
 

NON-PARAMETRIC APPROACH FOR 
PRELIMINARY PROCESSING OF EARTH 
REMOTE SENSING DATA 

Maksim A Denisov1 , Ekaterina A Chzhan1 and Anna A Korneeva1 
1SibFU Institute of Space and Information Technologies, Siberian Federal University, 660074 

Krasnoyarsk, Russian Federation 

Abstract. Researches described in the paper are aimed at studying the 
methods of data preprocessing from a sample of observations of a system 
characterized by input-output values of variables. We consider the data 
containing omissions and outliers. Algorithms for leveling outliers in a 
sample of observations, as well as algorithms for filling data gaps are 
presented. In addition, it is implemented a data repair algorithm that is able 
to recover lost values (outliers) after their exclusion. Our studies are useful 
in geographic information systems or in the analysis of information 
received from satellites during remote sensing of the earth. 

1 Introduction  

The sample of the input-output observations of the system (object) under study plays a 
valuable role in solving the problem of identification. The data in the tables with the values 
of observations of the object can be both quantitative and qualitative. Qualitative data can 
be, for example, geographical name, species composition of vegetation, soil characteristics, 
etc. Paper [1] describes how to work with such type of data obtained from satellite sensors. 
Author in paper [2] explores the potential of using geographical information systems (GIS) 
and paper [3] considers the applied side of working with quality data in such systems. In 
this article, the sample is presented in the form of numbers – quantitative data type. 

 Most often, in practical problems, the data may contain defects of various kinds: 
outliers or omissions. 

Omissions arise, for example, during the process of shooting or transmitting data from 
satellites in cases when the transfer process was interrupted or simply due to some technical 
malfunction of the shooting device. All of this may interfere with the further processing of 
the image. Algorithms for filling such gaps using nuclear functions are developed under the 
condition of parametric identification [4], which differs from the approach proposed in this 
article.  

The occurrence of outliers in a sample of observations may be due to an inaccurate 
mathematical model, malfunction or improper calibration of instruments, mistaken 
readings, gross recording, and calculation and execution faults. The impact of outliers can 
be leveled using the robust identification algorithms described in books [5, 6] and papers 
[7, 8] or using data censoring methods, one of which is described in [9]. In particular, in 
[10] it is described outliers detection in the field of hyperspectral imagery which is 
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connected with the task of locating pixels with spectral signatures that deviate significantly 
from the local background. As a result, such significantly deviate values in data affects the 
final accuracy of the object of study approximation. 

The paper discusses two methods of data preprocessing, where the first one is a method 
of censoring a sample of observations to remove outliers, and the second one is restoring 
omissions using a non-parametric identification algorithm. Previously, the analysis of these 
algorithms cumulatively was not considered, which underlines the relevance of this work. 
In addition, after removing the outliers, it was decided to review and implement the data 
repair algorithm, which additionally increase the accuracy of object modeling. 

2 The problem statement  

An object of a discrete-continuous type is examined, whose scheme in its general form is 
shown in the figure below: 

 
Fig. 1. Discrete-continuous process flowchart 

The notation of the figure 1: А is unknown object functional; y(t)Ω(y)R1 is an output 
process variable; u(t)=(u1(t), u2(t),…,um(t))Ω(u)Rm is a vector of input signal, where m is 
the number of input signals; (t) is the vector random noise; t is the continuous time; Hu, Hy 
are communication channels; hu(t), hy(t) are stochastic noise measurements; {uji, yi, 
i=1,…,s, j=1,…m} is a training sample, where s is sample size. 

Most often, priori information about the object of study is not sufficient to build a 
model with an accuracy of the vector of parameters (in other words it is difficult or 
impossible to built a parametric model), therefore, a non-parametric approach is used. In 
this paper, the Nadaraya-Watson non-parametric estimation is used for conducting 
computational experiments. It is described by the following equation: 
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where cs – bandwidth parameter, and [( ) ]j ji su u c   is a kernel function. 
Due to the fact that we do not have a sample of observations with outliers and 

omissions, it is necessary to generate it by yourself as part of a computational experiment. 
Omissions are generated as follows: t=3t, where t is the time step. Let us suppose, 

there is a sample with the volume s = 300. In order to obtain a sample with omissions 
according to the method described above, it is supposed to leave every third value in the 
data table. Thus, for a sample containing, for instance, s = 300 objects, omissions equal 200 
values but other 100 values form remaining sample of observations. 

Below, in Table 1, the initial sample is presented in general form (a “clean” sample 
without outliers or omissions); Table 2 contains a sample with omissions generated 
according to the rule described above. 

 

 

      Table 1. Initial sample                                             Table 2. Sample with omissions 

 
 
 
 
 
 
 
 
 

Outliers are generated for the remaining sample values (y1, y4, ..., ys from Table 2). The 
value number that will be an outlier is a pseudo-random. After the number has been 
selected, the value in the sample is changed by the following formula: 

[1; ]i iy y k c i s    , (2) 

where k = 0.99 is noise coefficient and с is normally distributed random value in the 
interval [-1;1]. 

3 Algorithm for filling omissions in data 

Filling the missing values in the observation matrix is performed using nonparametric 
estimation (1). The application restoration algorithm of this type for objects of different 
mathematical description is considered in [11]. 

At the first stage, non-parametric identification of the object of study is performed using 
(1) from a sample of observations, in which omissions were removed in advance (cells with 
gaps from Table 2), that is a sample: {uji, yi, i=1,…,s2; j=1,..,m}, where s2<s is sample size 
after removing all omissions. Next, the gaps in the observation matrix are filled using the 
estimate (1) obtained in the previous step. In those cases, where observations of the output 
of the object y are omitted, the known values of the input of the object u are substituted into 
the estimate. Thus, the values of the omissions are restored from the available input data 
about the object of study. The formula for calculating missing values is presented below: 
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where u – the value of the input variables for which the omissions of the object's output is 
restored. As a result, the nonparametric estimate (1) is calculated anew for the elements of 
the reduced matrix. 

4 Data censoring algorithm 

As a method for eliminating outliers from a sample of observations, a data censoring 
algorithm will be used. 

In the first stage using a sample of observations without gaps {uji, yi, i=1,…,s2; j=1,..,m} 
a non-parametric model of the form (1) is constructed. After that, the following condition is 
checked for all sample values:  

ˆi iy y    ,                                                             (4) 
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u21 u22 … u2n y2 
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u41 u42 … u4n y4 
u51 u52 … u5n y5 
… … … … … 
us1 us2 … usn ys 

u2 … un y 
u11 u12 … u1n y1 

u21 u22 … u2n – 
u31 u32 … u3n – 
u41 u42 … u4n y4 
u51 u52 … u5n – 
… … … … … 
us1 us2 … usn ys 
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where yi is output values of the object, ˆiy  is output values of the model (1),  is 
customizable parameter,  is parameter, whose value is defined as: 
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   .                                                           (5) 

 If a sample point satisfies condition (4), then it is marked as an outlier and is removed 
from the sample of observations. As a result, the new sample is of the form: {uji, yi, 
i=1,…,s3; j=1,..,m}, where s3 < s2 – volume of censored sample. 

After applying the operations described above, the non-parametric non-outliers model is 
reconstructed from s3-volumed sample of observations, the mathematical description of 
which is presented below: 
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Note that the number of outliers found depends on the parameter  set by the user. The 
result of the most accurate detection of an outlier value will depend on how this parameter 
has been configured. 

5 Data repair 

Outliers exclusion from a sample of observations increases the final accuracy of the 
object approximation, but some of the data after censoring is lost. It is known, as a sample 
size decreases, the accuracy of modeling declines. In this regard, it was decided to repair 
the data. The term "data repair" refers to the identification and subsequent replacement of 
rough measurements (outliers) with values of the robust model [12]. 

The description of repair algorithm is as follows: the values that were labeled using the 
data censoring algorithm as outliers will be replaced with values of the non-parametric 
model (1). 

6 Computational experiment 

Let us assume that the mathematical description of the object under investigation is as 
follows: 

2 2
1 20.25 0.25y u u   ,                                                      (7) 

where ξ is noise imposed on the output of an object that is generated as: 

y c k    ,                                                                (8) 

where с is normally distributed random value in the interval [-1;1] and k is noise 
coefficient. 

The model will be calculated using the non-parametric estimate which is represented by 
the following mathematical expression: 

2 2

1 11 1

ˆ( )
s s

j ji j ji
i

i ij js s

u u u u
y u y

c c  

    
     

   
   .                               (9) 

The kernel [( ) ]j ji su u c   used in the estimate (9) has the form of a parabolic bell-
shaped: 
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where 1( )j j i sz u u c  . 
The bandwidth cs is configuring using cross-validation based on the minimum of the 

quadratic criterion: 
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It is accepted a relative approximation error in the paper, which evaluates the accuracy 
of object modeling: 
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At the first stage of the computational experiment, we generate a sample consists of  
s = 300 observations {uji, yi, i=1,…,s; j=1,2} using (7) with noise coefficient equals 5%. 
Further, create the gaps and outliers using the methods described above. 

At the first stage of the computational experiment, we remove the observations 
containing omissions in the data and leave the outliers. Thus, we obtain a new sample of 
observations with a volume of s2 = 100, after that we construct a non-parametric model (9). 
The accuracy of the modelling calculates using (12). 

Next, filling the omissions using a mathematical expression (3). Combine them with the 
rest of the sample and get the original data volume s = 300. After that, we construct a non-
parametric model (9), estimate the accuracy of which by (12). 

In the next experiment, it is proposed to censor the data according to the method 
described earlier with a sample of volume s2. The model (6) is constructed from a sample of 
volume s3 (obtained after censoring), the accuracy is estimated using (12). The penultimate 
computational involves constructing a model (9) using a censored sample with filled gaps. 

Finally, at the last stage of the computational experiment, for a censored sample with 
filled gaps, we apply the procedure of data repairing according to the algorithm described 
earlier. Thus, after conducting the entire series of experiments, the following results were 
obtained. 

 
Fig. 2. Surface object (6) graph with omissions removed, model (9) and censored model (5) 
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Figure 2 shows the results of the computational experiment, when the omissions from 
the data were removed, after which, the data were censored of outliers. The graph shows 
that the censored model approximates the object more accurately than the model with 
outliers.  

Table 3. The values of the relative error of approximation for all computational experiments 

W1 W2  W3 W4 W5 

58.5% 35,2% 28,2% 16,6% 16,9% 

In table 3, the following notation: 
W1 – relative approximation error for a sample with outliers and removed omissions; 
W2 – relative approximation error for a sample with outliers and filled omissions; 
W3 – relative approximation error for a censored sample with removed omissions; 
W4 – relative approximation error for a censored sample filled omissions; 
W5 – relative approximation error for repaired and censored sample with filled 

omissions. 
Based on the results presented in the table above, it can be seen that when we fill 

omissions, as well as censor data, the accuracy of approximation increases by 
approximately one and a half to two times, which confirms the efficiency of the algorithms 
described in the work. In addition, the data repair algorithm after censoring also somewhat 
increases the accuracy of the final approximation of the object with the model. 

7 Conclusions 

The effectiveness of the algorithms described in the work confirmed an increase in the 
accuracy of approximation in the process of identifying the object of study. The 
computational experiment showed that sampling censoring gives more accurate simulation 
results than filling omissions in the data, however, if both of these methods are used 
together, then the final approximation results show the highest accuracy. 
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