Chemical Papers

A Spectrophotometric and DFT study of the behavior of 6-bromoquercetin in aqueous solution

--Manuscript Draft--

Manuscript Number:	
Full Title:	A Spectrophotometric and DFT study of the behavior of 6-bromoquercetin in aqueous solution
Article Type:	Original Paper
Section/Category:	Analytical Chemistry and Spectroscopy
Funding Information:	
Abstract:	Acid-base activity, keto-enol tautomerism and complexing properties of 6beomoquercetin are investigated in water media at different conditions. The constants of dissociation (pKa) have been determined in pH region at various ionic strength. The analysis of protonation process is conducted in strongly acidic solutions of HCl . The complexation were studied with trivalent lanthanides. The stability constant of monocomplex species ML (M(III) =Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm, Yb, Lu) have been obtained. For interpretation and verification of received data the DFT calculations were implemented.
Corresponding Author:	Maxim A. Lutoshkin, Ph.D. Institute of chemistry and Chemical Technology SB RAS Krasnoyarsk, RUSSIAN FEDERATION
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	Institute of chemistry and Chemical Technology SB RAS
Corresponding Author's Secondary Institution:	
First Author:	Maxim A. Lutoshkin, Ph.D.
First Author Secondary Information:	
Order of Authors:	Maxim A. Lutoshkin, Ph.D.
	Vladimir A. Levdanskiy, Dr.Sci.
	Sergey V. Baryshnikov, PhD
Order of Authors Secondary Information:	
Author Comments:	-
Suggested Reviewers:	Jing Zou zoujing@hqu.edu.cn published similar research
	D. V. Snigur, PhD Mechnikov Odessa National University, Odessa, Ukraine denis270892@yandex.ru published similar studies
	Marta Arczewska Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20950 Lublin, Poland marta.arczewska@up.lublin.pl Published similar research

A Spectrophotometric and DFT study of the behavior of 6-bromoquercetin in aqueous solution

4 Maxim A. Lutoshkin ${ }^{1,2^{*}}$, Vladimir A. Levdanskiy ${ }^{2}$, Sergey V. Baryshnikov ${ }^{\mathbf{2}}$ and Boris N. Kuznetsov ${ }^{2,3}$
${ }^{1}$ Université de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5256, IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon, Villeurbanne, France
${ }^{2}$ Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center, "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russian Federation
${ }^{3}$ Institute of Non-Ferrous Metals and Materials Science, Siberian Federal University, Krasnoyarsk, Russian Federation

15
16 *Corresponding author, e-mail: maximsfu@yahoo.com
17

18

19

20

21

Received [Dates will be filled in by the Editorial office]

24 Acid-base activity, keto-enol tautomerism and complexing properties of 65 beomoquercetin are investigated in water media at different conditions. The constants of 6 dissociation (pKa) have been determined in pH region at various ionic strength. The analysis 7 of protonation process is conducted in strongly acidic solutions of HCl . The complexation were 28 studied with trivalent lanthanides. The stability constant of monocomplex species ML (M(III) $29=\mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}, \mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}, \mathrm{Er}, \mathrm{Tm}, \mathrm{Yb}, \mathrm{Lu})$ have been obtained. For interpretation and verification of received data the DFT calculations were implemented.

Keywords: DFT, Flavonoids, Lanthanide, Spectrophotometric.

Introduction

Being secondary metabolites, flavonoids exist ubiquitous in the plant world (Panche et al. 2016). Quercetin or $5,7,3^{\prime}, 4^{\prime}$-flavon-3-ol is the most known and studied ligand from this group of chemicals. The various qualities, such as anticancer (Le Marchand 2002), antibacterial 0 (Cushnie and Lamb, 2005) and antidiabetic (Vinayagam and Xu 2015) activities demonstrate a 1 multifaceted nature of quercetin. The numerous derivatives of quercetin are also show notable 2 biochemical characteristics (Kessler et al 2003; Sotnikova et al 2013; Manach et al 1998). The complexes of flavonoids with all of groups of metals (Kasprzak et al. 2015; Samsonowicz and Regulska 2017) are described in literature primarily for solid-state conditions.

The flavonoids exhibit medical and biological properties in water. Nevertheless, the low solubility make them problematic objects for study of standard physical-chemical methods. The solubility of quercetin in $\mathrm{H}_{2} \mathrm{O}$ at room temperature is about $10^{-4} \mathrm{M}$ (Srinivas et 8 al. 2010). In the same time, the necessary concentration for NMR-analysis or potentiometric 9 study is $10^{-2}-10^{-1} \mathrm{M}$. In all works where the issue of flavonoids in solution has been discussed 0 the water-ethanol mixtures or non-aqueous liquids were used as solvent. However, under such conditions the behaviour of flavonoids is fundamentally different from biological media. The spectrophotometric technique is one of the few methods that allow to research small amount of sparingly soluble compounds and determine all equilibrium parameters in pure water with concentration $<10^{-4} \mathrm{M}$.

The rare-earth elements (REEs) have the typical characteristics of trivalent metals in 56 solution and suitable for consideration as the modelling systems. In addition, the data for 57 linkages lanthanides with flavonoids can be used for extraction and separation of REEs. The 58 goal of current research was to exploring of acid-base, keto-enol and metal bonding processes 59 of 6-bromoquercetin and demonstrate that the halogen derivatives of flavonoids is also display ${ }_{60}$ the useful properties in solution.

Theoretical

64 The values of dissociation constant $\left(\mathrm{pK}_{\mathrm{a}}\right)$ have been calculated using equation (Leggett 1985):

$$
\begin{equation*}
A_{i}=\frac{C_{H L}\left(\varepsilon_{L^{-}} \cdot K_{a}+\varepsilon_{H L}\left[H^{+}\right]\right)}{K_{a}+\left[H^{+}\right]} \tag{1}
\end{equation*}
$$

66 with the Henderson-Hasselbach equation (Tiwari and Ghosh 2010):
${ }^{67} \mathrm{pH}=p K_{a}+\log (\mathrm{IR}) ; \quad \mathrm{I} \mathrm{R}=\frac{A_{i}-A_{H L}}{A_{L^{-}}-A_{i}}$,
68 where IR - ionization ratio.
${ }^{69}$ The non-linear Cox-Yates method (Cox 1983) based on the excess acidity function χ (Cox 1981) was used to determine the protonation constant $\left(\mathrm{K}_{\mathrm{H}}\right)$ in strongly acidic solutions:

$$
\begin{equation*}
A_{i}=\frac{A_{H L}-A_{H_{2} L^{+}}}{1+\left(\frac{C_{H^{+}}}{K_{H}}\right) 10^{\left(m^{*} \chi\right)}}+A_{H_{2} L^{+}} ; \tag{3}
\end{equation*}
$$

where $\mathrm{A}_{\mathrm{i}}, \mathrm{A}_{\mathrm{HL}}\left(\varepsilon_{\mathrm{HL}}\right), \mathrm{A}_{\mathrm{H} 2 \mathrm{~L}^{+}}\left(\varepsilon_{\mathrm{H} 2 \mathrm{~L}}\right)$, and $\mathrm{A}_{\mathrm{L}-}\left(\varepsilon_{\mathrm{L}^{-}}\right)$are the absorbances and molar extinction 73 coefficients of the process solution, the free ligands, and its conjugate acid or base, respectively.

74 Conditional stability constants (K^{\prime}) for monocomplex species were calculated from the ${ }^{75}$ equations 1-2 (Grebenyuk et al. 2015):

$$
\begin{gather*}
A_{\text {calc }}^{\lambda}=\varepsilon_{H L}^{\lambda}\left(C_{H L}-[M L]\right)+\varepsilon_{M}^{\lambda}\left(C_{M}-[M L]\right)+\varepsilon_{M L}^{\lambda}[M L], \tag{4}\\
{[M L]=1 / 2} \tag{5}\\
\left.\left[1 / K^{\prime}+C_{H L}+C_{M}\right)+\sqrt{\left(1 / K^{\prime}+C_{H L}+C_{M}\right)-4 C_{M} C_{H L}}\right],
\end{gather*}
$$

78 where $A_{\text {calc }}^{\lambda}$ is an absorbance at a given wavelength and C_{M} and $C_{H L}$ were analytical 79 concentrations of lanthanides and ligand, respectively. The ε^{λ} is a value of molar extinction 80 coefficient at single wavelength. The optimal values for K^{\prime}, K_{a} and K_{H} and ε^{λ} were found from 81 the least squares analysis (Leggett 1985):

$$
\begin{equation*}
f\left(C_{M}, C_{L}, K^{\prime}, \varepsilon_{i}\right)=\sum_{i=1}^{n}\left(A_{i}^{\lambda}-A_{i}^{\text {calc }}\right)^{2} \xrightarrow{K, \varepsilon_{i}} \min . \tag{6}
\end{equation*}
$$

3 Calculations of all equilibrium constants and molar extinction coefficients were performed

114 at 298 K without stirring (Scheme 1). The precipitated orange crystals were washing with water 115 and crystallize three times from ethanol. The test by paper chromatography have been 116 demonstrate the absence of initial quercetin in the final products.

Scheme 1. The synthesis of 6-bromoquercetin.

Materials

Chemicals

All chemicals were of analytical grade: quercetin (Aldrich $\geq 95 \%, \mathrm{HPLC}$), $\mathrm{CH}_{3} \mathrm{COONa}$,

Table 1. The values of wavelength (nm) of main absorbance peaks of BQR and quercetin

Form	6-Bromoquercetin		Quercetin	
	$\lambda^{\text {max, }}$	$\lambda^{\text {max, 2 }}$	$\lambda^{\text {max, 1 }}$	$\lambda^{\text {max, 2 }}$
Neutral	256	373	255	367
Protonated	275	450	268	439
Monoanionic	281	393	272	383

150 The molar extinction coefficients is less for bromine derivative. At pH above 8.20 the
151 destruction of BQR is observed. For this reason the acid-base properties of bromoquercetin 152 were investigated in pH region from 2.0 to 7.3 , where occurring only first step of dissociation.

153 All raw spectroscopic data are given in the Supplementary Material (Tables S1-S6).

Fig. 1. The UV-vis spectra of different froms of quercetin(1) and 6-bromoquercetin(2):
156 neutral at $\mathrm{pH}=1(\mathrm{~A})$, protonated at $\mathrm{C}(\mathrm{HCl})>10 \mathrm{M}(\mathrm{B})$ and monoanionic (C) at $\mathrm{pH}=8.0$.

Table 2. The values of pK_{a}, extinctions of anionic and neutral form of BQR

$\mathrm{I}\left(\mathrm{NaClO}_{4}\right)$	0.1		0.5		1.0	
λ, nm	281	408	281	408	281	408
$\mathrm{pK} \mathrm{a} \pm 0.02$	5.68	5.70	5.85	5.90	6.04	6.01
$\log \left(\varepsilon_{\text {L- }}\right) \pm 0.01$	4.16	3.96	4.14	3.94	4.14	3.93
$\log \left(\varepsilon_{\mathrm{HL}}\right) \pm 0.01$	3.78	3.60	3.78	3.61	3.79	3.62

Fig. 2. The UV-Vis spectra and absorbance at 281 nm of 6-bromoquercetin at various values
177 of $\mathrm{pH} ; \mathrm{C}($ bromoquercetin $)=9.14 \cdot 10^{-5} \mathrm{M}, \mathrm{I}=0.1 \mathrm{M}$.

Fig. 1. The UV-vis scanning spectra of BQR obtained at various concentration of HCl and absorbance $(1-375 \mathrm{~nm} ; 2-450 \mathrm{~nm})$ as a function of $\log (\mathrm{C}(\mathrm{HCl})) ; \mathrm{C}($ bromoquercetin $)=$ $6.09 \cdot 10^{-5} \mathrm{M}$.

 thermodynamic stability of these structures the absolute and relative energies were calculated 204 (Table 3) at level cc-pVDZ/DFT/PBE0/SMD. All assessments demonstrate that acid-base 205 processes relate with 4-carbonyl and 5-hydroxyl groups. The most stable anionic form is the 206 isomer with negative charge on the 5-hydroxyl position (N1). The domination form of 207 protonated bromoquercetin is the cation P1 with one more proton atom on the 4-carbonyl group.

Table 3. The calculated absolute (a.u.) and relative ($\mathrm{kJ} \cdot \mathrm{mol}^{-1}$) energies of BQR tautomers

	Protonated form (n=2)		Anionic form (n=0)	
Tautomer	Absolute	Relative	Absolute	Relative energy
	energy	energy	energy	
N1	-3676.724254	92.19	-3675.946043	0.00
N2	-3676.740029	50.77	-3675.931125	39.17
N3	-3676.740148	50.46	-3675.931271	38.78
N4	-3676.747360	31.53	-3675.922961	60.60
N5	-3676.737160	58.31	-3675.937402	22.69
P1	-3676.759367	0.00		
P2	-3676.711874	124.69		

212 Now, the quantitative analysis of the Lowdin's charges can help to explain the difference of 213 acid-base properties between quercetin and BQR. The charge of O -atom of 5-hydroxyl group 214 is -0.304 and -0.272 for quercetin and bromoquercetin, respectively. The charge of hydrogen is 215 the same for both cases. Thus, bromine to decrease of negative charge on oxygen atom and 216 reinforces the repulsion between H and O that lead to high acidity. Analogous reasons suited 217 to protonation activates: the charge of 4-carbonyl oxygen is high for BQR (-0.291) than for 218 quercetin (-0.307) and electrostatic bonding O-H is durable for quercetin.

Scheme 3. The thermodynamic cycle for calculate $\mathrm{pK}_{\mathrm{a}}{ }^{\text {calc. }}$ and $\mathrm{pK}_{\mathrm{H}}{ }^{\text {calc. }}$

B

Fig. 4. The optimization geometry of protonated (A), neutral (B) and anionic (C) forms. 231 usable for estimate of equilibrium processes of heterocyclic compounds (Lutoshkin and 232 Kazachenko 2017). The functionals from minesota family, TPSS group and LYP-class were tested in this work. This choice was based on the wide using of these functionals for calculate of various equilibrium processes (Banerjee and Bhanja 2018). Guided by theoretical work (Bishnu and Schlegel 2016) the explicit water molecule was applied for compilation of $\mathrm{pKa}^{\text {calc. }}$. 236 The optimization geometry of studied species demonstrated at Fig. 4. The findings of estimation 237 are given at Table 4. In our case, the better approximation (for dissociation process) provides 238 functional M06-HF with 100% of Hartree-Fock exchange. PBE0 demonstrate the best approach 239 for pK_{a}. All of other functionals gives grater discrepancy with experimental data.

Table 4. The results of quantum-chemical simulation.

Density	Dissociation process			
Functional	$\Delta \mathrm{G}^{\text {gas }}+\Delta \mathrm{G}^{\text {solv. }}, \mathrm{kJ} / \mathrm{mol}$	$\Delta \mathrm{E}^{\text {ZPE }}$	$\mathrm{pK}_{\mathrm{a}}(\mathrm{calc})$	$\mathrm{pK}_{\mathrm{a}}(\mathrm{exp})$
PBE0	91.23	-33.99	9.66	
revTPSS	104.79	-32.03	12.39	
M06-L	99.37	-34.05	11.08	
M06	82.97	-33.94	8.25	5.86
M06-2X	82.71	-34.30	8.12	
M06-HF	65.30	-33.86	5.15	
CAM-B3LYP	117.59	-33.56	9.74	
Density		Protonation process		
Functional	$\Delta \mathrm{G}^{\text {gas }}+\Delta \mathrm{G}^{\text {solv. }}, \mathrm{kJ} / \mathrm{mol}$	$\Delta \mathrm{E}^{\text {ZPE }}$	$-\mathrm{pK}(\mathrm{calc})$	$-\mathrm{pK} \mathrm{K}_{\mathrm{H}}(\mathrm{exp})$
PBE0	-27.81	10.84	3.33	
revTPSS	-90.19	2.20	15.77	
M06-L	30.08	8.42	-6.39	
M06	31.35	7.70	-6.48	3.50
M06-2X	25.39	7.91	-5.47	
M06-HF	-81.32	7.83	13.23	
CAM-B3LYP	26.81	-12.60	-2.13	

3.3 Stability of Lanthanide complexes

Fig. 5. The UV-Vis spectra and absorbance at single wavelength (429 nm) for $\mathrm{Yb}(\mathrm{III})-\mathrm{BQR}$ system; $\mathrm{C}($ bromoquercetin $)=9.14 \cdot 10^{-5} \mathrm{M} ; \mathrm{pH}=4.4, \mathrm{I}=0.5 \mathrm{M}(\mathrm{NaClO} 4)$.

To confirm of chosen coordination model the stability constants for some of metals $\left(\mathrm{Yb}^{3+}\right.$ and $\left.\mathrm{Er}^{3+}\right)$ were obtain for three values of pH . The linear relationship of $\mathrm{pH}-\operatorname{logK}$ and slope coefficient ≈ 1 testify to monodeprotonation of ligand upon complexation process. Furthermore, the formation of complexes with OH^{-}and acetate ions is typical for all rare earth metal. To take into account of side reactions the following equations were fitted:

$$
\begin{gather*}
K=\alpha_{M} \alpha_{L} K^{\prime} \tag{10}\\
\alpha_{M}=1+\sum \beta_{n}[L]^{n}, \tag{11}\\
\alpha_{L}=1+\sum K_{H}\left[H^{+}\right], \tag{12}
\end{gather*}
$$

270
where $\mathrm{K}_{\mathrm{H}}=1 / \mathrm{Ka}$ was determine in pH region. The constants of adverse reaction $(\beta \mathrm{n})$ 271 for $\operatorname{Ln}(\mathrm{OAc}) \mathrm{n}$ and $\mathrm{Ln}(\mathrm{OH})^{2+}$ was taken from previously work (Lutoshkin et al. 2018) and given 272 at Table S7.

273
274 Table 5. Conditional (K^{\prime}), "true" (K) stability constants and value of extinction at 429 nm for 275 BQR-Ln(III) systems

276

$\mathrm{Ln}(\mathrm{III})$	$\mathrm{pH} \pm 0.01$	$\operatorname{logK} \pm 0.01$	$\log \varepsilon^{429} \pm 0.03$	$\operatorname{logK} \pm 0.05$
Ce	5.20	2.18	4.14	4.04
Pr	5.20	2.31	4.14	4.83
Nd	5.20	2.13	4.17	4.27
Sm	5.20	2.59	4.12	4.91
Eu	5.40	2.72	4.13	4.83
Gd	5.20	2.64	4.14	4.82
Tb	4.60	2.43	4.15	5.50
Dy	4.60	2.24	4.16	5.27
	4.40	2.24	4.14	5.43
Er	4.60	2.40	4.18	5.40
	4.80	2.65	4.12	5.47
Tm	4.60	2.26	4.19	5.27
	4.20	2.12	4.14	6.40
Yb	4.40	2.34	4.15	6.42
	4.60	2.58	4.11	6.48
Lu	4.60	2.70	4.14	5.77

The obtained values of $\log \mathrm{K}$ lie in region 4.0-6.5 logarithmic units. The stability 279 constants follow the order: $\mathrm{Ce}<\mathrm{Nd}<\mathrm{Gd} \approx \mathrm{Eu} \approx \mathrm{Pr}<\mathrm{Sm}<\mathrm{Dy} \approx \mathrm{Tm}<\mathrm{Er}<\mathrm{Tb}<\mathrm{Lu}<\mathrm{Yb}$. Fig. 6 (A) 280 illustrate $\operatorname{Ln}($ III $)-\log K$ relationship. This shape of $\operatorname{logK}-\operatorname{Ln}($ III $)$ curve indicate about general 281 ionic nature of the bonding (Choppin 1983).
282 The similarity of spectral changes and molecular structure quercetin and BQR allows to 283 propose the same coordination of their lanthanides complexes (via 3-hydroxyl-4-carbonyl 284 group (Woźnicka et al. 2017; Lutoshkin et al. 2018)). Fig. 6(A) demonstrate that lanthanides 285 complexes of BQR by 1-2 order weaker than $\operatorname{Ln(III)-quercetin~complexes.~Like~in~the~case~of~}$ 286 dissociation, this can be attributed to general electrostatic of molecule: the bromine atom

287 decrease the electronic density on the of 3-hydroxyl group and increase of decoupling between 288 O atom of chelate group and Ln^{3+}.
 297 electrostatic interaction for these metals a slightly stronger than for Ce -Eu group. Perhaps, the 298 separation can be explained by the sharp rise of covalence contribution in Gd-Lu complexes 299 and participation of the 6 d and/or 7s orbitals rather than f orbitals in the bonding (Choppin and 300 Rizkalla 1994).
computation protocol with explicit water and specific solvation has been allows to reproduce experimental values with discrepancies ± 0.5 logarithmic units.

The investigation of $1: 1$ complexes of bromoquercetin and 12 lanthanides has been perform at wide range of pH at constant ionic strength $(\mathrm{I}=0.5 \mathrm{M}) .16$ conditionals and 12 "true" equilibrium stability constants were obtained. The received stability constants lie from 4.04 to 6.46 logarithmic units and increase in the following order: $\mathrm{Ce}<\mathrm{Nd}<\mathrm{Gd} \approx \mathrm{Eu} \approx \mathrm{Pr}<\mathrm{Sm}<\mathrm{Dy} \approx \mathrm{Tm}<\mathrm{Er}<\mathrm{Tb}<\mathrm{Lu}<\mathrm{Yb}$. The low efficiency of BQR as complexation agent (compared to quercetin) was explain by the distribution of charges in optimization structure.

Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys 110:6158-6170. doi: 10.1063/1.478522

Banerjee S, Bhanja SK, Chattopadhyay PK (2018) Quantum chemical predictions of aqueous $328 \mathrm{pK}_{\mathrm{a}}$ values for OH groups of some α-hydroxycarboxylic acids based on ab initio and DFT calculations. Computational and Theoretical Chemistry 1125:29-38.

331 Bishnu T, Schlegel HB (2016) Density Functional Theory Calculation of pKa's of Thiols in 332 Aqueous Solution Using Explicit Water Molecules and the Polarizable Continuum Model. J 333 Phys Chem A 120:5726-5735. doi:10.1021/acs.jpca.6b05040
335 charged solutes using mixed cluster/continuum models. J Phys Chem B 112:9709-9719. doi:10.1021/jp810292n.

Choppin GR (1983) Comparison of the solution chemistry of the actinides and lanthanides. 339 Journal of the Less-Common Metals 93:323-330. doi:10.1016/0022-5088(83)90177-7

341 Choppin GR, Rizkalla EN (1994) Handbook on the Physics and Chemistry of Rare Earths, 342 Solution chemistry of actinides and lanthanides, Elsevier Science B.V., New York 345 calculation of X-functions and H. Can J Chem 59:2023-2028. doi: 10.1139/v81-306

Cox R (1983) Acidity functions: an update. Can J Chem 61:2225-2229. doi: 10.1139/v83-388
348 Cushnie TP, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 349 26:343-356. doi: 10.1016/j.ijantimicag.2005.09.002

350 doi:10.1016/j.comptc.2017.12.011

Dunning JrTH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The 353 atoms boron through neon and hydrogen. J Chem Phys 90:1007-1023. doi: 10.1063/1.456153

355 Grebenyuk SA, Perepichka IF, Popov AF (2002) Evaluation of the parameters of 1:1 charge 356 transfer complexes from spectrophotometric data by non-linear numerical method. ${ }_{357}$ Spectrochim. Acta Part A 58:2913-2923. doi: 10.1016/S1386-1425(02)00035-5

359 Grimme S, Antony J, Ehrlich S, Krieg HA (2010) A consistent and accurate ab initio 360 parametrization of density functional dispersion correction (DFT-D) for the 94 elements $\mathrm{H}-\mathrm{Pu}$.

361 J Chem Phys 132:154104. doi: 10.1063/1.3382344.

363 Hoyuelos FJ, Garcia B, Ibeas S, Munoz MS, Navarro AM, Penacoba I, Leal JM (2005) 364 Protonation Sites of Indoles and Benzoylindoles. Eur J Org Chem 6:1161-1171. 365 doi:10.1002/ejoc. 200400434

Le Marchand L (2002) Cancer preventive effects of flavonoids--a review. Biomed Pharmacother 56:296-301. doi : 10.1016/S0753-3322(02)00186-5
Kasprzak MM, Erxleben A, Ochocki J (2015) Properties and applications of flavonoid metal complexes. RSC Advance 5:45853-45877. doi: 10.1039/C5RA05069C

Kessler M, Ubeaud G, Jung L (2003) Anti- and pro-oxidant activity of rutin and quercetin derivatives. J Pharm Pharmacol 55:131-142. doi: 10.1211/002235702559

Kopacz M (2003) Quercetin- and Morinsulfonates as Analytical Reagents. Journal of Analytical Chemistry 58:225-229. doi: 10.1023/A:1022630319311

Leggett DJ (1985) Computational Methods for the Determination of Formation Constants, Plenum Press, New York

Lutoshkin MA, Kazachenko AS (2017) Assessment of various density functionals and solvation models to describe acid-base, spectral and complexing properties of thiobarbituric and barbituric acids in aqueous solution. Journal of Computational Methods in Sciences and Engineering 17:1-13. doi:10.3233/JCM-170745

Lutoshkin MA, Petrov AI, Kazachenko AS, Kuznetsov BN, Levdansky VA (2018) Complexation of rare earth metals by quercetin and quercetin- 5 '-sulfonic acid in acidic aqueous solution. Main Group Chemistry 17:17-25. doi: 10.3233/MGC-180253

M Samsonowicz, Regulska E (2017) Spectroscopic study of molecular structure, antioxidant activity and biological effects of metal hydroxyflavonol complexes. Spectrochim Acta A Mol Biomol Spectrosc 173:757-771. doi: 10.1016/j.saa.2016.10.031

Manach C, Morand C, Crespy V, Demigne C, Texier O, Régérat F, Rémésy C (1998) Quercetin is recovered in human plasma as conjugated derivatives which retain antioxidant properties. FEBS Lett 426:331-336. doi: 10.1016/S0014-5793(98)00367-6 Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem 113:6378-6396. doi: 10.1021/jp810292n.

401

404 Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:1-15. 405 doi:10.1017/jns. 2016.41

Perdew JP, Ruzsinszky A, Csonka GI, Constantin LA (2011) Workhorse Semilocal Density
Functional for Condensed Matter Physics and Quantum Chemistry. Phys Rev Lett 106:179902-
179906. doi: 10.1103/PhysRevLett.103.026403

Schmidt MW (1993) General atomic and molecular electronic structure system. Comput Chem
14:1347-1363. doi: $10.1002 /$ jcc. 540141112

414 Sotnikova R, Nosalova V, Navarova J (2013) Efficacy of quercetin derivatives in prevention of ulcerative colitis in rats. Interdiscip Toxicol 6:9-12. doi: 10.2478/intox-2013-0002

Srinivas K, King JW, Howard LR, Monrad JK (2010) Solubility and solution thermodynamic properties of quercetin and quercetin dihydrate in subcritical water. J Food Eng 100:208-218.
doi: 10.1016/j.jfoodeng.2010.04.001

Vinayagam R, Xu B (2015) Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutrition \& Metabolism 12 :60-80. doi: 10.1186/s12986-015-0057-7

```
4 3 5
436 Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters 393:51-57. doi:
437 10.1016/j.cplett.2004.06.011
4 3 8
439 Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group
4 4 0 \text { thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and}
4 4 1 \text { transition elements: two new functionals and systematic testing of four M06-class functionals}
4 4 2 \text { and } 1 2 \text { other functionals. Theor Chem Account 120:215-241. doi: 10.1007/s00214-007-0310-}
443 X.
```

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461

Table 5. Conditional (K^{\prime}), "true" (K) stability constants and value of extinction at 429 nm for BQR-Ln(III) systems

$\mathrm{Ln}(\mathrm{III})$	$\mathrm{pH} \pm 0.01$	$\log \mathrm{~K}^{\prime} \pm 0.01$	$\log 8^{429} \pm 0.03$	$\operatorname{logK} \pm 0.05$
Ce	5.20	2.18	4.14	4.04
Pr	5.20	2.31	4.14	4.83
Nd	5.20	2.13	4.17	4.27
Sm	5.20	2.59	4.12	4.91
Eu	5.40	2.72	4.13	4.83
Gd	5.20	2.64	4.14	4.82
Tb	4.60	2.43	4.15	5.50
Dy	4.60	2.24	4.16	5.27
	4.40	2.24	4.14	5.43
Er	4.60	2.40	4.18	5.40
	4.80	2.65	4.12	5.47
Tm	4.60	2.26	4.19	5.27
	4.20	2.12	4.14	6.40
Yb	4.40	2.34	4.15	6.42
	4.60	2.58	4.11	6.48
Lu	4.60	2.70	4.14	5.77

Table 4. The results of quantum-chemical simulation.

Density	Dissociation process			
Functional	$\Delta \mathrm{G}^{\text {gas }}+\Delta \mathrm{G}^{\text {solv. }}, \mathrm{kJ} / \mathrm{mol}$	$\Delta \mathrm{E}^{\text {ZPE }}$	$\mathrm{pK}_{\mathrm{a}}(\mathrm{calc})$	$\mathrm{pK}_{\mathrm{a}}(\mathrm{exp})$
PBE0	91.23	-33.99	9.66	
revTPSS	104.79	-32.03	12.39	
M06-L	99.37	-34.05	11.08	
M06	82.97	-33.94	8.25	5.86
M06-2X	82.71	-34.30	8.12	
M06-HF	65.30	-33.86	5.15	
CAM-B3LYP	117.59	-33.56	9.74	
Density		Protonation process		
Functional	$\Delta \mathrm{G}^{\text {gas }}+\Delta \mathrm{G}^{\text {solv. }}, \mathrm{kJ} / \mathrm{mol}$	$\Delta \mathrm{E}^{\text {ZPE }}$	$-\mathrm{pK}(\mathrm{calc})$	-pK
$\mathrm{H}(\mathrm{exp})$				
PBE0	-27.81	10.84	3.33	
revTPSS	-90.19	2.20	15.77	
M06-L	30.08	8.42	-6.39	
M06	31.35	7.70	-6.48	3.50
M06-2X	25.39	7.91	-5.47	
M06-HF	-81.32	7.83	13.23	
CAM-B3LYP	26.81	-12.60	-2.13	

Table 3. The calculated absolute (a.u.) and relative ($\mathrm{kJ} \cdot \mathrm{mol}^{-1}$) energies of BQR tautomers

Tautomer	Protonated form (n=2)		Anionic form (n=0)	
	Absolute			

energy\end{array} \quad $$
\begin{array}{c}\text { Absolute } \\
\text { energy }\end{array}
$$ \quad \begin{array}{c}Relative

energy\end{array}\right]\)| N1 | -3676.724254 | 92.19 | -3675.946043 | 0.00 |
| :---: | :---: | :---: | :---: | :---: |
| N2 | -3676.740029 | 50.77 | -3675.931125 | 39.17 |
| N3 | -3676.740148 | 50.46 | -3675.931271 | 38.78 |
| N4 | -3676.747360 | 31.53 | -3675.922961 | 60.60 |
| N5 | -3676.737160 | 58.31 | -3675.937402 | 22.69 |
| P1 | -3676.759367 | 0.00 | | |
| P2 | -3676.711874 | 124.69 | | |

Table 2. The values of pK_{a}, extinctions of anionic and neutral form of $B Q R$

$\mathrm{I}\left(\mathrm{NaClO}_{4}\right)$	0.1		0.5		1.0	
λ, nm	281	408	281	408	281	408
$\mathrm{pK} \mathrm{a}_{\mathrm{a}} \pm 0.02$	5.68	5.70	5.85	5.90	6.04	6.01
$\log \left(\varepsilon_{\text {L- }}\right) \pm 0.01$	4.16	3.96	4.14	3.94	4.14	3.93
$\log \left(\varepsilon_{\mathrm{HL}}\right) \pm 0.01$	3.78	3.60	3.78	3.61	3.79	3.62

Table 1. The values of wavelength (nm) of main absorbance peaks of $B Q R$ and quercetin

Form	6-Bromoquercetin		Quercetin	
	$\lambda^{\text {max, 1 }}$	$\lambda^{\max , 2}$	$\lambda^{\max , 1}$	$\lambda^{\max , 2}$
Neutral	256	373	255	367
Protonated	275	450	268	439
Monoanionic	281	393	272	383

Click here to access/download
Supplementary Material Supplementary.docx

