
Group classification of ideal fluid equations in terms of
trajectory – Weber’s potential

Viktor K. Andreev, Daria A. Krasnova

ICM SB RAS, Krasnoyarsk

1 Statement of the problem

The unsteady motion of an ideal fluid with a free boundary is described by the following
system of equations

ut + u∇u +
1

ρ
∇p = g(x, t),

div u = 0, x ∈ Ωt,

(1)

where u = (u1, u2, u3) – is the velocity vector, p – the pressure, x = (x, y, z) – are
coordinates in space, t – is time. The solution of the problem involves solving the specified
Euler’s equations and finding the velocity vector u and pressure p in a certain region Ω(x),
on the border Γt of which the following boundary conditions are satisfied

ft + u · ∇f = 0,

p0 − p = 2σK,
(2)

where p0(x, t) – is the known function of external pressure, σ > 0 is the constant coefficient
of surface tension, K – is the mean curvature of the free boundary. K is negative if the
boundary Γt is convex to the outside of the fluid. Conditions (2) are called kinematic and
dynamic conditions, respectively. If the conditions (2) are satisfied, then the Γt boundary
is called a free one. If the free boundary Γt does not completely coincide with the boundary
Ω(x), the rest of the boundary Σ is satisfied by the condition of nonpermeability

u · nΣ = 0,

where nΣ – is the outer normal of the boundary Σ.
We finalize our problem with initial conditions

u = u0(x), div u0 = 0, x ∈ Ω0, t = 0. (3)

The complex of equations (1), boundary (2) and initial (3) conditions gives us the
ability to formulate the problem in Euler coordinates.

Weber integral. Let u(x, t), p(x, t) — be the velocity field and the pressure of the
ideal fluid which are the desired quantities, that are defined in a certain area Ωt with
the boundary Γt, which itself is unknown. On the border Γt a kinematic condition is
fulfilled (it consists of the same fluid particles at t > 0) and a dynamic condition ( the
pressure change is determined by the Laplace formula). Such tasks are extremely difficult
for mathematical research and are called problems with free borders. This class also
includes the problem of waves on the water.It is well known that it is easier to study
initial-boundary problems in a fixed region. In this case, this is achieved by moving to
the Lagrangian system of coordinates.
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Let us introduce the Lagrangian coordinates ξ = (ξ, η, ζ) as the coordinates of the
particles of the fluid at the initial moment of time

x = ξ, t = 0, ξ ∈ Ω = Ω0. (4)

Then the law of motion of the particles will be determined by the solution of the equation

dx

dt
= u(x, t) (5)

with the initial condition (4) and can be found in the form of x = x(ξ, t), ξ ∈ Ω.
The formulation of the problem of the unsteady motion of an ideal fluid with a free

boundary in Lagrangian coordinates is as follows [1]:

M∗(xtt − g(x, t)) +∇p = 0, divM−1xt = 0, ξ ∈ Ω; (6)

p0 − p = 2σH1, ξ ∈ Γ; (7)

x = ξ, xt = u0(ξ), div u0 = 0, t = 0, (8)

where M — is the Jacobi matrix of x(ξ, t) with respect to a variable ξ; M(ξ, 0) = E;
M∗, M−1 — transposed and inverse to the M matrix; g — is the specified vectortheir
strengths; p0 — is the known pressure (of air) above the free boundary; H1 — is the mean
curvature of the free border Γt, transformed to the Lagrange coordinates; σ > 0 — is the
surface tension coefficient. In addition to the boundary and initial conditions, there are
no impermeability conditions on the solid wall (bottom) and Dupre — Young conditions
on the contact lines of the liquid and the solid wall [1].

Let’s suppose that external forces have a potential, g = ∇xh. Then it is easy to prove
that the momentum equation (6) can be integrated. Indeed, applying the operation rot to
this equation, the equality M∗xt = ∇ϕ+ u0(ξ) is odtained and, therefore, the mentioned
integral has the form of

ϕt + p =
1

2
|xt|2 + h+ χ(t) (9)

with an arbitrary function χ(t). The function ϕ the elliptic equation of the 2nd order

div
[
M−1M∗−1(∇ϕ+ u0(ξ))

]
= 0, ξ ∈ Ω. (10)

Integral (9) was first obtained by G. Weber in 1868; in particular, for potential motions,
it reduces to the well-known Cauchy – Lagrange integral.

Let σ = 0, p0 = const. Differentiating expression (9) by time t and replacing xtt from
the equation of momentum (7), the following is obtained [1]

ϕtt +

(
−∂p
∂n

n +∇
ξ
h

)
·M−1M∗−1(∇ϕ+ u0)− ht = 0,

ϕ(ξ, 0) = 0, ϕt(ξ, 0) =
1

2
|u0(ξ)|+ h(ξ, 0),

(11)

where the equality ∇p = n∂p/∂nis taken into account. From this representation of
conditions on the free boundary one can clearly see the role of the sign of the derivative
along the normal to pressure. When ∂p/∂n < 0 prodlem (10), (22) is correctly posed, and
if ∂p/∂n > 0 it is incorrect according to Hadamard. Let’s also note here that the direction
of the pressure gradient on the free boundary plays a decisive role in the correctness of the
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Cauchy–Poisson problem in classes of functions of finite smoothness (V. I. Nalimov, 1974;
L. V. Ovsyannikov, N. I. Makarenko, V. I. Nalimov et al., 1985, M. A. Bimenov, 1992).

Group classification of ideal fluid equations in terms of trajectories –
Weber’s potential

For two-dimensional motions of an ideal fluid in trajectory variables, the Weber po-
tential is the system of equations (9), (10) which is

xt = yη(ϕξ + u(ξ, η))− yξ(ϕη + v(ξ, η)); (12)

yt = −xη(ϕξ + u(ξ, η)) + xξ(ϕη + v(ξ, η)); (13)

xξyη − xηyξ = 1; (14)

uξ + vη = 0, vξ − uη = ω(ξ, η) 6= 0; (15)

x(ξ, η, t), y(ξ, η, t) —are the trajectories, ϕ(ξ, η, t) — is the Weber potential. The pressure
is restored via the formula (9):

p(ξ, η, t) =
1

2
(x2

t + y2
t )− ϕt + h(ξ, η, t) (16)

and h = −gy(ξ, η, t) for waves on the water.
Equations (12)–(13) are equivalent to the following two:

ϕξ = xtxξ + ytyξ − u, ϕη = xtxη + ytyη − v.

The conditions for their compatibility are provided by the law of conservation of a vortex
in a particle

xξxηt − xηxξt + yξyηt − yηyξt = ω(ξ, η),

which, together with the law of conservation of mass (13) forms a closed system of equa-
tions. Its group properties were studied in [2].

2 Group classification of equations

Let us consider the arbitrary smooth transformations that preserve the area on the plane
of the variables (ξ, η):

α = α(ξ, η), β = β(ξ, η),
∂(α, β)

∂(ξ, η)
= 1. (17)

It is easy to see that in this case the system (12)–(14) retains its differential structure,
and the functions u(ξ, η), v(ξ, η) are replaced by

u1(α, β) = βηu− βξv, v1(α, β) = −αηu+ αξv, (18)

where in the right-hand parts it should be considered, according to (17), ξ = ξ(α, β),
η = η(α, β).

As for conditions (15), the second of them is always fulfilled, since

vξ − uη =(u1αη + v1βη)ξ − (u1αξ + v1βξ)η = v1α − u1β =

=ω(ξ(α, β), η(α, β)) ≡ ω1(α, β) 6= 0.
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A simple calculation, taking into account the formulas (18) gives us the equality

uξ + vη = (u1αη + v1βη)η + (u1αξ + v1βξ)ξ =

= (v1ααη + v1ββη)βη + v1βηη + (u1ααη + u1ββη)αη + u1αηη+

+ (u1ααξ + u1ββξ)αξ + u1αξξ + (v1ααξ + v1ββξ)βξ + v1βξξ =

= u1(αξξ + αηη) + v1(βξξ + βηη) + u1α(αξαξ + αηαη)+

+ u1β(βξαξ + βηαη) + v1α(αξβξ + αηβη) + v1β(βξβξ + βηβη) =

= u1∆α + u2∆β + |∇α|2u1α+

+ |∇β|2v1β +∇α · ∇β(u1β + v1α) = 0.

(19)

Therefore, in variables α, β for new ”velocities” u1(α, β), v1(α, β) the first condition (15)
is met if, for example,

∆α = ∆β = 0, ∇α · ∇β = 0, |∇α|2 = |∇β|2 = 1. (20)

The last two equations in (20) mean that the functions α, β (or −β, α) satisfy the Cauchy
–Riemann system. Therefore, in this case, the equivalence transformation (ξ, η)→ (α, β)
is conformal and preserves the area, and, as follows from (17), the harmonic function
α(ξ, η) satisfies the Eikonal equation

α2
ξ + α2

η = 1. (21)

It is easy to see that transformations that satisfy formulas (20) and (21), are reduced to
shifts and rotation to an angle γ in the plane ξ, η:

α = ξ cos γ + η sin γ + d1, β = −ξ sin γ + η cos γ + d2, (22)

γ, d1, d2 — are constant.

Remark 1 If to the function ϕ a linear combination of variables ξ, η is added

ϕ = ϕ1 + a1ξ + a2η + d(t), (23)

where a1, a2 – are arbitrary constants, d(t) – is an arbitrary function, and functions
u(ξ, η) and v(ξ, η) are replaced with

u1(ξ, η) = a1 + u(ξ, η), v1(ξ, η) = a2 + v(ξ, η), (24)

then the structure of the system of equations (12)–(15) will not change. So, the replace-
ment (23), (24) is the equivalence transformation for system (12)–(15).

Lemma 1 Equivalence transformations are given by the following formulas (22), (23),
(24).

For system (12)–(14) an operator in the form of

Y = ξ1 ∂

∂t
+ ξ2 ∂

∂ξ
+ ξ3 ∂

∂η
+ η1 ∂

∂x
+ η2 ∂

∂y
+ η3 ∂

∂ϕ
(25)

is found with unknown coordinates ξi, ηi, depending on all variables t, ξ, η, x, y, ϕ,
i = 1, 2, 3.
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To further study the system of equations (12)–(14) it is necessary to continue the
operator (25) onto the first derivatives

Y
1

=ξ1 ∂

∂t
+ ξ2 ∂

∂ξ
+ ξ3 ∂

∂η
+ η1 ∂

∂x
+ η2 ∂

∂y
+ η3 ∂

∂ϕ
+

+ζ1
1

∂

∂xt
+ ζ1

2

∂

∂xξ
+ ζ1

3

∂

∂xη
+ ζ2

1

∂

∂yt
+ ζ2

2

∂

∂yξ
+ ζ2

3

∂

∂yη
+

+ζ3
1

∂

∂ϕt
+ ζ3

2

∂

∂ϕξ
+ ζ3

3

∂

∂ϕη
,

(26)

here ζαi , α = 1, 2, 3, i = 1, 2, 3.
Let us use the criterion of invariance of the manifold [3], defined by equations (12)–

(14). The transition to a manifold is determined by the fact that from equations (12)–(13)
the elements xt, yt are expressed through the remaining variables, and from equation (14)
we express xξ as follows

xξ =
1

yη
(1 + xηyξ).

In particular, after the operator (26) acted on equation (14)

Y
1

(xξyη − xηyξ − 1) = 0

or in expanded form
ζ1

2yη + xξζ
2
3 − ζ1

3yξ − xηζ2
2 = 0,

where

ζ1
2 =

∂η1

∂ξ
+xξ

∂η1

∂x
+yξ

∂η1

∂y
+ϕξ

∂η1

∂ϕ
−xt

(
∂ξ1

∂ξ
+xξ

∂ξ1

∂x
+yξ

∂ξ1

∂y
+ϕξ

∂ξ1

∂ϕ

)
−

−xξ
(
∂ξ2

∂ξ
+xξ

∂ξ2

∂x
+yξ

∂ξ2

∂y
+ϕξ

∂ξ2

∂ϕ

)
−xη

(
∂ξ3

∂ξ
+xξ

∂ξ3

∂x
+yξ

∂ξ3

∂y
+ϕξ

∂ξ3

∂ϕ

)
,

ζ2
2 =

∂η2

∂ξ
+xξ

∂η2

∂x
+yξ

∂η2

∂y
+ϕξ

∂η2

∂ϕ
−yt

(
∂ξ1

∂ξ
+xξ

∂ξ1

∂x
+yξ

∂ξ1

∂y
+ϕξ

∂ξ1

∂ϕ

)
−

−yξ
(
∂ξ2

∂ξ
+xξ

∂ξ2

∂x
+yξ

∂ξ2

∂y
+ϕξ

∂ξ2

∂ϕ

)
−yη

(
∂ξ3

∂ξ
+xξ

∂ξ3

∂x
+yξ

∂ξ3

∂y
+ϕξ

∂ξ3

∂ϕ

)
,

ζ1
3 =

∂η1

∂η
+xη

∂η1

∂x
+yη

∂η1

∂y
+ϕη

∂η1

∂ϕ
−xt

(
∂ξ1

∂η
+xη

∂ξ1

∂x
+yη

∂ξ1

∂y
+ϕη

∂ξ1

∂ϕ

)
−

−xξ
(
∂ξ2

∂η
+xη

∂ξ2

∂x
+yη

∂ξ2

∂y
+ϕη

∂ξ2

∂ϕ

)
−xη

(
∂ξ3

∂η
+xη

∂ξ3

∂x
+yη

∂ξ3

∂y
+ϕη

∂ξ3

∂ϕ

)
,

ζ2
3 =

∂η2

∂η
+xη

∂η2

∂x
+yη

∂η2

∂y
+ϕη

∂η2

∂ϕ
−yt

(
∂ξ1

∂η
+xη

∂ξ1

∂x
+yη

∂ξ1

∂y
+ϕη

∂ξ1

∂ϕ

)
−

−yξ
(
∂ξ2

∂η
+xη

∂ξ2

∂x
+yη

∂ξ2

∂y
+ϕη

∂ξ2

∂ϕ

)
−yη

(
∂ξ3

∂η
+xη

∂ξ3

∂x
+yη

∂ξ3

∂y
+ϕη

∂ξ3

∂ϕ

)
,

,
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after the transition to the manifold the following equations are obtained

η1
x + η2

y − ξ2
ξ − ξ3

η = 0, η2
η − ξ2

x = 0, η1
η + ξ2

y = 0. (27)

In addition, parts of the derived coordinates of the operator (25) for some variables
are equal to zero:

∂ξ1

∂ξ
=
∂ξ1

∂η
=
∂ξ1

∂x
=
∂ξ1

∂y
=
∂ξ1

∂ϕ
= 0,

∂ξ2

∂ϕ
=
∂ξ2

∂x
= 0,

∂ξ3

∂ϕ
=
∂ξ3

∂x
= 0,

∂η1

∂ϕ
=
∂η2

∂ϕ
= 0.

(28)

Taking into account the obtained equalities (27), (28) the coordinates of operator (26)
are simplified. Acting via the continued operator (26) on the equations of motion (12),
(13)

Y
1

(xt − yη(ϕξ + u) + yξ(ϕη + v)) = 0, (29)

Y
1

(yt + xη(ϕξ + u)− xξ(ϕη + v)) = 0, (30)

and excluding xt, yt, xξ, after long calculations in addition to (28) the following equalities
are obtained

∂ξ2

∂t
=
∂ξ2

∂y
= 0,

∂ξ3

∂t
=
∂ξ3

∂y
= 0,

∂η1

∂ξ
=
∂η1

∂η
= 0,

∂η2

∂ξ
=
∂η2

∂η
0.

(31)

Also from equations (29) and (30) follow the relations

(ξ3
η − ξ1

t + η1
x − η2

y)u− ξ3
ξv − (uξξ

2 + uηξ
3)− η3

ξ = 0,

(ξ3
ξ − ξ1

t + η1
x − η2

y)v − ξ2
ηu− (vξξ

2 + vηξ
3)− η3

η = 0,

ξ2
ξ + ξ3

η − ξ1
t − ηϕ = 0, η1

y + η2
x = 0, η1

t − η3
x = 0,

η2
t − η3

y = 0, η1
x = η2

y, ξ2
ξ + ξ3

η = η1
x + η2

y .

(32)

So, from (28), (31) the dependence of the coordinates of the operator (25) is obtained:

ξ1(t), ξ2(ξ, η), ξ3(ξ, η),

η1(x, y, t), η2(x, y, t), η3(t, ξ, η, x, y, ϕ).
(33)

Substituting these relationships into (27) and (32) to a system of defining equations

ξ2
ξ + ξ3

η = η1
x + η2

y,

(ξ3
η − ξ1

t )u− ξ3
ξv − (ξ2uξ + ξ3uη)− η3

ξ = 0,

(ξ2
η − ξ1

t )v + ξ3
ηu− (ξ2vξ + ξ3vη)− η3

η = 0,

η1
y + η2

x = 0, η1
x = η2

y, ξ2
ξ + ξ3

η − ξ1
t − η3

ϕ = 0,

ξ1
t (vξ − uη) + ξ2(vξ − uη) + ξ3(vξ − uη) = 0.

(34)
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Let us find the solution of the determining equations (34) taking into account the
dependences (33) of the coordinates of the operator (25). First, it must be ξ1 = C3t+C4,
where C3, C4 – are constants, secondly,

ξ2
ξ + ξ3

η = 2C1, ξ2 = ξ2(ξ, η), ξ3 = ξ3(ξ, η),

η1 = C1x+ C2y + n(t), η2 = C1y − C2x+m(t),

η3 = (2C1 − ξ1
t )ϕ+ ntx+mty + h(ξ, η) + d(t),

u(ξ3
η − ξ1

t )− ξ2uξ − ξ3uη − ξ3
ξv − hξ = 0,

v(ξ2
ξ − ξ1

t )− ξ2vξ − ξ3vη − ξ2
ηu− hη = 0.

(35)

here n(t), m(t), d(t) – are arbitrary functions of the class C∞; C1, C2 — and are perma-
nent.

In addition, the compatibility of the last two equations (35) implies the relation

ξ2ωξ + ξ3ωη + C3ω = 0, (36)

where ω = vξ − uη = ω(ξ, η) — the initial vorticity of the fluid. Equation (36) is decisive;
when it is executed, the function h(ξ, η) is reconstructed from (35) using the curvilinear
integral

h =

∫ [
u(ξ3

η − C3)− ξ2uξ − ξ3uη − ξ3
ξv
]
dξ+

+
[
v(ξ2

ξ − C3)− ξ2vξ − ξ3vη − ξ2
ηu
]
dη,

(37)

independent of the path of integration.
Let us find the kernel of the operators. To do this, let us assume that ω(ξ, η) – is an

arbitrary function. Equation (36) can be satisfied when C3 = 0, ξ2 = 0, ξ3 = 0, at this
ξ1 = C4. From the last two defining equations (35) it follows that

hξ = 0, hη = 0,

hence h = h0 – is a constant, which, according to Remark (1) can be considered to be
zero. From equation ξ2

ξ + ξ3
η = 2C1 then C1 = 0.

So the coordinates of the operator are

ξ1 = C4, ξ2 = 0, ξ3 = 0,

η1 = C2y + n(t), η2 = −C2x+m(t),

η3 = ntx+mty + d(t).

The kernel is determined by the infinitesimal operator

Y KERNEL =C4
∂

∂t
+ (C2y + n(t))

∂

∂x
+ (−C2x+m(t))

∂

∂y
+

+(nt(t)x+mt(t)y + d(t)
∂

∂ϕ
,

whence it follows that the basic Lie algebra (the algebra admitted by system (12)–(14)
for an arbitrary function ω, or u, v) is formed by the operators

L0 : Y1 = ∂t, Y2 = y∂x − x∂y, Yn = n(t)∂x + xnt(t)∂ϕ,

Ym = m(t)∂y + ymt(t)∂ϕ, Yd = d(t)∂ϕ.
(38)
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For further convenience, let us make the replacement

ξ2 = C1ξ + ξ̄2(ξ, η), ξ3 = C1η + ξ̄3(ξ, η), (39)

then the last three equations in (35) and (36) will be rewritten as:

ξ̄2
ξ + ξ̄3

η = 0,

hξ = u(C1 − C3 + ξ̄3
η)− (C1ξ + ξ̄2)uξ − (C1η + ξ̄3)uη − ξ̄3

ξv,

hη = v(C1 − C3 + ξ̄2
ξ )− (C1ξ + ξ̄2)vξ − (C1η + ξ̄3)vη − ξ̄2

ηu,

(40)

(C1ξ + ξ2)ωξ + (C1η + ξ3)ωη + C3ω = 0. (36′)

Clearly, this equation (36′) is the classifying one.
If ω = ω0 = const, then C3 = 0. Then the curvilinear integral (37) will be rewritten

as:

h =

∫ [
uξ3

η − ξ2uξ − ξ3uη − ξ3
ξv
]
dξ +

[
vξ2

ξ − ξ2vξ − ξ3vη − ξ2
ηu
]
dη.

Let us write out the last two equalities from (35) and the connection between ξ2
ξ and ξ3

η :

hξ = u(ξ3
η − C3)− ξ2uξ − ξ3uη − ξ3

ξv,

hη = v(ξ2
ξ − C3)− ξ2vξ − ξ3vη − ξ2

ηu,

ξ2
ξ + ξ3

η = 2C1.

Let us introduce the function ψ(ξ, η), such that ξ2 = ψη, ξ3 = −ψξ, then (39) will
take the form of

ξ2 = C1ξ + ψη, ξ3 = C1η − ψξ,
and from (40) it’s evident that

hξ = u(−ψξη)− ψηuξ + ψξuη + ψξξv,

hη = vψηξ − ψηvξ + ψξvη − ψηηu.

Let’s rewrite the operator (25), considering that ω = ω0 = const, C3 = 0, ξ1 = C4 :

Y =C4
∂

∂t
+ (C1ξ + ψη)

∂

∂ξ
+ (C1η − ψξ)

∂

∂η
+ (C1x+ C2y + n(t))

∂

∂x
+

+(C1y − C2x+m(t))
∂

∂y
+ (2C1ϕ+ ntx+mty + h(ξ, η) + d(t))

∂

∂ϕ
.

Then the L0 algebra is extended by the operators:

Yψ = ψη∂ξ − ψξ∂η + h∂ϕ,

Y3 = ξ∂ξ + η∂η + x∂x + y∂y + (2ϕ)∂ϕ
(41)

with an arbitrary smooth function ψ(ξ, η).
We make the change of variables u = u(ξ, η)−ω0η (shift over u) and substitute it into

(15): uξ + vη = 0, vξ − uη = 0. The resulting system is a Cauchy-Riemann system for
determining u, v, which means u, v.

In the case ω(ξ, η) 6= const we write down the classifying equation (36) and the equa-
tion with dependence on ξ2, ξ3 from (35):

ξ2ωξ + ξ3ωη + C3ω = 0, ξ2
ξ + ξ3

η = 2C1.
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Let F (ξ, η) – be an arbitrary function and ξ2 = Fη + C1ξ, ξ
3 = −Fξ + C1η. Then it is

obvious that the equality from (35), holds, and the classifying equation takes the form:

(Fη + C1ξ)ωξ + (−Fξ + C1η)ωη = −C3ω.

Let us consider the possible options

1. C1 = C3 = 0, then the classifying equation: Fηωξ − Fξωη = 0, means F = F (ω).
Given the choice of ξ2, ξ3, ξ2 = Fη(ω), ξ3 = −Fξ(ω). In this case YF = Fη(ω)∂ξ −
Fξ(ω)∂η.

2. F = const. Then C1ξωξ − C1ηωη = −C3ω, ξ
2 = C1ξ, ξ

3 = C1η, denote C3/C1 = δ.
The resulting differential equation is solved via the characteristic method.

dξ

ξ
=
dη

η
=

dω

−δω

ξ

η
= J1;

dη

η
= −dω

δω
, then ωη−δ = J2.

ω(ξ, η) = η−δf(ξ/η). (42)

In that case
Y = δt∂t + ξ∂ξ + η∂η + x∂x + y∂y + (2− δ)ϕ∂ϕ.

Thus for any given initial vorticityω(ξ, η) 6= const the basis of a Lie algebra that
extends L0 is also represented by two operators:

YF =
∂F (ω)

∂η
∂ξ −

∂F (ω)

∂ξ
∂η,

Y4 =δt∂t + ξ∂ξ + η∂η + x∂x + y∂y + (2− δ)ϕ∂ϕ.
(43)

From the structure of the vorticity representation (42), let’s assume that the compo-
nents of the initial velocity field have the following representations

u = η1−δu1(ζ), v = η1−δv1(ζ), ζ = ξ/η, (44)

wherein functions u1, v1 are related by

u1ζ + (1− δ)v1 − ζv1ζ = 0, (45)

which is a consequence of the mass conservation equation: uξ + vη = 0. In this case the
function f(ζ), which determines the vorticity in formula (42) by the known u1(ζ), v1(ζ),
taking into account (15) is given by the equation

f(ζ) = −(1− δ)u1 + ζu1ζ + v1ζ . (46)

Using formulas (44) it is easy to show that hξ = hη = 0, and, without limitation generality,
it can be set that h = 0.
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3 Invariance of initial conditions

When solving the system of equations (12)–(14), which is not normal in the time variable,
it is necessary to take into account the initial conditions

x = ξ, y = η, t = 0. (47)

The invariance of data (47) with respect to the operator Y simplifies the system of defining
equations (35) to the following:

ξ1 = C3t, ξ2 = C1ξ + C2η + n(0), ξ3 = C1η − C2ξ +m(0),

η1 = C1x+ C2y + n(t), η2 = C1y − C2x+m(t),

η3 = (2C1 − C3)ϕ+ ntx+mty + h(ξ, η) + d(t), (48)

hξ = (C1 − C3)u− ξ2uξ − ξ3uη + C2v,

hη = (C1 − C3)v − ξ2vξ − ξ3vη − C2u.

The classifying equation (36) here is:

(C1ξ + C2η + n(0))ωξ + (C1η − C2ξ +m(0))ωη + C3ω = 0. (49)

The basic L00 algebra consists of the following operators

Zn = n(t)∂x + nt(t)x∂ϕ, Zm = m(t)∂y +mt(t)y∂ϕ,

Zd = d(t)∂ϕ, n(0) = m(0) = 0.
(50)

For group classification, let us write the equation (49) in the form of

(Aξ +Bη + C)ωξ + (Aη −Bξ +D)ωη +Hω = 0 (51)

with any constants A, B, C, D, H. Any particular function ω(ξ, η) with which it is
possible to expand the L00core, should be a solution to equation (51). The general equiv-
alence transformation consists of all the transformations corresponding to the kernel of
Lie algebras (50) and from the transformations of (ai, i = 1, . . . , 4, — constants)

t̄ = a1t, x̄ = a1(x cos a2 + y sin a2) + a3,

ȳ = a1(−x sin a2 + y cos a2) + a4,

ξ̄ = a1(ξ cos a2 + η sin a2) + a3, (52)

η̄ = a1(−ξ sin a2 + η cos a2) + a4,

ϕ̄ = a1ϕ+ d(t).

At the same time, an arbitrary element ω changes like this:

ω̄(ξ̄, η̄) = a5ω(ξ̄, η̄) 6= 0, a5 = const. (53)

It can be verified that equation (51) is invariant under equivalence transformations (52),
(53), supplemented by a transformation of the constants A, B, C, D, H in the form of:

Ā = A, B̄ = B, C̄ = cos a2C − sin a2D − a3A− a4B,

D̄ = cos a2D − sin a2C − a4A+ a3B, H̄ = H.
(54)
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Let us suppose that A 6= 0, B 6= 0 at the same time, then, according to (54), due to
shift transformations, it is obvious that C̄ = D̄ = 0. In this case, the solution to equation
(51) is:

ω = eγ2 arctg(ξ/η)f
(
(ξ2 + η2)1/2eγ1 arctg(ξ/η)

)
(55)

with constants γ1 6= 0, γ2 and an arbitrary function f .
If A 6= 0, B = 0, then let’s assume that C̄ = 0 and the classification equation has the

form of
ξωξ + (η +D)ωη +Hω = 0 (56)

with other D and H constants. Its solution is:

ω = (η + γ3)γ4f

(
ξ

η + γ3

)
, (57)

where γ3, γ4 are constants (γ3 = D, γ4 = −H).
If A = 0, B 6= 0, then let’s also take into consideration C̄ = 0 and the equation (51)

can be re-written as:
ηωξ + (−ξ +D)ωη +Hω = 0.

Its solution is as follows:

ω = exp

[
γ6 arcsin

(
γ5 − ξ√

η2 + (γ5 − ξ)2

)]
f(2γ5ξ − ξ2 − η2), (58)

(γ5 = D, γ6 = H).
Now let A = B = 0, then the coefficients of the equation (51) are constant and its

solution is
ω = e−γ7ξf(γ8ξ − γ9η) (59)

given that C 6= 0, γ7 = H/C, γ8 = D, γ9 = C;

ω = e−γ7ηf(γ8ξ − γ9η) (60)

given that D 6= 0, γ7 = H/D, γ8 = D, γ9 = C.
In each case, the operators are now presented for which the extension of the basic L00

algebra occurs. For this, the derivatives ωξ, ωη are calculated, which are substituted into
equation (49), and then it is analyzed taking into account the equivalence transformation
(54). This is done to represent the initial vorticity (55). It is consistent that

ωξ =
eγ2 arctg(ξ/η)

ρ

[
γ2ηf(ζ) + eγ1 arctg(ξ/η)(ξ + γ1η)fζ

]
,

ωη =
eγ2 arctg(ξ/η)

ρ2

[
−γ2ξf(ζ) + ρeγ1 arctg(ξ/η)(η − γ1ξ)

]
,

given that ρ = (ξ2 + η2)1/2, ζ = ρeγ1 arctg(ξ/η). Substitution into the classifying equation
(49) leads to the equality[

(γ2C2 + C3)ρ2 + γ2[n(0)−m(0)]ξ
]
f(ζ)+

+ζ
[
(C1 + C2)ρ2 + [n(0)− γ1m(0)]ξ + [m(0) + γ1n(0)]η

]
f(ζ) = 0.
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Since f is a function of a variable ζ, the last equation will be satisfied, when either
n(0) = m(0) = 0, or C2 = −C1, C3 = γ2C1, m(0) = −n(0), γ1 = 1. In the first case, the
function f satisfies the equation

(C1 + C2)ζfζ + (γ2C2 + C3)f = 0, (61)

in the second one —
ζfζ + γ2f = 0. (62)

If in equation (61) the function f is arbitrary, then C2 = −C1, C3 = γ2C1 and the
core of L00 (50) is extended by the operator

Z1 =γ2t∂t+(ξ − η)∂ξ+(ξ + η)∂η + (x− y)∂x+(x+ y)∂y + [(2− γ2)ϕ+ h(ξ, η)]∂ϕ,

hξ = (1− γ2)u− (ξ − η)uξ − (ξ + η)uη − v,

hη = (1− γ2)v − (ξ − η)vξ − (ξ + η)vη + u.

(63)

The assumption f = 1 (the transformation of stretching (53) for ω is taken into
account)is classifying. Here C3 = −γ2C2 and two more are added to the operator Z1:

Z2 = ξ∂ξ + η∂η + y∂y + (2ϕ+ h(ξ, η)∂ϕ,

hξ = u− ξuξ − ηuη, hη = v − ξvξ − ηvη;
(64)

Z3 = −γ2t∂t + η∂ξ − ξ∂η + y∂x − x∂y + [γ2ϕ+ h(ξ, η)]∂ϕ,

hξ = γ2u− ηuξ + ξuη + v, hη = γ2v − ηvξ + ξvη − u.
(65)

In general, C1 + C2 6= 0, γ2C2 + C3 6= 0, the function f is equivalent to f = ζγ8 , γ8 6= 0.
At the same time, C3 = −γ8C1 − (γ1 + γ8)C2 and the following is added to the operator
(63)

Z4 =−γ8t∂t+ξ∂ξ+η∂η + x∂x+y∂y + [(2 + γ8)ϕ+ h(ξ, η)]∂ϕ,

hξ = (1 + γ8)u− ξuξ − ηuη, hη = (1 + γ8)v − ξvξ − ηvη;
(66)

Z5 = −(γ2 + γ8)t∂t + η∂ξ − ξ∂η + y∂x − x∂y + [(γ2 + γ8)ϕ+ h(ξ, η)]∂ϕ,

hξ = (γ2 + γ8)u− ηuξ + ξuη + v, hη = (γ2 + γ8)v − ηvξ + ξvη − u.
(67)

For equation (62), is obtained f = ζγ2 , where γ2 is an arbitrary constant,
ζ = ρ exp(arctg(ξ/η)). Permitted operators have the form of Z1 and

Z6 = a(0)∂ξ − a(0)∂η + a(t)∂x − a(t)∂y + [at(x+ y) + h(ξ, η)]∂ϕ,

hξ = −a(0)uξ + a(0)uη, hη = −a(0)vξ + a(0)vη
(68)

with an arbitrary smooth function a(t).
For the function of the form (57), the following result is obtained: if f is arbitrary,

then only L00 is allowed; with f = 1 (then γ4 6= 0) the L00 core is expanded by the
operator

Z7 =−γ4t∂t+ξ∂ξ+(η+γ3)∂η+x∂x+(y + γ3a(t))∂y+[(2+γ4)ϕ+γ3aty+h(ξ, η)]∂ϕ,

hξ = (1 + γ3)u− ξuξ − (η + γ3)uη, hη = (1 + γ3)v − ξvξ − (η + γ3)vη
(69)
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with function a(t) such that a(0) = 1.
If f 6= const, then f = (ζ + γ6)γ4 and the operator is added to L00

Z8 =−γ6∂ξ−γ6a(t)∂x + ∂η + a(t)∂x+(−γ6atx+ aty + h(ξ, η))∂ϕ,

hξ = −γ6uξ − uη, hη = −γ6vξ − vη, a(0) = 1.
(70)

For the initial vorticity defined by the formula (58), for f = 1 there are additional
operators

Z9 =(ξ − γ5)∂ξ + η∂η + (x− γ5a(t))∂x + y∂y + (2ϕ− γ5atx+ h(ξ, η))∂ϕ,

hξ = u− (ξ − γ5)uξ − ηuη, hη = v − (ξ − γ5)vξ − ηvη;
(71)

Z10 =γ6t∂t + η∂ξ−(ξ − γ5)∂η + y∂x − (y − γ5a(t))∂y + (γ5aty + h(ξ, η))∂ϕ,

hξ = −γ6u− ηuξ − (ξ − γ5)uη + v, hη = −γ6v − ηvξ − (ξ − γ5)vη − u, a(0) = 1.
(72)

When f 6= const, it can be seen that f = (ζ − γ2
5)γ7 , γ7 6= 0, and the L00 core expands

via the operators

Z11 =−2γ7t∂t + (ξ − γ5)∂ξ + η∂η + (x− γ5a(t))∂x + y∂y + [2(γ7 + 1)ϕ− γ5atx+ h(ξ, η))∂ϕ,

hξ = (2γ7 + 1)u− (ξ − γ5)uξ − ηuη, hη = (2γ7 + 1)v − (ξ − γ5)vξ − ηvη;
(73)

Z12 =γ6t∂t + η∂ξ−(ξ − γ5)∂η + y∂x − (x− γ5a(t))∂y + (−γ6ϕ+ γ5aty + h(ξ, η))∂ϕ,

hξ = γ6u− ηuξ + ξuη + v, hη = γ6v − ηvξ + ξvη − u, a(0) = 1.
(74)

To represent (59) of the function ω it is seen that for f = 1 (here γ7 6= 0) one additional
operator

Z13 = γ7t∂t + ∂ξ + a(t)∂x + (−γ7ϕ+ atx)∂ϕ,

hξ = −γ7u− uξ, hη = −γ7v − vξ, a(0) = 1.
(75)

When f 6= const (γ2
8 + γ2

9 6= 0), there must be C2 = 0 and two possibilities: 1) γ7 = 0;
2) C1 = 0. In the first case, there are two operators

Z14 = −γ10γ8t∂t + ∂ξ + a(t)∂x + (γ10γ8ϕ+ atx+ h(ξ, η))∂ϕ,

hξ = γ10γ8u− uξ, hη = γ10γ8v − vξ;
(76)

Z15 = γ10γ9t∂t + ∂η + a(t)∂y + (−γ10γ9ϕ+ aty + h(ξ, η))∂ϕ,

hξ = −γ10γ9u− uη, hη = −γ10γ9v − vη, a(0) = 1.
(77)

Moreover f = eγ10ζ , γ10 6= 0, ζ = γ8ξ − γ9η.
If f = (ζ + γ11)γ12 , γ12 6= 0), then at γ11 = 0 and γ9 6= 0 the operators are present

Z16 = −γ12t∂t + ξ∂ξ + a(t)x∂x + [(2 + γ12ϕ+ atx+ h(ξ, η)]∂ϕ,

hξ = (1 + γ12)u− ξuξ − ηuη, hη = (1 + γ12)v − ξvξ − ηvη;
(78)

Z17 = ∂ξ − γ−1
9 γ8∂η + a(t)∂x − γ−1

9 γ8a(t)∂y + (atx− γ−1
9 γ8aty + h(ξ, η))∂ϕ,

hξ = −uξ − γ−1
9 γ8uη, hη = −vξ − γ−1

9 γ8vη, a(0) = 1.
(79)

13



When γ11 6= 0) have the following operators are present

Z18 = −γ12t∂t + ξ∂ξ + (η − γ−1
9 γ11)∂η + x∂x + [y − γ−1

9 γ11a(t)]∂y+

+(ϕ∂ϕ − γ−1
9 γ11aty + h(ξ, η))∂ϕ,

hξ = (1 + γ12u− ξuξ − (η − γ−1
9 γ11)uη, hη = (1 + γ12v − ξvξ − (η − γ−1

9 γ11)vη, a(0) = 1;
(80)

Z19 = ∂ξ + a(t)∂x + γ−1
9 γ8a(t)∂y + γ−1

9 γ8∂η + [γ−1
9 γ8aty + h(ξ, η)]∂ϕ,

hξ = −uξ − γ−1
9 γ8uη, hη = −vξ − γ−1

9 γ8vη, a(0) = 1.
(81)

Remark 2 For potential motions, u = ϕ0ξ, v = ϕ0η, and the replacement ϕ → ϕ + ϕ0

allows us to consider in the system (12), (13) u = v = 0. From the system of defining
equations (35) the basic Lie algebra of operators are obtained

µ(t)∂t − µt(t)ϕ∂ϕ, y∂x − x∂y, n(t)∂x + nt(t)∂ϕ, m(t)∂y +mt(t)∂ϕ,

d(t)∂ϕ, ψη∂ξ − ψξ∂η, ξ∂ξ + η∂η + x∂x + y∂y + 2ϕ∂ϕ

with arbitrary class C∞ functions µ(t), n(t), m(t), d(t), ψ(ξ, η).

4 Arbitrary Lagrangian coordinates

The Cauchy problem (4), (5) defines the Lagrange variables ξ, η, as Cartesian coordinates
of liquid particles at the initial moment of time. However, instead of ξ, η, distinguishing
one particle of fluid from another, it is possible to take any values of a, b, related to ξ, η
corellations

ξ = f(a, b), η = g(a, b), J = fagb − fbga 6= 0. (82)

Thus, the region Ω0is one-to-one mapped onto the region Ωab of the changes of the variables
a, b. The system (12)–(14) is equivalent to the system

JXt = Yb(Φa + U1)− Ya(Φb + V1); (83)

JYt = −Xb(Φa + U1) +Xa(Φb + V1); (84)

XaYb −XbYa = J(a, b) (85)

with the initial data
X
∣∣
t=0

= f(a, b), Y
∣∣
t=0

= g(a, b). (86)

New ”velocities” U1(a, b), V1(a, b) are connected to u(ξ, η), v(ξ, η) in the following way:

U1(a, b) = fau(f(a, b), g(a, b)) + gav(f(a, b), g(a, b)),

V1(a, b) = fbu(f(a, b), g(a, b)) + gbv(f(a, b), g(a, b)).
(87)

If in the system of equations (83)–(85) the replacement is made X(a, b, t) = x(ξ, η, t),
Y (a, b, t) = y(ξ, η, t), Φ(a, b, t) = ϕ(ξ, η, t), where the variables are ξ, η given by equality
(82), then the functions x, y, ϕ are solutions of system (12)–(14) and by (85) x = ξ,
y = η at t = 0. Therefore, the Lie groups of the transformations of the system (12)–(14)
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and (83)–(85) are similar, therefore the group classification of the system (83)–(85) can
be omitted. Only a general view of the operator of this system is given:

Y1 = ξ1(t)∂t + ξ2
1(a, b)∂a + ξ3

1(a, b)∂b + η1∂X + η2∂Y + η3∂Φ,

where ξ1(t), η1, η2, η3 are the same as for the operator Y of the system (12)–(14). The
coordinates ξ2

1(a, b), ξ3
1(a, b) satisfy the defining equations

(Jξ2
1)a + (Jξ3

1)b = 2C1J,

ξ2
1(ω1/J)a + ξ3

1(ω1/J)b + C3ω1/J = 0,
(88)

where ω1(a, b) = J(a, b)ω(f(a, b), g(a, b)) = V1a−U1,b — is the ”vorticity” in the variables
a, b.

Despite the similarity of the Lie groups of systems (12)–(14) and (83)–(85), the study
of the latter is sometimes more preferable from the point of view of constructing exact
solutions. This is due to the arbitrariness of the transformations (82): if an exact solution
is found in the variables a, b, then in variables ξ, η There is generally no analytical
expression for such a solution. There is only its parametric representation and a, b are
parameters. This situation often arises in the theory of the Theory of ordinary differential
equations. One well-known example of Görstner waves on water is given in [4].

The representation of (82) has the form of

ξ = a+
1

k
ekb sin(ka), η = b− 1

k
ekb cos(ka), J = 1− e2kb (89)

and when k > 0, b 6 b0 < 0 it is univalent. It is clear that there are no explicit
dependencies of a, b from ξ, η. Still, the formulas

X = a+
1

k
ekb sin[k(a+ ct)], Y = b− 1

k
ekb cos[k(a+ ct)],

Φ =
cekb

k
{sin[k(a+ ct)]− sin(ka)}

(90)

are the exact solution of the (83)–(85) system (k, c are constants).
Real motion vorticity in variables a, b is equal to

ω = − 2kcekb

1− e2kb
. (91)

According to formulas (16) and (89) the representation for pressure in the same variables
(here g is the acceleration of gravity) is obtained

p = −gb+
1

2
c2e2kb +

1

k
(g − 2kc2)ekb cos[k(a+ ct)] + const.

It is required that the image of the line b = b0 under the mapping (89) be a free boundary.
From the expression for the pressure it can be seen that for this it suffices to put c2 = g/k
and choose the appropriate integration constant:

p = g(b0 − b) +
1

2
c2(e2kb − e2kb0). (92)
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Formulas (89), (90), (92) with the constant c chosen above determine the wavemotion,
stationary in the coordinate system, which moves with speed −c along the x axis. The
free boundary b = b0 with a fixed t is a trochoid with a wavelength of 2π/k (a curve drawn
by a point of a circle of radius R = k−1ekb, rolling in a straight line). The equality says
that the Görstner waves are always are whirling movements. The vortex is maximal on
the free boundary and decreases exponentially with depth.

When b > 0, the mapping (89) ceases to be univalent. Free border will be a trachoid
with loops and such a decision has no physical meaning. The limiting case b0 = 0 gives
the free boundary equation at t = 0 in the form of a cycloid

x = a+
1

k
sin(ka), y = b− 1

k
cos(ka).

If ka = (2n+ 1)π (n is integer), this cycloid has cusps, i.e. here there are singular points
on the free border.

In conclusion, let’s point out that the Görstner waves are invariant solutions of the
system (83)–(85) with respect to a two-dimensional subalgebra 〈c−1∂t−∂a−∂X ; ∂Φ〉 where
J = 1 − e2kb, f = a + k−1ekb sin(ka), g = b − k−1ekb cos(ka), see formula (89). “New”
initial velocities are:

U1 = ce2kb + cekb cos(ka), V1 = cekb sin(ka),

where c = (g/k)1/2. Let us note that U1a + V1b = 0.
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