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Abstract. The possibility of applying the information theory in the problem of comparing the 

expected and statistical probability distribution of failures of a technical system are considered. 

The paper presents a brief analysis of the processes of additive and multiplicative growth of the 

system indicators, among which the probability of failure-free operation and failure rate were 

considered. These indicators were considered in order to analyze the reliability of the system. 

The increase in reliability of the indicators is associated with the fixing of the failure rate of the 

system elements and the construction of probability distributions. In order to compare the two 

distributions, a method for measuring uncertainty is proposed, which includes Shannon’s 

measure of uncertainty, cross-entropy and Kullback-Leibler divergence. Together, they make it 

possible to determine the connection between the two different probability distributions of 

failures, to calculate the distance between the distributions, to identify the degree of difference 

between the real and desired state of the system during operation. An example of calculation 

confirming the importance of the participation of the offered method for measuring uncertainty 

in the problem of comparison of the expected and statistical probability distribution of system 

failures is given. 

1. Introduction 

When considering compliance with the high level of reliability of complex technical systems, the 

analysis of indicators and statistics obtained during testing or operation is not excluded from 

consideration. The statistical data obtained in the process of testing and operation of the system elements 

make it possible to track the dynamics and statics of changes in the quantitative characteristics of 

reliability [1]. In most cases, when testing or operating elements or equipment, the time of operation 

before until a complete failure occurs is considered to be an important characteristic. At the same time, 

engineering practice takes into account the characteristics that are in demand for determining and 

subsequent application of probabilistic indicators [2, 3]. 

Since we have to deal with failures, the nature of which is random, reliability calculations are usually 

based on probabilistic estimates of the state of the system [3, 4]. At the same time, it is possible to use 

the information theory because of a probabilistic measure рi [5, 6] In all cases, рi – the relative number 

of discrete states of the system, that is, failures related to each of the i-th elements. According to 

information theory [5, 7], signals (in fact are failures) can be considered as discrete states. They are 



MIP

IOP Conf. Series: Materials Science and Engineering 537 (2019) 062027

IOP Publishing

doi:10.1088/1757-899X/537/6/062027

2

 

 

 

 

 

 

distributed according to the frequency of their occurrence during testing and operation of equipment. 

Such definition of probability spaces allows to use the model of K. Shannon [8] for determining the 

entropy of the system state. The meaning and values of the entropy are entirely determined by the choice 

of the state space and its characteristics. 

Application of the Shannon’s formula allows to determine entropy for both the natural and statistical 

probability distribution of system failures [9]. The natural distribution is essentially "true", (that is, 

desired) related to the known laws of the distribution of a random variable and for which the equipment 

availability index is determined. As for the statistical distribution, it can be built by monitoring the state 

of the equipment for a certain period of time. Moreover, it is no longer possible to guarantee the fact of 

complete coincidence of the obtained statistical distribution with the natural distribution of the 

probability of failures due to the impact on the system of hard-to-predict factors of probabilistic nature. 

In this case, it is important to have information on the divergence between the distributions in order, 

during operation of the equipment, to assess the similarity of the quantitative characteristics of reliability 

with the expected ones. 

2. Nature of the failure distribution 

Next, one explain the simplified nature of the failure distribution. 

1. Let over time to the existing failures of the element will be added to one event/failure (stationary 

process). In this case, the failure statistics will be considered for each of the same type of elements 

separately. Over time, during operation or testing, the difference in the number of failures between them 

will remain little discernible, indicating approximately the same levels of reliability of the elements. 

Therefore, the absolute difference between the number of failures will remain approximately constant, 

and the relative difference will tend to zero. If we consider the number of failures of the element as a 

share in the total number of failures of all considered elements, this share will tend to 1/n, where n is the 

number of similar elements. For the entire set of k events, the probability of occurrence of one event 

p=1/k. It becomes obvious: we have a simple process of quantitative growth, since on average one more 

is added to the already existing events. The simplest process of growth of events testifies to 

independence of events of each of elements as the assumption is accepted: occurrence of events doesn’t 

depend on the prevailing external and internal circumstances. Thus, we have additive growth associated 

with the addition operation. This growth indicates an increase in the number of events in the system, for 

which the difference in the number of failures between the same type of independent elements over time 

approaches zero, and their shares between the considered elements are equalized. Consequently, 

elements of the same type (due to the independence of the occurrence of events) will have approximately 

the same levels of their own reliability, which simplifies the calculation of reliability. 

2. Let's consider the nature of events when not one but several failures are added to the already 

existing failures, the number of which is determined each time by multiplying the existing failures by a 

certain number. This nature of the event flow involves the influence of external and internal factors on 

the state of the element. In this case, the number of failures of each of the elements will grow unevenly. 

Then at each considered time interval the relative difference between the events will remain unchanged, 

and the absolute difference will increase. In this case, the connection between the elements are not taken 

into account, and events are considered as independent. For this case, we propose the following example. 

Let the occurrence of failure for any element the more likely it is, the higher its share in the total number 

of failures and each time their number increases. So the probability of the occurrence of an event j for 

the element i having nj failures will be equal to: pj = nj/(n1 + n2 + n3 +…+ nk). It can be seen from the 

expression: with increasing nj probability increases, that is, the share of pj in the total mass of 

probabilities (equal to 1) will increase. However, despite occasional fluctuations, the overall shape of 

the distribution of failures for all elements remains the same - objects of the set proportionally increased. 

In this case, there is a multiplicative growth associated with the multiplication operation. For 

multiplicative growth, there is no absolute difference between element failures. On the other hand, the 

relative difference between element failures remains (the share of failures of each element) since growth 

is inherent in all elements of the system. 
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Let’s summarize the above. Considering additive growth, addition indicates the existence of the 

principle of growth and as a consequence of the independence of events between the elements of the 

system. On the contrary, the multiplication operation relating to multiplicative growth confirms the 

existence of events due to the occurrence of external and internal factors. The analysis of multiplicative 

growth in the system can be useful in identifying weak connection in its structure. However, one should 

not forget that the above about additive and multiplicative growth refers to ideal cases. 

3. Measure of information uncertainty in estimating the expected and statistical distribution of 

failure rates 

Multiplicative growth can be seen on the example of the frequency of occurrence of events. We will 

consider the growth through a quantitative characteristic: λi(t) is the failure rate of the element i in the 

time interval t. In the selected interval, the intensity is considered as a mathematical expectation of a 

random variable. Considering the intensity as a statistical series, this frequency characteristic of the 

system reliability allows to determine the probability of occurrence of events for each of the elements: 

,)(


 i
ip


  (1) 

where Λ – the sum of frequencies of all system elements.  

This value is not difficult to determine during the operation of the system, since the distribution of 

failures is statistical. As for the expected or desired failure distribution, it can be derived from the data 

obtained during the failure tests for new equipment, the preliminary monitoring of failures at the initial 

stage of operation and expert assessments. The desired distribution can be considered a postulated a 

priori distribution pi(λ), and the statistical distribution qi(λ) (obtained from operating experience) can be 

considered verifiable. Comparison of these two distributions between themselves is possible through a 

measure of information uncertainty [10, 11]. 

Entropy [12, 13] is taken as a measure of uncertainty, which in the case of considering the 

multiplicative growth is calculated by the Shannon’s formula [14, 15]: 





n

i

ii ppH
1

2log  bit, by 



n

i

ip
1

,1   (2) 

where n – the number of elements in the system.  

Formula (2) is valid for determining the entropy of various kinds of distributions. The Shannon’s 

entropy will increase as the density of the distribution decreases pi (pi → 1, H → 0) [16, 17]. However, 

Shannon’s entropy doesn’t take into account the situation when in the considered time interval there are 

no equipment failures in the statistics, that is, λi = 0, during the operation of the system. Then pi = 0, and 

entropy H → ∞. It is possible that the events that disrupt the operation of the equipment, didn’t lead him 

to a state of complete failure. In this case, λi can be determined by averaging: λi = (λi-Δ+λi+Δ)/2, where λi-

Δ and λi+Δ are, respectively, the failure rates to the left and right of the interval t.  

When comparing these distributions, it is impossible to say unequivocally that in the future the 

probability of occurrence of qi events will coincide with the probability pi. The statistical distribution 

qi(λ) obtained from (1) is verifiable and serves as an approximation of the distribution pi(λ).Turning to 

entropy as a measure of information uncertainty, it is possible to calculate an approximation that reflects 

the amount of loss (unaccounted for amount) of information when moving from the expected distribution 

pi(λ) to statistical qi(λ), due to the Nature and capabilities of the system control. The measure of 

information considered in this case is called cross-entropy [6]. 

For two distributions of pi(λ) and qi(λ) and discrete values of p and q, the cross-entropy is determined 

as follows: 
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If we consider the additive growth process [18] as the occurrence of a single event from the whole 

set of k events in the system, the probability of occurrence of the single event p=1/k. Since all 

probabilities are equal, it is possible to speak about equality of all values λ of the expected distribution 

pi(λ). Distributions of this kind are typical for a steady flow of failures. Then cross-entropy according to 

(3) is determined as: 
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There is a difference between entropy (2) and cross-entropy (3), which is called Kullback-Leibler 

divergence [19] – the divergence of the distribution q with respect to p: 

).()()( pHqHqD pp         (5) 

When substituting expressions (3) and (2) into (5) by performing simple mathematical 

transformations, the divergence or Kullback-Leibler divergence has the form: 
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Kullback-Leibler divergence is the distance between the two distributions. It shows how different 

the distributions of random variables are [20]. It should be borne in mind that the functional (6) is not a 

metric in the space of distributions, since it does not satisfy the axiom of symmetry: ).()( pDqD qp   

4. Example of determining the amount of information 

Let there be a technical system consisting of 5 elements, n=5. Based on the incompatibility of events in 

the distributions pi(λ) and qi(λ), the elements failures will be considered as random discrete values p and 

q. It is necessary to determine the cross-entropy of the system and the Kullback-Leibler divergence. 

There is a number of data (obtained during testing and operation of the equipment), including the 

failure rate λi distributed over the selected time interval t (year) (table. 1). 

Table 1. Data on failures during testing and failure rate during operation. 

№ element 1 2 3 4 5 

Failure rate during 

testing, λi 

0.1 0.3 0.35 0.25 0.15 

Failure rate during 

operation, λi 

0.15 0.31 0.33 0.26 0.18 

Table 2. Probabilities (according to expression (1)). 

№ element 1 2 3 4 5 

Probability during testing, pi 0.087 0.261 0.304 0.217 0.130 

Probability during operation, qi 0.122 0.252 0.268 0.211 0.146 
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Table 3. Cross-entropy of system elements (according to (3)) and Kullback-Leibler divergence 

(according to (6)). 

№ element 1 2 3 4 5 

Cross-entropy, bit 0.264 0.519 0.578 0.487 0.362 

Kullback-Leibler 

divergence, bit 

- 0.042 0.013 0.055 0.009 - 0.022 

Cross-entropy of the system – Hp(q) = 2.209 bit.  

Kullback-Leibler divergence – Dp(q) = 0.013 bit.  

To summarize, we note the following. We have two probability distributions, one of them is considered 

true, which should be confirmed during the operation of the technical system. The second distribution 

is obtained as a result of the operation of the system. If the two distributions are exactly the same, Dp(q) 

must be zero. 

Considering the results of divergence, one can control confidence in the comparison of distributions. 

If the differences are large, it will not take long to determine the desired distribution, since the influence 

of factors on the change in the system state is clearly visible. However, if their differences are 

insignificant, as is the case in our example, when the system state slightly deviates from the expected or 

predicted, you will have to look through a lot of data in search of insignificant factors.  

5. Conclusion 

As a result, it can be stated that information theory is also manifested in the field of reliability analysis 

of technical systems. This theory offers a concrete, formal description of many things, such as comparing 

the probabilities of the desired and statistical distributions. Having methods for measuring uncertainty 

and two sets of distributions, we can understand the following:  

 

 what is the connection between two different probability distributions; 

 what is the distance between the probability distributions; 

 how much the desired state of the system differs from the predicted one; 

 how closely two variables are dependent. 

 

The ideas of using models from information theory are understandable, because they have good 

properties and fundamental origin.  
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