Group classification of ideal fluid equations in terms of
trajectory —Weber’s potential

Viktor K. Andreev, Daria A. Krasnova

ICM SB RAS, Krasnoyarsk

1 Statement of the problem

The unsteady motion of an ideal fluid with a free boundary is described by the following
system of equations

1
u; +uVu+ - Vp = g(x, 1),
t P g(x,t) (1)

diVuZO, X € Qta

where u = (ug,ug,u3) — is the velocity vector, p — the pressure, x = (z,y,2) — are
coordinates in space, t — is time. The solution of the problem involves solving the specified
Euler’s equations and finding the velocity vector u and pressure p in a certain region Q(x),
on the border I'; of which the following boundary conditions are satisfied

ft +u- Vf = 07 9

po—p = 20K, 2)
where pg(x,t) —is the known function of external pressure, o > 0 is the constant coefficient
of surface tension, K — is the mean curvature of the free boundary. K is negative if the
boundary I'; is convex to the outside of the fluid. Conditions (2) are called kinematic and
dynamic conditions, respectively. If the conditions (2) are satisfied, then the I'; boundary
is called a free one. If the free boundary I'; does not completely coincide with the boundary
Q(x), the rest of the boundary 3 is satisfied by the condition of nonpermeability

u-ny =0,

where ny, — is the outer normal of the boundary .
We finalize our problem with initial conditions

u=uy(x), divuy=0, z€y t=0. (3)

The complex of equations (1), boundary (2) and initial (3) conditions gives us the
ability to formulate the problem in Euler coordinates.

Weber integral. Let u(x,t), p(x,t) — be the velocity field and the pressure of the
ideal fluid which are the desired quantities, that are defined in a certain area €2; with
the boundary I';, which itself is unknown. On the border I'; a kinematic condition is
fulfilled (it consists of the same fluid particles at ¢ > 0) and a dynamic condition ( the
pressure change is determined by the Laplace formula). Such tasks are extremely difficult
for mathematical research and are called problems with free borders. This class also
includes the problem of waves on the water.It is well known that it is easier to study
initial-boundary problems in a fixed region. In this case, this is achieved by moving to
the Lagrangian system of coordinates.



Let us introduce the Lagrangian coordinates € = (£,7,() as the coordinates of the
particles of the fluid at the initial moment of time

x=¢ =0, £€Q=0Q,. (4)

Then the law of motion of the particles will be determined by the solution of the equation
d
— =ulx1) (5)
with the initial condition (4) and can be found in the form of x = x(§,t), € € Q.

The formulation of the problem of the unsteady motion of an ideal fluid with a free
boundary in Lagrangian coordinates is as follows [1]:

M*(xy — g(x,t)) + Vp=0, div M™%, =0, €€ (6)
po—p=20H,, §eTj (7)
x=€& x=u(), divuy=0, t=0, (8)

where M — is the Jacobi matrix of x(&,¢) with respect to a variable & M (&,0) = E;
M*, M~' — transposed and inverse to the M matrix; g — is the specified vectortheir
strengths; pg — is the known pressure (of air) above the free boundary; H; — is the mean
curvature of the free border I';, transformed to the Lagrange coordinates; o > 0 — is the
surface tension coefficient. In addition to the boundary and initial conditions, there are
no impermeability conditions on the solid wall (bottom) and Dupre — Young conditions
on the contact lines of the liquid and the solid wall [1].

Let’s suppose that external forces have a potential, g = V_ h. Then it is easy to prove
that the momentum equation (6) can be integrated. Indeed, applying the operation rot to
this equation, the equality M*x; = V4 uy(€) is odtained and, therefore, the mentioned
integral has the form of

1
Pt +P:§|Xt|2+h+>((t) (9)
with an arbitrary function x(¢). The function ¢ the elliptic equation of the 2nd order

div [M~'M* 1 (Vo +u(€)] =0, €€ (10)

Integral (9) was first obtained by G. Weber in 1868; in particular, for potential motions,
it reduces to the well-known Cauchy - Lagrange integral.

Let o = 0, pg = const. Differentiating expression (9) by time ¢ and replacing x; from
the equation of momentum (7), the following is obtained [1]

9,

1 (11)

90(57 0) = 07 Sot(év O) = 5 |U.0(£)‘ + h(é? 0)7
where the equality Vp = ndp/dnis taken into account. From this representation of
conditions on the free boundary one can clearly see the role of the sign of the derivative
along the normal to pressure. When dp/0n < 0 prodlem (10), (22) is correctly posed, and
if Op/On > 0 it is incorrect according to Hadamard. Let’s also note here that the direction
of the pressure gradient on the free boundary plays a decisive role in the correctness of the
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Cauchy—Poisson problem in classes of functions of finite smoothness (V. 1. Nalimov, 1974;
L. V. Ovsyannikov, N.I. Makarenko, V.I. Nalimov et al., 1985, M. A. Bimenov, 1992).
Group classification of ideal fluid equations in terms of trajectories —
Weber’s potential
For two-dimensional motions of an ideal fluid in trajectory variables, the Weber po-
tential is the system of equations (9), (10) which is

zr = yn(pe +u(€,n)) — ye(on +v(§m)); (12)
Ye = =y (e +u(€,n)) + xe(0y +0(§,m)); (13)
TelYny — TpYe = 1; (14)

ue+v, =0, ve—u,=w(&n) #0; (15)

z(&,m,t), y(&,n,t) —are the trajectories, p(&,n,t) — is the Weber potential. The pressure
is restored via the formula (9):

P& m 1) = 5 (2 +37) — o+ hlE . 1) (16)

and h = —gy(&,n,t) for waves on the water.
Equations (12)—(13) are equivalent to the following two:
Pe = Tale + YlYe — U P = Tey + Yelfn — V-

The conditions for their compatibility are provided by the law of conservation of a vortex
in a particle

Ty — TnTer + YeYnt — YnYer = w(E M),
which, together with the law of conservation of mass (13) forms a closed system of equa-
tions. Its group properties were studied in [2].

2 Group classification of equations

Let us consider the arbitrary smooth transformations that preserve the area on the plane
of the variables (£, 7):

a:a(&n% 525(5777)7 =1L (17)

It is easy to see that in this case the system (12)—(14) retains its differential structure,
and the functions u(£,n), v(£,n) are replaced by

w (o, B) = Byu — Bev,  vi(a, B) = —ayu + aev, (18)
where in the right-hand parts it should be considered, according to (17), £ = £(a, ),

n=n(a,f).
As for conditions (15), the second of them is always fulfilled, since

Ve — Uy =(ur0 + v16y)e — (U1 + v18¢)y = Via — U1 =

=w(¢(a, B),nla, ) = wila, B) # 0.
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A simple calculation, taking into account the formulas (18) gives us the equality

ue + vy = (w0 + 018,y + (uroe +v15¢)e =

= (Va0 + v186) By + 018y + (wia0y + wisBy) oy + ur o+

+ (ura0e + w180 ) e + urage + (Viae + V180¢) Be + V1 e =

= w1 (e + ) + v1(Bee + Byn) + tiaacae + anay)+ (19)
+ w15(Beae + Byan) + vialogBe + ayfhy) + vis(Befe + Byfy) =

= uy Aa + uAB + |[Val*uie+

+|VB)*v1s + Va - VB(uig + v1a) = 0.

Therefore, in variables «, f for new "velocities” u;(c, 8), v1(c, B) the first condition (15)
is met if, for example,

Aa=AB=0, Va-VB=0, |Va?=|Va]=1. (20)

The last two equations in (20) mean that the functions «, 5 (or — 3, «) satisfy the Cauchy
—Riemann system. Therefore, in this case, the equivalence transformation (£,7) — («, )
is conformal and preserves the area, and, as follows from (17), the harmonic function
a(&,n) satisfies the Eikonal equation

ai +al =1, (21)

It is easy to see that transformations that satisfy formulas (20) and (21), are reduced to
shifts and rotation to an angle v in the plane &, 7:

a=Ecosy+nsiny+dy, [=—-Esiny+ncosy+ ds, (22)
v, dy,ds — are constant.
Remark 1 If to the function ¢ a linear combination of variables &, n is added

© =1+ &+ am+d(t), (23)

where ay, ay — are arbitrary constants, d(t) — is an arbitrary function, and functions
uw(&,m) and v(§,n) are replaced with

ul(ga 77) =a; + U(g, 77)7 Ul(gv 77) =az + /U(gv 77)7 (24)

then the structure of the system of equations (12)—(15) will not change. So, the replace-
ment (23), (24) is the equivalence transformation for system (12)—(15).

Lemma 1 FEquivalence transformations are given by the following formulas (22), (23),

(24).

For system (12)—(14) an operator in the form of
0 0 0 0 0 0
_a9 20 39 10 20 30

is found with unknown coordinates &, n', depending on all variables t, &, n, x, vy, o,
1 =1,2,3.



To further study the system of equations (12)—(14) it is necessary to continue the
operator (25) onto the first derivatives

o .0
19 | 20
ot ¢ o

B

0 0 0 0 0
1 1 1 2 2 2
+(; —a% + G —ax§ + Cg —axn + _8yt + ¢ _6y5 + Cg ayn+ (26)

0 0 0 0
+8 =+ =+ +n o+
on dy

}1/ = Ox oy

0 0 0
3 3 3
+Cl ag@t + CQ 8905 + CS 880177

here (Y, « =1,2,3,71=1,2,3.

Let us use the criterion of invariance of the manifold [3], defined by equations (12)-
(14). The transition to a manifold is determined by the fact that from equations (12)—(13)
the elements x;, y, are expressed through the remaining variables, and from equation (14)
we express x¢ as follows

1
v = (1 + ).
Yn

In particular, after the operator (26) acted on equation (14)
11/ (Teyy — Tyye —1) =0

or in expanded form
Cotn + 63 — Gye — 29 G3 = 0,

where

anl 87]1 8771 8771 851 651 agl afl
1_ _ _
G= o€ oo dy +(p§590 xt(a€ o -ty dy +<péas0)

&> g2 &> &> &3 g3 &3 &3
e (8_§+x§6$ e oy “0@(990 — 0_§+x§8x e dy +(’0é0g0 ’
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after the transition to the manifold the following equations are obtained

Me 1 —&—6 =0, 2—&=0, n+&=0. (27)

In addition, parts of the derived coordinates of the operator (25) for some variables
are equal to zero:

o0 o0 _oe _oe_og |
o On  dr Oy Oy ’

o¢ _og¢ 08 _0¢ o ont _of
dp  Ox T O Oz T dp  Op

(28)

Taking into account the obtained equalities (27), (28) the coordinates of operator (26)
are simplified. Acting via the continued operator (26) on the equations of motion (12),
(13)

Y (@ = yylpe + ) + yeloy +v)) = 0, (29)

Y (1 + e + ) = 2oy + ) = 0, (30)

and excluding zy, y;, x¢, after long calculations in addition to (28) the following equalities
are obtained

e _oe _ o _og

o oy ot oy
31
o _on o _or o
o8 on T 9 onp
Also from equations (29) and (30) follow the relations
(&) = & + 1 — my)u — &v — (ugf® + uy&’) = =0,
(& —& +n—m)v—Eu— (v +v,8%) — ) =0, (32

G+ -6 —-1"=0, ny+n=0, n —n =0,
-y =0, m=un, E+&E=n+n.

So, from (28), (31) the dependence of the coordinates of the operator (25) is obtained:

gy, (E&m), &),

(33)
' (z,y,t), n*(x,y,t), (& mn 2y, 0).

Substituting these relationships into (27) and (32) to a system of defining equations

&+ & =n, +1y,

(& — &u— v — (Eue + Euy) — 12 =0,

(&5 — &)+ &u— (Eve + Evy) — ) =0, (34)
my+m =0, n=mn, &E+&E-&—n=0,

& (Ve — uy) + €% (ve — uy) + & (ve — uy) = 0.



Let us find the solution of the determining equations (34) taking into account the
dependences (33) of the coordinates of the operator (25). First, it must be £* = Cst + Cy,
where (3, Cy — are constants, secondly,

g+& =20, &€=8¢n), &€=,
n' = Cix + Coy +n(t), n°=Cry— Cox+m(t),
1’ = (201 = &)@ + new + myy + (€, n) +d(t), (35)
u(§) — &) — Eug — Euy — v —he = 0,
(& — &) — Eve — vy — Gu — hy = 0.
here n(t), m(t), d(t) — are arbitrary functions of the class C*°; C, Cy — and are perma-

nent.
In addition, the compatibility of the last two equations (35) implies the relation

Ewe + Ew,y + Caw = 0, (36)

where w = v¢ —u, = w(§,n) — the initial vorticity of the fluid. Equation (36) is decisive;
when it is executed, the function h(&,n) is reconstructed from (35) using the curvilinear
integral

h :J [w(& — C5) — Eug — Eu,y — o] dé+
+ [v(& — C3) — Eve — v, — Equ]

independent of the path of integration.

Let us find the kernel of the operators. To do this, let us assume that w(¢,n) —is an
arbitrary function. Equation (36) can be satisfied when C3 = 0, €2 = 0, £ = 0, at this
¢! = €. From the last two defining equations (35) it follows that

(37)

he =0, hy, =0,
hence h = hy — is a constant, which, according to Remark (1) can be considered to be
zero. From equation &2 + &3 = 2C) then Cy = 0.
So the coordinates of the operator are
51 = C’47 52 = 07 53 = 07
n' = Coy +n(t), n*=—Chz+mf(t),
n® = nyx + myy + d(t).

The kernel is determined by the infinitesimal operator

0 0 )
KERNEL __ _ I
Y _04_875 + (Coy + n(t))—ax + (—=Chx + m(t)) 8y+

0
+(ne(t)z +me(t)y + d(t)%,
whence it follows that the basic Lie algebra (the algebra admitted by system (12)—(14)
for an arbitrary function w, or u, v) is formed by the operators

Ly : Y1 =0, Ys=y0,—1x0,, Y,=n(t)0,+znt)o,,

(38)
Yo = m(t)0y + ymy(t)0,, Y= d(t)0,.
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For further convenience, let us make the replacement

52 = Cl§+€2(£>77)7 53 = 01774‘53(5;77)7 (39)
then the last three equations in (35) and (36) will be rewritten as:
E+6=0
he = u(C1 — C3 + &) — (C1& + &)ug — (Cun+ E)uy — &, (40)

hy = v(Cy — C5 4 &) — (C1€ + E)ve — (Cin + vy — & u,

(Cr€ + E)we + (C1n + E3)w,, + Caw = 0. (36")

Clearly, this equation (36') is the classifying one.
If w = wy = const, then C3 = 0. Then the curvilinear integral (37) will be rewritten
as:

hzng—é%—gmff@pw+@@—8%—§%—¢ﬂdn
Let us write out the last two equalities from (35) and the connection between 552 and ff; :
he = u(&) — Cs) — EPug — Euy — &,
hy = v(& — C3) — Ev¢ — vy — Gu,

Let us introduce the function (&, 7), such that €2 = v, & = —q)¢, then (39) will
take the form of

52 :le‘f‘?/% gszcln_w&
and from (40) it’s evident that

he = u(—1ey) — Vyue + Veuy + Veev,
hy = vipe — Yyue + Yevy — Pyyu.

Let’s rewrite the operator (25), considering that w = wy = const, C3 =0, &' = Cy :

0 0 0 0
Y =C4§ + (Cié+ %)59—5 + (Cin — ¢§)a—n + (Crz + Coy + n(t))a—er
0 0
+(Cry — Cox + m(t))a_y + (2C1o + nyx + myy + h(€, ) + d@))%

Then the Ly algebra is extended by the operators:

Yy = U0 — e0y + ho,,

(41)
Y5 = £0: + 10, + 0, + y0, + (2¢)0,,

with an arbitrary smooth function ¥ (&, 7).

We make the change of variables u = w(§, n) — won (shift over u) and substitute it into
(15): @e + v, = 0, ve —u, = 0. The resulting system is a Cauchy-Riemann system for
determining u, v, which means u, v.

In the case w(§,n) # const we write down the classifying equation (36) and the equa-
tion with dependence on &2, &3 from (35):

Ewe+Ewy + Cow =0, &+ =201,
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Let F'(§,n7) — be an arbitrary function and £ = F, + C1§, & = —F + Cyn. Then it is
obvious that the equality from (35), holds, and the classifying equation takes the form:

(Fn + 015)005 + (—Fg + Cm)wn = —ng.
Let us consider the possible options

1. ¢4 = C5 = 0, then the classifying equation: F,we — Frw, = 0, means F = F(w).
Given the choice of €2, &3, €2 = F,(w), & = —F¢(w). In this case Yr = F,(w)0 —
Fg((x))@n.

2. F = const. Then C1éwe — Cinw, = —Csw, &2 = C1€, & = Cyn, denote C3/Cy = 0.
The resulting differential equation is solved via the characteristic method.

g dn  dw
& w
£ _ Ji: dn _ _d_w, then wn™® = J,.
(& m) =17 F(E/m). (42)

In that case
Y = 0t0, + £0¢ + 10y + 10, + Y0y + (2 — )0,

Thus for any given initial vorticityw(&,n) # const the basis of a Lie algebra that
extends Ly is also represented by two operators:
OF (w) OF (w)
Yr = 0 — O,
oo Y ag (43)
Yy =6t0; + £0¢ + 10, + 10, + yO, + (2 — )0,

From the structure of the vorticity representation (42), let’s assume that the compo-
nents of the initial velocity field have the following representations

u=n"u(C), v=n"v((), ¢(=¢&/n (44)
wherein functions u,, v; are related by
e + (1 = 6)vy — Cuie = 0, (45)

which is a consequence of the mass conservation equation: u¢ + v, = 0. In this case the
function f(¢), which determines the vorticity in formula (42) by the known u(¢), v1(¢),
taking into account (15) is given by the equation

f(Q) = =(1 = d)ur + Cuac + vic. (46)

Using formulas (44) it is easy to show that he = h,, = 0, and, without limitation generality,
it can be set that A = 0.



3 Invariance of initial conditions

When solving the system of equations (12)—(14), which is not normal in the time variable,
it is necessary to take into account the initial conditions

r=¢ y=mn, t=0. (47)

The invariance of data (47) with respect to the operator Y simplifies the system of defining
equations (35) to the following:

¢h=Cst, € =Cié+Com+n(0), & =Cinp— Cr+m(0),
n' = Ciz + Cyy +n(t), n*=Cry— Cox+m(t),
n® = (2C, — C3)p + ngw + myy + h(€,m) +d(t), (48)
he = (C1 — Ca)u — E2ue — Eu,y + Cov,
h, = (C1 — C3)v — E2ve — Ev,) — Chu.
The classifying equation (36) here is:
(C1€ 4+ Can + n(0))we + (C1n — C2€ +m(0))w, + Csw = 0. (49)
The basic Lgy algebra consists of the following operators

Zy =n(t)0y +ni(t)x0p,  Zy = m(t)0y + my(t)yd,,

(50)
Zy=d(t)0,, n(0)=m(0)=0.
For group classification, let us write the equation (49) in the form of
(AE + Bn+ C)we + (An — BE+ D)w, + Hw =0 (51)

with any constants A, B, C, D, H. Any particular function w(&,n) with which it is
possible to expand the Lggcore, should be a solution to equation (51). The general equiv-
alence transformation consists of all the transformations corresponding to the kernel of
Lie algebras (50) and from the transformations of (a;, i = 1,...,4, — constants)

t=ait, T =aj(xcosas+ysinay)+ as,

y=ai(—xsinay + ycosas) + a4,
€ = a;(£cosay + nsinay) + as, (52)
N = a;(—&sinag + ncosay) + ay,
© = arp+d(t).
At the same time, an arbitrary element w changes like this:
w(€,n) = asw(€, 1) #0, as = const. (53)

It can be verified that equation (51) is invariant under equivalence transformations (52),
(53), supplemented by a transformation of the constants A, B, C', D, H in the form of:

A=A, B=B, C=cosaC —sinasD —asA — a,B,

_ _ 54
D = cosasD — sina,C — ayA+a3B, H = H. (54)
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Let us suppose that A # 0, B # 0 at the same time, then, according to (54), due to
shift transformations, it is obvious that C' = D = 0. In this case, the solution to equation
(51) is:

w = e/ £ ((52 + 772)1/2671 arctg(&/n)) (55)
with constants 71 # 0, 72 and an arbitrary function f.
If A#0, B =0, then let’s assume that C' = 0 and the classification equation has the

form of

§we + (N + D)w, + Hu =0 (56)

with other D and H constants. Its solution is:

=)
w=(n+y)" ( , 57
(n+73)"f 1+ 73 (57)
where 73, 74 are constants (v3 = D, 74 = —H). )
If A=0, B # 0, then let’s also take into consideration C' = 0 and the equation (51)
can be re-written as:
nwe + (=€ + D)w, + Hw = 0.

Its solution is as follows:

. 5 —¢& 2 2
W = exp |76 arcsin f@2ys8 =& =), (58)
[ ( 772+(75—€)2>]
(75 = D7 Y6 = H)
Now let A = B = 0, then the coefficients of the equation (51) are constant and its
solution is

w = e f € — 1) (59)
given that C' # 0, v = H/C, 73 = D, v = C;
w = e f (€ — 1) (60)

given that D # 0, v, = H/D, vs = D, v = C.

In each case, the operators are now presented for which the extension of the basic Lgg
algebra occurs. For this, the derivatives we, w, are calculated, which are substituted into
equation (49), and then it is analyzed taking into account the equivalence transformation
(54). This is done to represent the initial vorticity (55). It is consistent that

o2 arcta(€/n)

we = T [7277f<o + e arctg(§/n) (€ + %77)]04] ’
2 arctg(§/m) are
Wy = o [—72€ F(C) + pe &/ (n — )]

given that p = (&2 + n?)Y/2, ( = pena<tel&/n  Substitution into the classifying equation
(49) leads to the equality

|(12Ca + Ca)p? +72[n(0) — m(0))¢] £(0)+

+[(C1+ € + [0(0) = m(O))¢ + [m(0) + 7an(0)]u] £(0) = 0.
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Since f is a function of a variable (, the last equation will be satisfied, when either
n(0) = m(0) =0, or Cy = —C1, C3 = 7 C1, m(0) = —n(0), 71 = 1. In the first case, the
function f satisfies the equation

(C1 + o) fe + (1202 + Cs) f = 0, (61)

in the second one —
Cfe+m2f =0. (62)
If in equation (61) the function f is arbitrary, then Cy = —C4, C3 = 7»C} and the
core of Ly (50) is extended by the operator

Zy =2t 0+ (§ = 1m0+ (E+ )0y + (x — y)Op+(x +4)0y + [(2 — 72)0 + (£, 1)]0,,

he = (1 = y2)u — (§ = n)ug — (§ + n)uy — v, (63)
hy = (1 =72)v = (£ = n)ve — (£ +n)vy + u.
The assumption f = 1 (the transformation of stretching (53) for w is taken into
account)is classifying. Here C3 = —v2Cy and two more are added to the operator Z:

Zy = &0¢ + 10y + Y0y + (20 + h(&,n)0,, (64)
he = u — &ug — nuy,  hy = v — §ue — Noy;

ZS = _72tat + 7785 - 5817 + yax - xay + [7290 + h(fa 77)]8@7 ( )
65
he = you — nue + §uy +v,  hy = Y20 — nue + §u, — .
In general, C; + Cy # 0, 12Cy + C5 # 0, the function f is equivalent to f = (78, g # 0.
At the same time, C5 = —v3C1 — (71 + 75)C> and the following is added to the operator
(63)
Z4:—78755t+585+773n + $8x+yay + [(2 + ’78)%0 + h(g, 77)]8@

(66)
hg = (1 + ’Yg)u - £U£ — NUy, h77 = (1 + ’}’8)11 - 51}5 — NUy;
Zs = —=(72 + 18)t0 + 10 — £0y + yOr — 20y + [(v2 + 8) 0 + h(&, )]0y, o)
67
he = (2 +y8)u — nue + §uy + v, hy = (2 + 78)v — nue + vy — u.
For equation (62), is obtained f = (72, where 72 is an arbitrary constant,
¢ = pexp(arctg({/n)). Permitted operators have the form of Z; and
Zs = a(0)0 — a(0)0, + a(t)0, — a(t)dy + [ar(x +y) + (&, 1)]0,, )
68

he = —a(0)ue + a(0)u,, h, = —a(0)ve + a(0)v,

with an arbitrary smooth function a(t).

For the function of the form (57), the following result is obtained: if f is arbitrary,
then only Lgg is allowed; with f = 1 (then 4 # 0) the Loy core is expanded by the
operator

Zy=—YatOp+ &0+ (n+3) 0y + 20, + (y + v3a(t)) 0y +[(2+74) o +v3ay+h (€, )]0y, )
69
he = (1 +y3)u — Eue — (M +v3)uy,  hy = (1+73)v — Eve — (N + 73)v,
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with function a(t) such that a(0) = 1.
If f # const, then f = ({ + )" and the operator is added to Lgg

Zs=—60: —Y6a(t)0y + Oy + a(t)0p+(—Yearx + ary + h(E,7))0,, -
70
he = —yeue — Uy, hy = —Y6ve — vy, a(0) = 1.

For the initial vorticity defined by the formula (58), for f = 1 there are additional
operators

Zyg= (& = 75)0: + 10y + (x — ys5a(t)) 0 + YOy + (200 — Ysa:x 4 h(§,1))0,, -
71
he =u— (§ —v5)ue —nuy,  hy =v— (§ —75)ve — Nuy;

Z10="6t0 + 19— (§ = 75)0 + ¥ — (y — 15a(1))9y + (ysaey + h(€, )0, )
he = —y6u — nue — (§ = V3)uy + v, hy = =60 — e — (£ —75)vy — u, a(0) = 1.
When f # const, it can be seen that f = ({ —~+2)"7, 77 # 0, and the Lo core expands
via the operators

Zh1=—=277t0; + (§ — 75)0c + 10, + (v — y5a(t))0x + Y0y + [2(v7 + 1) — ysaix + h(&,1))0,,

he = (297 + Du— (§ = y5)ue — nuy, by = (297 + D)v — (§ — 75)ve — noy;
(73)
Z1y=76t0 + 10— (§ — 75)0p + y0r — (x — 15a(t))0y + (=Y + sy + h(€, 1))y, -
74
he = you — nue + Euy + v, hy = Y60 — nue + v, —u, a(0) = 1.
To represent (59) of the function w it is seen that for f = 1 (here 77 # 0) one additional
operator
Zyg = 7ty + 0c + a(t)0y + (=77 + @) 0,, 75)
75
he = —y7u —ug,  hy = —y70 — vg, a(0) = 1.
When f # const (72 + 72 # 0), there must be Cy = 0 and two possibilities: 1) 7 = 0;
2) C; = 0. In the first case, there are two operators

Z1y = —10%8t0 + O + a(t)0, + (710789 + arx + h(&,n))0,, (76)
76
hg = Y1078 — Ug, hn = Y1078V — Ug,

Z1s = 71079t0; + Oy + a(t)0y + (—ni0vep + ary + h(&,1))0,, o
7
he = —y10You — Uy,  hy = —Y10790 — vy, a(0) = 1.
Moreover f = e, y19 # 0, ¢ = 78 — Vo).
If f=(C+ 1), 72 #0), then at v, = 0 and 79 # 0 the operators are present

Zvg = —712t0y + £0¢ + a(t)x0y + [(2 + Y120 + arx + W(E, 1)]0,, 78)
78
he = (1 +yi2)u — Sug — nquy,  hy = (14 112)v — g — nuy;

Zvr = O — g 0y + a(t)0r — 75 1sa(t)0y + (asx — 75 sary + h(€, 1))y, -
79
he = —ug — Y9 sy, by = —ve — ¥5 sy, a(0) = 1.



When ~;; # 0) have the following operators are present

Zhs = —atOy + E0¢ + (1 — 79 '711) 0y + 105 + [y — 79 " y110(t)]0y+
+(00, — Vo 'yirary + h(€,1))0,,

he = (1 + y1ou — Eue — (n — 79_1711)%7, hy = (14 y120 — Eve — (0 — 79_1711)%, a(0) =1;
(80)

Zhg = 0 + a(t)0, + 75 'ysa(t)0y + 19 180, + [ve sy + M(E, 0)]0,, .
81
he = —ug — 75178Un, hy = —ve — 751’78% a(0) =1.

Remark 2 For potential motions, u = @o¢, v = oy, and the replacement ¢ — ¢ + ¢g
allows us to consider in the system (12), (13) uw = v = 0. From the system of defining
equations (35) the basic Lie algebra of operators are obtained

p(t)0r — e (£) 0y, YOy — 0y, n(t)0y + ny(t)0,, m(t)0y + my(t)0,,

d(t)a@, wnag - ¢58n, f&g + 77877 + x&x + yay + QQOQO
with arbitrary class C* functions u(t), n(t), m(t), d(t), ¥(&,n).

4 Arbitrary Lagrangian coordinates

The Cauchy problem (4), (5) defines the Lagrange variables &, 7, as Cartesian coordinates
of liquid particles at the initial moment of time. However, instead of &, 1, distinguishing
one particle of fluid from another, it is possible to take any values of a, b, related to &, n
corellations

£:f(a>b)7 77:9(@7@7 J:fagb_fbga%o' (82)

Thus, the region (2yis one-to-one mapped onto the region €2, of the changes of the variables
a, b. The system (12)—(14) is equivalent to the system

JX, =Yy (Po + Uy) — Yo(Py + V3); (83)
JYt = _Xb(q)a + Ul) + Xa(q)b + ‘/1)7 (84)
XaY;) - be;z = J(CL, b) (85)
with the initial data
X|,_, = fla,b), Y|_, = g(a,b). (86)

New ”velocities” Ui (a,b), Vi(a,b) are connected to u(&,n), v(&,n) in the following way:
Ui(a,b) = fau(f(a,b), g(a,b)) + gav(f(a,b), g(a, b)),

‘/i(av b) = fbu(f(a7 b>>g(a> b)) + gbU(f<CL, b)ag(a? b))

If in the system of equations (83)—(85) the replacement is made X (a,b,t) = z(&,n,t),
Y(a,b,t) = y(&,n,t), (a,b,t) = (&, n,t), where the variables are £, n given by equality
(82), then the functions z, y, ¢ are solutions of system (12)—(14) and by (85) =z = &,
y =n at t = 0. Therefore, the Lie groups of the transformations of the system (12)—(14)

(87)
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and (83)—(85) are similar, therefore the group classification of the system (83)—(85) can
be omitted. Only a general view of the operator of this system is given:

Vi =&N(t)0; + £ (a, 0)0, + & (a,b)dy + ' 0x + 0Oy + 1° 0,

where £1(t), nt, n?, n® are the same as for the operator Y of the system (12)—(14). The
coordinates £#(a,b), &3(a,b) satisfy the defining equations

(JET)a + (JE))p = 2C1 T, .
E(wi/J)a+ & (Wi /)y + Cawr /] =0,

where wy(a,b) = J(a,b)w(f(a,b),g(a,b)) = Vig—Urp — is the "vorticity” in the variables
a, b.

Despite the similarity of the Lie groups of systems (12)—(14) and (83)—(85), the study
of the latter is sometimes more preferable from the point of view of constructing exact
solutions. This is due to the arbitrariness of the transformations (82): if an exact solution
is found in the variables a, b, then in variables &, 1 There is generally no analytical
expression for such a solution. There is only its parametric representation and a, b are
parameters. This situation often arises in the theory of the Theory of ordinary differential
equations. One well-known example of Gorstner waves on water is given in [4].

The representation of (82) has the form of

1 1
{=a+ePsin(ka), n=b—ePcos(ka), J=1-e" (89)

and when £ > 0, b < by < 0 it is univalent. It is clear that there are no explicit
dependencies of a, b from &£, n. Still, the formulas

1 1
X=a+ z e sinfk(a+ct)], Y =0b- % e coslk(a + ct)],

kb (90)
¢ = - {sin[k(a + ct)] — sin(ka)}
are the exact solution of the (83)—(85) system (k, ¢ are constants).
Real motion vorticity in variables a, b is equal to
2kcekt
W = _1——62% . (91)

According to formulas (16) and (89) the representation for pressure in the same variables
(here g is the acceleration of gravity) is obtained

1 1
p=—gb+ B c?e? 4 z (g — 2kc?)er” coslk(a + ct)] + const.

It is required that the image of the line b = by under the mapping (89) be a free boundary.
From the expression for the pressure it can be seen that for this it suffices to put ¢® = g/k
and choose the appropriate integration constant:

1
p=g(bp—0)+ 5 02(€2kb — e%bo). (92)
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Formulas (89), (90), (92) with the constant ¢ chosen above determine the wavemotion,
stationary in the coordinate system, which moves with speed —c along the x axis. The
free boundary b = by with a fixed ¢ is a trochoid with a wavelength of 27 /k (a curve drawn
by a point of a circle of radius R = k~1e*, rolling in a straight line). The equality says
that the Gorstner waves are always are whirling movements. The vortex is maximal on
the free boundary and decreases exponentially with depth.

When b > 0, the mapping (89) ceases to be univalent. Free border will be a trachoid
with loops and such a decision has no physical meaning. The limiting case by = 0 gives
the free boundary equation at ¢ = 0 in the form of a cycloid

1 1
r=a-+ e sin(ka), y=0b— P cos(ka).

If ka = (2n+ 1)m (n is integer), this cycloid has cusps, i.e. here there are singular points
on the free border.

In conclusion, let’s point out that the Gorstner waves are invariant solutions of the
system (83)—(85) with respect to a two-dimensional subalgebra (¢~'d; —, —dx; Js) where
J=1-e" f=a+ktefsin(ka), g = b — k~1e* cos(ka), see formula (89). “New”
initial velocities are:

Uy = ce®® + ce® cos(ka), Vi = ce™sin(ka),

where ¢ = (g/k)Y/2. Let us note that Uy, + Vi = 0.
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