduces by 3–4%. The stability domain of the  

five-stage method on  = 0.9 is shown in fig. 2. The length 

of stability interval of the method equals |m| = 30.00. 

As  decreases from 1 to 0, roots of polynomial (3) get 
closer to each other on the real axis. Therefore, the length 
of stability interval regularly reduces. The ellipsises, those 

are well-defined on  = 1 get closer not providing 
sufficiently significant stretch of the stability domain 
along the imaginary axis. Therefore, depending on the 

problem to be solved it is reasonable to choose value  
from 0.8 to 0.95. 

On solving problems, which Jacobi matrices have 
eigenvalues with imaginary components and which 
solutions have oscillating behavior, the extension of a 
stability interval often is not necessary. In this case the 
integration stepsize is rather small due to the accuracy 
requirements and thus it is more reasonable to extend a 
stability domain along the imaginary axis. If the Jacobi 
matrix have pure imaginary eigenvalues it is necessary to 
have the condition |Qm,k(x)| = 1 satisfied over some region 
on the imaginary axis. This requirement is satisfied as k 
increases. 

For the first order methods, i.e. for k = 1, it is possible 
to make the requirement satisfied choosing appropriate 
values of function F. For instance, on m = 4, k = 1,  
F = {0.75, 0.80, 0.75} we obtain a polynomial, satisfying 
this requirement (see fig. 3). Since m is even and all the 
values Fi are positive, the graph of the polynomial does 
not cross the real axis, at that, polynomial has two pairs of 
complex conjugate roots. Therefore, the stability domain 
stretches along the imaginary axis and some region of the 

imaginary axis belongs to the stability domain. At that, 
length of the stability domain is not big along the real axis 

and equals |m| = 2.89. 

On reducing values Fi the length of a stability domain 
along the real axis gets greater. On the further reducement 

of values Fi the length of stability interval |m| also grows 
but the region on the imaginary axis belonging to the 
stability domain becomes less. Therefore, on developing 
the first order methods aimed at solving oscillating 
problems, it is reasonable to choose stability polynomials 
those have a couple of complex conjugate roots in a 
complex plane {hλ} nearby the origin of coordinates. At 
that, values Fi that correspond to these roots are need to be 
chosen close to 1, so that the stability domain has the 
maximal region of the imaginary axis in it. 

 

 
Figure 1.  Stability domain on parameters m=4, k=1, F={–1, 1, –1}. 

 
Figure 2.  Stability domain on parameters m=4, k=1,  

F={–0.9, 0.9, –0.9}. 

 

Figure 3.  Stability domain on parameters m=4, k=1,  

F={0.75, 0.80, 0.75}. 



VI. NUMERICAL RESULTS 

From the numerical results it follows that coefficient 
сm of polynomial (3) reduces as m grows and, in 
particular, on m = 13 and k = 1 value сm is of the order of 
10

–26
. Due to rounding errors it is difficult to solve 

problem (7) for m > 13. Numerical results of solving (11) 
show that coefficients di, 0 ≤ i ≤ m of polynomial (8) grow 
in magnitude with growth of m. In particular, on m = 13 

value max0im|di| is of the order of 10
5
, and on m = 25 of 

the order of 10
9
, i.e. di grow slower. Transition from 

coefficients of polynomial (8) to coefficients of (3) using 
(9) is performed after the solution of (11), that allows to 
compute the coefficients of stability polynomials of 
degree up to m = 27. 

It is difficult to solve problem (11) with double 

precision for m > 27 due to the appearing rounding errors. 

To compute the coefficients of a stability polynomial for 

higher degrees m the algorithm using tools of the  

Quade-Double precision library (described in [6]) was 

developed. 

The QD precision library allows performing 

calculations with higher accuracy. While the standard data 

type 'double', allowing to represent numbers with double 

precision, is confined to 53 bits of the binary mantissa and 

provides precision about 16 decimal numerals, numbers of 

the data type 'dd_real' from the library QD has the 106-bit 

mantissa that provides precision about 32 decimal 

numerals. In fact, the number of the type dd_real is the 

software-implemented sum of two numbers of the type 

'double'. At that, the mantissa of the sum elongates in two 

times, but the range of values, presentable in new data 

type does not change and the possible values vary from 

about 10
‒308

 to 10
308

, as for the standard 'double'. Despite 

the confinement, accuracy of the representation of 

numbers in this diapason increases. 
On the implementation of the algorithm for 

computation of the coefficients of (8) using the data type 
'dd_real' the main input parameters of the algorithm − 
accuracy of calculations ε and differentiation stepsize sj did 
not change. The Chebyshev polynomial values at the 
extreme points were chosen for initial conditions. The 
improved precision of the numbers representation allowed 
to compute polynomial coefficients for degree m > 27. 

VII. CONCLUSION 

Using the algorithm for obtainment of polynomials 
over interval [−1, 1] with the predefined properties there 
were computed  coefficients of stability polynomials of 
degree up to m = 35. These coefficients correspond to the 
first order methods. It is shown that choice of the values 
Fi affects the form and size of a stability domain. The 
proposed algorithm for design of stability domains 
increases efficiency of explicit methods. Furthermore, it 
allows to develop algorithms of alternating order and step 
for solving problems of moderate stiffness. If the solution 
behavior of a problem which is to be solved is known, 
then it is possible to design an integration algorithm with 
stability domain suitable for the given class of problems. 
From our point of view, one of the main future 
applications of our results is using the proposed algorithm 
for design of numerical methods for solution of ODEs 
systems. These methods can be included in libraries for 
software aimed at computer simulation. 
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