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The group properties of three-dimensional hydrostatic model equations of a viscous fluid are investigated.
The examples of several exact solutions are presented. The free surface of fluid and the pressure on this

surface are determined.
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The group analysis of differential equations is a powerful instrument for studying non-linear
equations and boundary value problems. It was an outstanding mathematician Sophus Lie who
introduced this scientific method in his works in the 19th century. The interest to the group
analysis was revived by L.V. Ovsyannikov, who pointed out in [1], [2] a method for describing
the properties of differential equations.

One of the main problems in the group analysis of differential equations is the study of the
permissible group of transformations of the system of equations on the set of solutions of these
equations.

Lie theory group properties of differential equations are studied by L.V. Ovsyannikov [2],
N.H. Ibragimov [3], V.V. Pukhnachov, their students and followers S.V. Habirov, Y.N. Pavlovsky,
A.A. Buchnev, O.V. Bytev, V.K. Andreev, etc. At present the group properties of equations in
liquid mechanics are investigated by V.K. Andreyev, O.V. Kaptsov, V.V. Pukhnachev, A.A. Ro-
dionov [4].

The Navier-Stokes equations are a system of differential equations partially describing the
motion of the viscous liquid. The aim of this study is to perform a group analysis of the
hydrostatic model of Navier-Stokes equations in three — dimensional case and to find exact
solutions of this model.
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1. Problem Statement. Basic Equations

The three-dimensional Navier-Stokes equations for the motion of a viscous incompressible
fluid are considered

Ut + Ulg + VUy + WU, + %px = V(Ugz + Uyy + Usz),
vy + uvg + vvy + wo, + %py = V(Vgg + Vyy + V22),
Wy + uwy + vwy + ww, + %pz = V(Wye + Wyy + wzz) — g,
Uy + Uy +w, = 0.

Here w,v,w - are the components of the velocity vector along the z,y, z directions, p - is the
pressure, t - is the time, g = const > 0 - is the acceleration of gravity in the z axis direction, v -
is the dynamic viscosity coefficient, p = const - fluid density (can be regarded as p = 1).
Let’s suppose, that the pressure in the fluid is linearly dependent on the depth,
P = —g- (2)

The assumption is often used to describe processes in oceanology [5]. Then

p(:c,y,Z,t) = *QZ*FQ(-T,y,t), (3)
q(z,y,t) — is a new function. In this case, the system (1) will be rewritten as

Up + Uy + VUy + WU, + @y = V(Ugg + Uyy + Uszz),
Ut + Uz + V0 + WU, + Gy = V(Vap + Vyy + Vzz),
Wy + UWg + YWy + WW, = V(Wag + Wyy + Wsz),
Uy + vy +w, =0, g, =0.
Let I' : z = n(z,y,t) — be the equation for the free boundary of a fluid on which the following
kinematic and dynamic conditions are satisfied:

e+ ul@, g, n(@,y, 1), ne + u(@, y,n(z, y,t), )y = w(z,y, n(@,y,1),t), (5)
(pa —p)7W +2vD -1 =20HTW, (6)

where p,(z,y,t) - is the atmospheric pressure, p = —gn(z,y,t) + q(z,y,t), the normal to the
free surface 77 and the mean curvature of H depend on the position of the point on the surface,
o = const - is the surface tension coefficient, D = D(u, v, w) - is the deformation rate tensor [4].

If the solution of the system (4)is known, then from the equality (5) the free surface the
equation can be found, and p,(z,y,t) can be explained from (6).

The task of group analysis [2] is set for the equations of the system (4). It is required to find
the Lie algebra of admissible operators for this system and to construct exact solutions.

A similar study of the hydrostatic model of an ideal fluid was carried out in [6].

2. Group properties of the equations

Let us consider the group properties of equations (4). Let introduce the following index

designations: u' = u, v? =v, v =w, vt = ¢, 2! =z, 22 =y, 22 = 2z, 2* = t. In these new
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designations, equations (4) supplemented by the requirement (4) assume the following form:
ug + ulut +ulud + udud +ut — v(uly +udy +uds) =0,
u? + utu? 4+ wud + udud + ul — v(ud 4+ udy +u3s) =0,
ui + wltuf + wug + utug — v(udy + uds +uly) =0,
ul +ud4ui =0, uj=0.

The lower index is the differentiation.
The admissible operator for system (7) is found in the following way:

X = £(x,u) 2

Ouk’

Here, the summation is done over i,k = 1,2, 3,4. Let us extend the operator to the first deriva-
tives

0 on® on® ¢ g
- k k _ L2k 195"
)1( =X+ G oxt Tt ol i\ ox Tt oul

and to the second derivatives
@ 9 — 1 9 1 0 2 0 2 0
)2( — )1( +<ij au% - )1( +C11 au%l + C22 31@2 + C11 au%1 + C22 87_1,32 + ceey
where ) k
oGt | oG | O¢ o€ , 06

here, the summation is done over [, k.
Note, in system (7) the values ul,, uls, uls, udy, uls, uds, uly, uls, uls are absent. Thus,
from the invariance criterion [2], acting via the operator X onto equations (7), the determining
2

equations are odtained. At the same time let’s pay attention to (7), exchanging u}, u3, u3, u

for the remaining variables. Splitting determining equations as related to independent variables,
the coordinates of the operator X are odtained
¢ = Oyt + f(ah), €2 = Cux? + szt + h(z?),
& = Cy + Cya' + Cua®, €8 = C1 +2Cua?,
n' = —Cyut — Csu? + f'(2*), n? = —Cyu® + Csu' + ' (z*),
n® = Cs+2Cu2*, n* = 204 — 2t f’(2*) — 220" (2*) + p(z?),

where C1,...,C5 are constants, f(z*), h(z*), ¢p(2*) are arbitrary functions.
It is proven that the Lie algebra for the system of equations (4) is formed by the operators

X1=0;, Xo=20,, X3=1t0,+ Oy,
X4 = 20y + Y0y + 20, + 2t0; — u0y, — v0, — WOy — 2q0y,
X5 = 20y — YO0y + udy, — v0,, (8)
Xo = f(t)0x + ['(£)0u — xf" (t)0y,
X7 =h(t)0y + 1 (t)0, — yh"(t)0q, Xs = @(t)0,.
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The first operator is responsible for the transfer in time ¢, the second and third are responsible
for the transfer and the Galileo transformation along the z axis, the fourth one for the tensile
transformations, the fifth one for the rotation around the zaxis. The sixth, seventh and eighth
operators contain arbitrary functions f(¢), h(t), ¢(t) depending on time, and define the infinite-
dimensional part of the Lie algebra of admissible operators.

For the first time a group analysis of the equations of the system (1) was carried out in [7]
by V.O. Bytev. The difference of its result from the received operators (7) is that two rotation
operators are absent in (7) along the z and y axes, and the infinite-dimensional operator along
the z axis, a similar one Xg, X7, is represented as two finite-dimensional operators X, X3.

If the two-dimensional hydrostatic model is considered, then in the equations (4) the variable
y and velocity v should be excluded. Then for the equations

Up + Uty + WUy + @ = V(Ugy + Usz),
Wy + Wy + ww, = V(Wep + Wss), (9)
Uy +w, =0, ¢q.=0
the algebra of admissible operators is determined by the basis of operators
X1 =0, Xo=0, X3=10,+ 0Oy,
Xy =20, + 20, + 2t0; — udy, — wdy, — 290y, (10)
X5 = f(t)0x + f'(t)0u — 2 f"(t)0, Xe = ¢(t)0,.

3. Exact solutions

Example 1. Let us seek a solution to the equations (4) on the operators from the basis (8)

0 0 0 0
(X3 —ta'f‘%, X7_t87y+%7(h(t) =1)).

The invariants of these operators are

Yy z
J = tuy— 2 —Z.0).
(.’II, ; UV tvw taQ)

Therefore, the invariant solution of equations must be sought in the form of

(uv,w,9) = (U, 2): 4 Vi, 0 7+ W 1):Q(a, 1), (1)

where U, V, W, Q) - are the desired functions of two variables.
Let’s substitute the functions in the equations of the system and obtain the factor-system:

Ut+UUm+Qz:VU$$7 V;g—f‘UVm-i—%V:l/Va;x,

(12)
Wy +UW, + W =vWey, U, +2=0.
From the last equation of the factor-system (12) it follows that
2
Ule,t) = == + hu(0), (13)

where h(t) - is an arbitrary function. From the first equation in (12) it follows that

, 2
Q1) = iy (1) — k' (1) — S + o),
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with an arbitrary function hs(t). From the second equation of the system (12) it can be seen
that

2
V, = vV, + (f _ hl(t)> v, — % (14)

To solve the equation (14) let us turn to the reference book by A.D. Polyanin [8] (section (1.8.6),
p. 129) for the equation of the following form

Wy = QWgq + [x2m(t) + n(t)]w, + k(t)w.

For our equation (14) the following is given:

Let’s introduce the designations (A, B,C = const):
F(t) = Beapl / m(t)dt] = B2,

B2t°
T:/FQ(t)dt—&—A: A

§=xF(t) + /g(t)F(t)dt +C = 2Bt* - B/t2h1(t)dt +C.
Let’s make the transition to the new variables (z,t) — (0, 7). It is evident that
V(z,t) = M(o, T)exp[/ k(t)dt] = %M(&, T).

Here M (0, 7) - is a new function.
Let us suppose that B =1, A = C' = 0, then F(t) = t2,

t5
rzg,ézxﬁ—/ﬁmwﬁ,

1 1 06 or,  M(6,7) 3
1 0 or 3
Ve = E[M(S% + M‘I’%] = Mst; Vo = t° Mss.

This substitution in (14):

M6 2 M6
- g;T)4—Aﬁﬂ2x——ﬁn(ﬂ)+-whf3:l¢3kﬁg+—(‘?—+h1@i>ﬂlﬂ—— i;TX
leads to the equation
MT = Z/M55. (15)

The heat equation with constant coefficients was obtained.

Note that if the variable ¢ is taken in the form § = xt2 —flt t2hy (t)dt, then it can be considered
a Lagrangian variable, since 6 = z at t = 1.

Take the simplest solution for (15) [5]: M(d) = ad + §. Then

V@ﬂ:%@#—/ﬁmmm+§,
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where «, 8 = const.
From the third equation of the factor-system (12) the following is obtained:

W, = W, + (th—hl( )) Wgc_?. (16)

The solution of the equation (16) is found through the analogy with the equation (14). Conse-
quently,

Wz, t) = %(th — /tth(t)dt) + %

where €, u = const.
As a result, the exact solution of the equations (4) is obtained:

u(z,t) = hi(t) — 2,
v(z,y,t) = [y + a(@t? — [2h(t)dt) + B,
w(z, 2,t) = [z + e(at? — [2hy(t)dt) + p),
gz, t) = 20 ap (1) — 322 4 o(t),

where hq(t), hao(t)-are arbitrary functions; «, 3, €, y-are constants.
The kinematic condition (5) on the free boundary I' : z = n(z,y,t) for a given solution has

2 (- 2) 2 (Yt [enoa +) 2=

_ %[Z be(at? - /t?hl(t)dt) + ]

While solving this equation, it can be seen  n(z,y,t) = t®(J1, J2) —eJ1 —pu, where ®(Jy, Ja)
- is an arbitrary function of its arguments

the form of:

1
J1 = xt? — /tth(t)dt, Jo = ;(y + aJi + ,8)

From the dynamic condition (6) (p, — p‘r)ﬁ +2uD -7 = 20HT it’s possible to determine
the nesessary atmospheric pressure at the free border,

14
plp+ 5[1 + /9 +t4(a? +£2)] + 20 H.

Here, for the solution of (17) the deformation rate tensor and the pressure on the surface of the
liquid are
e
D= % at?> 20 ,
et 0 2

p T 7gn(x,y7t) + Q(xay7t) = 7g[tq)(<]la JQ) - 6J1 - ,LL] +

Example 2. Let’s get back to the equation (14):

MT = UM55.
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Let’s use solution for this equation|8]:
M(5,7) = (62 + 2v7) + B.
Consequently:

V(e t) = A28 _ o ((:ms2 — [hi(t)dt)? + %) +8 (18)

In a similar way W (x,t) is found:

2wt°
Wia,t) = ((a:t2 - / t2hy (t)dt)? + ”5) +£.
As a result, one more exact solution of equations is obtained (4):
u(w,t) = hy(t) — 22,
v(z,y,t) = tly+a ( (zt? — [ 2hy(t)dt)? + 2?5) + 8,

w(z,z,t) = t[z+¢ ( (zt? — [t2hy(t)dt)? %) + ],
q(z,t) = M — zhy(t) — t% + ha(t),

where hq(t), ho(t) - are arbitrary functions; «, 8, e, u - are constants. Thus, knowing the set of
solutions of the equation (14), the set of solutions of the equations (4)can be constructed.
Example 3. Let’s consider the operators

0 0 0

(Xo = o0 X5 = 75 Xe = %7611(0 =1).

The invariants of these operators are J = {y;u;v;w;q}. Therefore, the invariant solution of
equations must be sought in the following form

(u,v,w,q) = (U(y); V(y); W(y); Qy)). (20)

Let’s insert the systems into the equations, and obtain the factor-system for the stationary
solution:
VUy =vUyy, VV,+Qy=vVy, VW,=vW,, V,=0 (21)

From (21) it is seen that
V=0, Q=0Cy Uly)=D+Dye??, W(y)=H + Hye o
Finally the exact solution of the equations (14) is obtained:
u(y) = D1+ Doe™V, w(y) =Cr, wly) = Hy+ Hoe™V, qly)=Co,  (22)

where C1, Cy, Dy, Do, Hy, Hs - are constants.

The kinematic condition (5) on the free boundary z = n(x,y,t) for the solution (22) has the

form of:
n

C
—+<D1+Dgev )8 +C’1 = Hy + Hye 7Y,

8
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The solution to this equation is the function
1 v o
n(@,y,t) =~ | Hiy+ Ha e ¥ | + ©(J1, J2),
Ch Ch
where ®(.Jq, J2) - is an arbitrary function of its arguments
v <
Ji=y—Cit, Jo= D1y+D20—e vY — Chx.
1

In the dynamic condition (6) on the free boundary z = n(z,y,t) for the solution (22) the
deformation rate tensor on the diagonals of the matrix has zero values. Therefore, it is easy to
determine that the external atmospheric pressure at the free boundary should be

Cy ¢
b = g t) + Co+ G [T 4 7 + 2

Example 4. Let us give an example when, while searching for an exact solution, the factor-
system gives a contradiction. Let’s consider the operators

0 0 0 0 0 0
<X4 —ta—f—aiw,XG —t%—l-%,al(t) —t,X7—t87y+%,a2(t) —t>

x.
t?
solution of the equations must be sought in the following form

The invariants of these operators are J = {t;u — $;v — ¥;w — %;q}. Therefore an invariant

(w,v,w,0) = (5 + U L+ V(0 2+ W (1) Q). (23)

where U, V, W, ) - are the desired functions of one variable.
Let’s substitute the equations of the system (4), to obtain the factor system:

U=+ (5 +0)5=0, Vi— g+ (4 +V);=0, (20)
Wi+ (G+W)g =0 ;4+3+5=0.

The last equality in (24) is contradictory. Therefore, a solution of the form (23) does not exist.
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I'pynmnosoii aHan3 ypaBHEHHiI T'MAPOCTATUYECKON MOJIeJin
BA3KOI >KIJTKOCTU

Anekcanap A. Pomunonos, dappsa A. Kpacuosa

Pacemampusaromes 2pynnosvie c60ticmea yYpasHenuti mpér-meproti 2udpocmamuseckoti modeal 6aA3K0w
orcuorocmu. IIpedecmasaeno HECKOABKO NPUMEPOS MOUHBE pewenut. Onpedeasromes c60600Has NOGEPT-
Hocmb sicudrocmu u dasaerue Ha Hetl . . ..

Karowesoe caosa: epynnosoti anaaus, 2udpocmamuieckas Modesb, 6A3KaA AHCUIKOCMb, MOwHbE Peule-
HUA.
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