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The exact solution of the equations of the creeping flow model with the Himentsa type velocity field is
considered in this paper. The solution describes thermocapillary convection in layers. It is interpreted
as the motion of viscous heat-conducting liquids in a cylinder with solid walls and combined movable
non-deformable interface. At the same time there are no mass forces. From a mathematical point of
view the resulting initial-boundary problem is inversible and nonlinear because the total energy condition
at the interface is taken into account. It is established that there can be two such solutions.
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The specificity of the phenomena occurring at the phase interface is associated with the
existence of energy and entropy of the surface phase which are excessive with respect to the
volumetric phases in the phase transition layer [1]. However, the energy exchange between the
volumetric and surface phases is not well studied. For ordinary fluids at room temperature, the
effect of changes of the internal energy of the interfacial surface on the formation of heat fluxes,
temperature fields and velocities in the surface vicinity is insignificant in comparison with viscous
friction and heat transfer [2]. Little attention has been given to the class of problems associated
with these phenomena.

When a liquid media with an interface moves in an inhomogeneous temperature field the
difference in heat fluxes is not equal to zero [3],

k2
∂θ2
∂n

− k1
∂θ1
∂n

= æ θdivΓu + ω (θt + u · ∇Γθ) , (1)

where æ = −∂σ/∂θ, ω = ∂ (σ(θ) + æθ) /∂θ, σ(θ) is the surface tension coefficient. In relation
(1) kj is the coefficient of heat conduction, θj is the temperature of a liquid, j = 1, 2; θ = θ1 = θ2,
u = u1 = u2 are common temperatures and velocity vectors at the interface Γ and n is the normal
to Γ directed to the second fluid. For many liquids, σ(θ) is a linear function of temperature

σ(θ) = σ0 − æ(θ − θ0) (2)
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where σ0, æ, θ0 are constants. In this case energy relation (1) is simplified:

k2
∂θ2
∂n

− k1
∂θ1
∂n

= æ θdivΓu. (3)

The ratio of the right-hand side of (3) to the first term in the left-hand side of (3) is E =

= æ2θ∗/k2µ2. Here µj is the dynamic viscosity, and θ∗ is the characteristic temperature at the
interface. This value characterizes the significance of the process of releasing or absorption of
heat during local increments of the interfacial surface for the development of convective motion
near the interface. For ordinary liquids the value of E is small at room temperature, and changes
in the characteristic velocity of convection due to increments of surface internal energy are
insignificant [2]. For example, experiments for the water-ethyl alcohol system at θ∗ = 15oC give
E ∼ 5 · 10−4. Therefore, the right-hand side in (1) is often omitted, and we have the equality of
heat fluxes across the interface.

However, at sufficiently high temperatures when viscosity and thermal conductivity of or-
dinary liquids are significantly reduced and for liquids with reduced viscosity (for example, for
some cryogenic liquids, such as liquid CO2) effects associated with the heat of formation of the
interfacial surface can have a significant impact on fluid motion [4]. The maximum value of pa-
rameter E is reached near the critical points. It is known that for water E ∼ 0.02 at θ = 303.15 K;
E ∼ 0.6 at θ = 573.15 K; E ∼ 0.7 at θ = 623.15 K (the critical value for water is θcr = 647.3 K).
Let us note that mechanism of local changes in the internal energy of an interfacial surface (IEIS)
affects the convective stability of thermocapillary systems (see [3], chapter VI). This mechanism
should be taken into account for liquids at elevated temperatures and low viscosity. In particular,
it was shown that the increment of IEIS leads to the expansion of the stability limits at rest of a
horizontal flat layer of liquid in the presence of a temperature gradient in the vertical direction.
The effect of IEIS changes on the linear and weakly nonlinear stability of the two-layer Poiseuille
flow and film flow of a low-viscosity fluid for an isothermal ground state shows up as the change
in the phase velocity of waves. In all considered problems the ground state did not depend on
the IEIS.

The exact solution for the equations of a creeping-flow model with a velocity field of the
Himents type is obtained in this paper. It describes thermocapillary convection in a two-layer
viscous heat-conducting fluid. The motion occurs in a cylinder with solid walls and a common
movable non-deformable interface. In this case mass forces are absent. From a mathematical
point of view the initial boundary-value problem is inversible and nonlinear because the total
energy condition at the interface is taken into account. It is established that there can be two
such solutions.

1. The problem formulation and its transformation

The equations of rotationally symmetric stationary motion of a viscous incompressible heat-
conducting fluid in the absence of mass forces have the form

uur + wuz +
1

ρ
pr = ν

(
∆u− u

r2

)
, (4)

uwr + wwz +
1

ρ
pz = ν∆w, (5)

ur +
1

r
u+ wz = 0, (6)
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uθr + wθz = χ∆θ. (7)

Here u(r, z), w(r, z) are components of the velocity vector on the axes r and z of the cylindrical
coordinate system, p(r, z) is pressure, θ(r, z) is fluid temperature; ρ, ν, χ are the density, the
kinematic viscosity and the thermal diffusivity, respectively; ∆ = ∂2/∂r2 + r−1∂/∂r+ +∂2/∂z2

is the Laplace operator.
The solution of system (4)–(7) is taken in the form

u = u(r), w = v(r)z, p = p(r, z), θ = θ(r, z). (8)

This is an axisymmetric analog of the Himenz solution. The substitution of expressions for u, w
и p from (8) in the equations of motion (4), (5) leads to the following relations

1

ρ
pr = ν

(
urr +

(
1

r
u

)
r

)
− uur,

1

ρ
pz =

(
uvr + v2 − ν

(
vrr +

1

r
vr

))
z.

It follows from the analysis of the obtained expressions that pr is a function of variable r, and
pz linearly depends on variable z. Taking into account (8), we obtain from equations of motion
(4)–(6) that

ur +
1

r
u+ v = 0, uvr + v2 = ν(vrr +

1

r
vr) + f, (9)

1

ρ
p = d(r)− f

2
z2, d = ν

(
ur +

1

r
u

)
− 1

2
u2 + d0, d0 = const,

where f is an arbitrary constant that is the pressure gradient along the axis of the cylinder.
Equation for temperature (7) can be rewritten as

u(r)θr + v(r)z θz = χ∆θ.

One of the solutions of this equation is quadratic with respect to the variable z function of the
form

θ(r, z) = a(r)z2 + b(r). (10)

Thus the temperature takes an extreme value at point z = 0. It has maximum value when
a(r) < 0, and it is minimum value when a(r) > 0.

Let us apply solutions (9), (10) to describe the two-layer motion of viscous heat-conducting
fluids in the cylinder 0 6 r 6 R2 with the solid wall at r = R2 = const and with the cylindrical
interface at r = R1, 0 < R1 < R2. The fluid 1 occupies the region 0 6 r 6 R1, and the fluid 2
occupies the cylindrical layer R1 6 r 6 R2 (Fig. 1). Parameters of fluids are ρj , νj , χj , j = 1, 2.

Substituting (9), (10) into equations of motion (4)-(6) and heat transfer equation (7), we can
obtain that uj(r), vj(r), aj(r), bj(r) are solutions of the following systems of equations (j = 1, 2)

ujvjr + v2j = νj

(
vjrr +

1

r
vjr

)
+ fj ,

ujr +
1

r
uj + vj = 0.

(11)

2vjaj + ujajr = χj

(
ajrr +

1

r
ajr

)
,

ujbjr = χj

(
bjrr +

1

r
bjr

)
+ 2χjaj ,

(12)
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Fig. 1. Cylindrical domain with interface

The pressure obeys the following equation

1

ρ j

pj(r, z) = dj(r)−
fj
2
z2, dj = ν

(
ujr +

1

r
uj

)
− 1

2
u2
j + dj0, dj0 = const. (13)

On solid wall at r = R2 we have conditions

u2(R2) = 0, v2(R2) = 0, (14)

a2(R2) = α, b2(R2) = β, (15)

with given constants α, β. Let us note that for α < 0 the temperature on the wall has maximum
value at z = 0 and for α > 0 it has minimum value at z = 0.

Taking into account the temperature dependence of the surface tension coefficient (σ = σ0−
−æ(Θ−Θ0)) and (10), we obtain at the interface r = R1 the following conditions

u1(R1) = u2(R1) = 0, v1(R1) = v2(R1), (16)

µ2v2r(R1)− µ1v1r(R1) = −2æa1(R1), (17)

a1(R1), t) = a2(R1), k2a2r(R1)− k1a1r(R1) = æa1(R1)v1(R1), (18)

b1(R1), t) = b2(R1), k2b2r(R1)− k1b1r(R1) = æb1(R1)v1(R1), (19)

where µj = ρjνj is the dynamic viscosity coefficient. Moreover, functions u1(r), v1(r), a1(r) and
b1(r) are bounded at r = 0.

Let us note that the problem is non-linear and inverse problem because along with vj(r),
aj(r), bj(r), constants fj (pressure gradients along the layers) are also unknown. Excluding
functions uj(r) from the second equations (11) and taking into account adhesion conditions on
the wall, we obtain the adjoint problem for functions vj(r), aj(r). For known uj(r), aj(r) the
problem for functions bj(r) is separated. Functions dj(r) are found upon integrating (13).

We introduce dimensionless functions and parameters

Vj(ξ) =
R2

1

Mχ1
vj(r), Aj(ξ) =

aj(r)

α
, Fj =

R4
1

Mχ2
1

fj , M =
æαR3

1

µ2χ1
,

ξ =
r

R1
, Prj =

νj
χj

, χ =
χ1

χ2
, µ =

µ1

µ2
, k =

k1
k2

, γ =
R2

R1
,

where parameter M is the Marangoni number. Then the nonlinear conjugate inverse boundary
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value problem takes the form in dimensionless variables

Pr1
(
V1ξξ +

1

r
V1ξ

)
+

M
ξ
V1ξ

∫ ξ

0

xV1(x)dx− MV 2
1 + F1 = 0,

A1ξξ +
1

ξ
A1ξ +

M
ξ
A1ξ

∫ ξ

0

xV1(x)dx− 2V1A1 = 0, 0 < ξ 6 1;

(20)

Pr2
χ

(
V2ξξ +

1

ξ
V2ξ

)
− M

ξ
V2ξ

∫ R2

ξ

xV2(x)dx− MV 2
2 + F2 = 0,

1

χ

(
A2ξξ +

1

ξ
A2ξ

)
− M

ξ
A2ξ

∫ R2

ξ

xV2(x)dx− 2V2A2 = 0, 1 6 ξ 6 γ,

(21)

V2(γ) = 0, A2(γ) = 1, (22)∫ 1

0

xV1(x)dx = 0,

∫ γ

1

xV2(x)dx = 0, (23)

V2ξ(1)− µV1ξ(1) = −2A1(1), (24)

V1(1) = V2(1), |V1(0)| < ∞, (25)

A2ξ(1)− kA1ξ(1) = EA1(1)V1(1), (26)

A1(1) = A2(1), |A1(0)| < ∞, (27)

where parameters Prj are Prandtl numbers, E = æ2αR2
1/µ2k2 is the parameter that determines

the influence of internal interfacial energy on the motion of fluids inside the layers. Integral
conditions (23) allow us to find unknown constants (pressure gradients along the layers) Fj ,
j = 1, 2.

2. Solution of model problems

Let us consider the obtained nonlinear conjugate inverse boundary value problem (20)–(27).
Equations (20), (21) contain the Marangoni number. Let us assume that M ≪ 1, that is, we
consider the creeping thermocapillary motion. First we exclude all nonlinear terms in equations
(20), (21). Then we leave unchanged the only nonlinear boundary condition (26) and assume
that E = O(1). After some transformations we get

V1(ξ) = −1

4

F1

Pr1
ξ2 + C1 ln(ξ) + C2,

A1(ξ) = C3 ln(ξ) + C4, 0 6 ξ 6 1;

(28)

V2(ξ) = −1

4

χF2

Pr2
ξ2 + C5 ln(ξ) + C6,

A2(ξ) = C7 ln(ξ) + C8, 1 6 ξ 6 γ,

(29)

where Ci (i = 1, . . . , 8) are unknown constants. Substituting solutions (28), (29) into the system
of boundary conditions (22)–(27), we obtain an algebraic system of equations for unknown Ci

and Fj . Thus, boundedness of functions V1(ξ) and A1(ξ) at ξ = 0 ((25), (27)) implies that
C1 = C3 = 0. Functions Aj(ξ) are equal on the interface (27) then C4 = C8. Taking into
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account conditions (22)–(24) and condition of equality of functions Vj(ξ) on the interface, we
obtain from (25) that

C2 = − 2 (S ln(γ)− 1)

4µ (S ln(γ)− 1) + 2L+ 1
C8, C5 = − 2

4µ (S ln(γ)− 1) + 2L+ 1
C8,

C6 =
2
(
Lγ2 + ln(γ)

)
4µ (S ln(γ)− 1) + 2L+ 1

C8,

F1 = − 16Pr1 (S ln(γ)− 1)

4µ (S ln(γ)− 1) + 2L+ 1
C8, F2 =

8Pr2L
χ (4µ (S ln(γ)− 1) + 2L+ 1)

C8,

(30)

where

L =
1 + 2 ln(γ)− γ2

(γ2 − 1)
2 , S =

γ2 + 1

γ2 − 1
, (31)

and constant C8 is the root of the quadratic equation

2E ln(γ) (S ln(γ)− 1)

4µ (S ln(γ)− 1) + 2L+ 1
C2

8 + C8 − 1 = 0. (32)

It is clear that when there is no effect of internal interfacial energy on the motion of fluids
inside the layers (E = 0), that is, the heat fluxes on the interface are equal to each other or
γ → 1 (radii of the outer and inner cylinders coincide) equation (32) has one root C8 = 1. In
other cases when γ > 1 and E ̸= 0 (α ̸= 0) equation (32) has two real roots. In general, the
analysis depends on the sign of the expression

D = 1 +
8E ln(γ) (S ln(γ)− 1)

4µ (S ln(γ)− 1) + 2L+ 1
. (33)

For D > 0 equation (32) has two roots and for D = 0 it has one root. When D < 0 problem
(20)–(27) has no solutions.

Taking into account (28), (29), unknown dimensionless velocity functions have the form

U1(ξ) =
1

16

F1

Pr1
ξ3−1

2
C2ξ,

U2(ξ) = − 1

16

F2

Pr2
ξ3 +

1

4
((2 ln(ξ)− 1)C5 + 2C6) ξ−

− 1

16

(
−χF2

Pr2
γ2 + 4 (2 ln(γ)− 1)C5 + 8C6

)
γ2ξ−1,

(34)

where constants C2, C5, C6, Fj are from (30), (31). Taking into account (28)–(32), the remaining
required functions bj(r), pj(r, z), dj(r) are determined from equations (12), (13).

We study the effect of changes in the internal energy of the interface on the velocity profiles
Uj(ξ) and functions Vj(ξ). We choose water H2O and liquid CO2 as working medium. Parameters
of liquids are given in the order "H2O, CO2": ρ = {0.998 · 103, 1.977} kg/m3, ν = {1.004 ·
10−6, 7.386·10−6}m2/s, χ = {1.442·10−7, 9.828·10−6}m2/s, k= {0.5984, 1.643·10−2}Vt/(m·K),
æ = 1.989 · 10−4 N/(m·K), σ0 = 72.86 · 10−3 N/m. Velocity profiles U j(ξ) and functions V j(ξ)

are shown in Fig. 2 for various values of parameter E = {0.01, 0.02, 0.1, 0.7}, where U j(ξ) =

M−1Uj(ξ) and V j(ξ) = M−1Vj(ξ), M = E/M0, M0 = æχ1/(k2R1).
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а) U j(ξ) б) V j(ξ)

Fig. 2. The influence of parameter E on velocity profiles U j(ξ) and functions V j(ξ). 1 – E = 0.01,
2 — E = 0.02, 3 — E = 0.1, 4 — E = 0.7

Profiles of velocity U1(ξ) and function V 1(ξ) are presented on the interval 0 6 ξ 6 1. Profiles
of velocity U2(ξ) and function V 2(ξ) are presented on the interval 1 6 ξ 6 γ. It is also assumed
that R1 = 10−10 m, and the ratio of the outer radius and the inner radius of the cylinder remains
constant (γ = 2). The Fig. 2 shows that with the increase of the internal energy parameter
of the interphase boundary values of functions U j(ξ) and V j(ξ) decrease. In Fig. 3 profiles of
velocity U j(ξ) and functions V j(ξ) are presented for various values of the internal radius of the
cylinder (R1 = {10−10, 2 · 1010, 5 · 1010, 10−9} m) for γ = 2 and E = 0.7. Here the Marangoni
number is determined as M = æΘR1/(µ2χ1), where Θ = αR2

1 = 623.15 K that corresponds to
the critical temperature for water. The Fig. 3 shows that functions U j(ξ) and V j(ξ) decrease
with increasing R1.

а) U j(ξ) б) V j(ξ)

Fig. 3. The influence of parameter R1 on profiles of velocity U j(ξ) and functions V j(ξ). 1 —
R1 = 10−10 m, 2 — R1 = 2 · 10−10 m, 3 — R1 = 5 · 10−10 m, 4 — R1 = 10−9 m

This effect is due to the fact that the increase of the inner radius of the cylinder R1 for fixed
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γ = 2 the influence of the constant temperature defined on the outer surface of the cylinder
weakens. Fig. 4 shows a relationship between profiles of velocity U j(ξ), functions V j(ξ) and (γ)
for E = 0.7, M = 0.04, R1 = 10−10 m.

а) U j(ξ) б) V j(ξ)

Fig. 4. The influence of parameter γ on profiles of velocity U j(ξ) and functions V j(ξ). 1 —
γ = 1.2, 2 — γ = 1.6, 3 — γ = 2, 4 — γ = 3

It is clear that the increase of parameter γ = {1.2, 1.6, 2, 3} strongly affects profiles of velocity
U2(ξ) and function V 2(ξ). Values of these functions are significantly increased. The increase of
values of functions U1(ξ) and V 1(ξ) is not so significant. This can be explained by the fact that
for a fixed value of R1 the radius of the outer cylinder increases because γ = R2/R1.

Thus, the influence of the internal energy of the interface on the two-layer flow in the cylinder
was studied. It was found that with the increase of parameter E values of functions U j(ξ) and
V j(ξ) decrease.

This research was supported by the Russian Foundation for Basic Research (grant no. 17-01-
00229).

References

[1] A.Adamson, Physical chemistry of surfaces, Moscow, Mir, 1979.

[2] J.F.Harper, D.W.Moore, J.R.A.Pearson, The effect of the variation of surface tension with
temperature on the motion of drops and bubbles, J. Fluid Mech., 27(1967), 361.

[3] V.K.Andreev, V.E.Zakhvatayev, E.A.Ryabitsky, Thermocapillary instability, Monograph,
Novosibirsk, Nauka, 2000 (in Russian).

[4] F.E.Torres, E.Helborzheimer, Temperature gradients and drag effects produced by convec-
tion of interfacial internal energy around bubbles, Phys. Fluids A, 5(1993), no. 3, 537–549.

[5] V.K.Andreev, On the Friedrichs inequality for compound domains, J. Sib. Fed. Univ. Mat.
and Fis., 2(2009), no. 2, 146–157 (in Russian).

– 220 –



Evgeniy P.Magdenko The influence of changes in the internal energy of the interface . . .

[6] V.K.Andreev, Yu.A.Gaponenko, Mathematical modeling of convective currents, Krasno-
yarsk, KrasGU, 2006 (in Russian).

[7] V.K.Andreev, V.V.Puhnachev, Invariant solutions of the equations of thermocapillary
motion, Numerical methods of continuum mechanics. Novosibirsk, 14(1983), no. 5, 3–23
(in Russian).

[8] G.Bateman, A.Erdein, Higher transcendental functions. Bessel functions, parabolic cylinder
functions, orthogonal polynomials, Moscow, Nauka, 1974 (in Russian).

[9] V.S.Vladimirov, Equations of mathematical physics, Moscow, Nauka, 1976 (in Russian).

[10] S.G.Mikhlin, Linear Partial Differential Equations, Moscow, High school, 1977 (in Russian).

[11] L.V.Ovsyannikov, Group analysis of differential equations, Moscow, Nauka, 1978 (in Rus-
sian).

[12] A.P.Prudnikov, Yu.A.Bychkov, O.I.Marichev, Integrals and series. Special functions,
Moscow, Nauka, 1983 (in Russian).

Влияние изменений внутренней энергии поверхности
раздела на двухслойное течение в цилиндре

Евгений П. Магденко
Институт вычислительного моделирования СО РАН

Академгородок, 50/44, Красноярск, 660036
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Россия

В данной работе исследуется точное решение для уравнений модели ползущего течения с полем
скоростей типа Хименца, описывающее термокапиллярную конвекцию в слоях. Оно интерпре-
тируется как движение вязких теплопроводных жидкостей в цилиндре с твердыми стенками и
общей подвижной недеформируемой поверхностью раздела. При этом массовые силы отсутству-
ют. С математической точки зрения возникающая начально-краевая задача является обратной
и нелинейной, так как учитывается полное энергетического условие на границе раздела. Уста-
новлено, что может существовать два таких решения.

Ключевые слова: нелинейная обратная задача, число Марангони, энергетическое условие, ползущее
термокапиллярное движение, решение Хименца.
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