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Abstract.  Since a satellite orbit is quite smooth, polynomial techniques can be widely used for 

the interpolation of satellite positions in real-time applications. The paper is devoted to the 

comparison of different approaches to the polynomial interpolation of the trajectory of a satellite 

using available data.  All approaches have been examined for test and actual data. 

Introduction 

At the present time, the global navigation satellite systems (GNSS), such as GPS or GLONASS, are 

mainly used to determine location, exact time and other traffic parameters for land, water and air objects. 

Even the simplest GNSS consumer receivers have to calculate the current position of each visible 

satellite based on data obtained from these satellites. Moreover, there are many tasks associated with 

accurate positioning of objects, cartography, geodesy, tectonics monitoring, weather forecasting, which 

require precise satellite ephemeris. Thus, most navigation problems are based on the definition, 

prediction, and correction of satellite trajectories [1–2]. 

For applications, navigation systems typically provide several data sets for determining the position 

of a satellite and its orbital velocity. These are almanac data, broadcast data, ultra-rapid data (observed 

and predicted half), rapid and final satellite ephemerides and satellite clocks. These data differ in 

accuracy and time when they become available [3–4]. For example, the almanac data are updated at 

least once every few days, but their accuracy is about several kilometres. The broadcast ephemerides 

are based on observations at the monitoring stations at the corresponding time interval [5], they are 

known with an accuracy of 1 m in real-time transfer. The most accurate orbital information is provided 

by the data set in the form of final ephemerides (~0.025 m) and accompanying data. These are the post-

mission satellite orbits, obtained by collecting data from stations around the world.  

Files with these data are freely available for all users, for instance, refer to International GNSS 

Service (IGS) for GPS and GLONASS global navigation satellite systems and Galileo (Europe), BeiDou 

(China), Quasi Zenith Satellite System (Japan), and IRNSS (India) regional ones [4]. These files are 

presented in a special sp3 version c format and contain satellite positions and a clock correction at 

equidistant epochs, as well as optional additional records about satellite velocities, standard deviations 

of positions and velocities, the correlation coefficients between the satellite position and the satellite 

clock correction values, the correlation coefficients between the satellite velocities and clock-rate 

correction values. The typical spacing of the data is 15 minutes, which is sometimes not sufficient for 

applications. 
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The position of a satellite between two given epochs may be obtained by interpolation. The most 

rigorous approach to interpolation was discussed in [6] and is based on solving the differential equation 

of a satellite motion in the perturbed gravitational field. But this approach is more complicated than the 

polynomial one. Most studies use the Lagrange polynomials of the 9th or 12th degree [7]. In this case, 

using the final ephemerides, one can achieve an interpolation error about 1 cm on time interval of 30 

minutes [7–8]. Feng in [9–10] compared three interpolation methods: Chebyshev, Neville and 

trigonometric ones. The interpolation results for the first two methods are the same as in the case of the 

Lagrange polynomial. The 9th degree trigonometric method gives an accuracy about 5 cm, and the 19th 

degree trigonometric method (for full satellite orbit) allows one to obtain an accuracy about 1 cm. The 

disadvantage of this method is a large interpolation error near the ends of the data range. In [11], an 

algorithm for real-time processing software that calculates the position and velocity of GPS satellites 

from both broadcast and final ephemerides was tested for Lagrange polynomials of different degrees.  

The Lagrange interpolation is used because a satellite ephemeris is the most available information. 

However, in some applications, along with ephemeris, satellite velocity and even acceleration can be 

known. In these cases, interpolation is possible with other polynomials, including the Hermite approach. 

 In the present research, a series of interpolation patterns, based on the Lagrange and Hermite 

polynomials, is tested. 

Interpolation patterns  

Consider the following polynomial interpolation problem. Divide a segment [ ]0 ,T T  by equidistant time 

instants T0=t0<t1<…<tN=T, 
0       it t it= +  where 1  / Nt = is a time step, 2N і , N+1 is a number of 

interpolation nodes in a template. Let the values of a grid-function ( )if t  and, possibly, its first and 

second order derivatives ( )if tў and ( )if tўў  be known. Moreover, let 3K values of the grid-function and 

its derivatives be only given where 1 3К N KЈ + Ј . Compare the accuracy of interpolation 

polynomials of degree 3 1K - , based on the following set of templates (figure 1).  

 

Figure 1. The interpolation templates for polynomials of the 11th degree. 

Each of these templates has some advantages and disadvantages. Template 1 is a Lagrange 

polynomial template. This template is the widest among all considered ones for the same time step, i.e., 

to approximate the full orbit, the smallest number of the interpolation polynomials is required. To 

construct the Lagrange polynomial, only the function values are needed, which is preferable in many 

applications approximating the satellite positions. The main disadvantage of Lagrange polynomials is a 

loss of accuracy at the ends of the data range.  

Template 2 is a full Hermite polynomial. To construct it, we need the values of derivatives of the 

function. When we interpolate satellite positions, the derivatives represent the satellite velocity and 

acceleration, which are not always possible to be calculated with sufficient accuracy. However, in some 

cases they are available. Template 2 is the shortest among all considered ones for the same time step, 

i.e., to approximate the full orbit, the largest number of the interpolation polynomials is required.  
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Templates 3 and 4 are modifications of template 2, where the required number of the derivative 

values is reduced with increasing the width of the template. At the same time, these templates improve 

the approximation at the ends of the data range as compared to the Lagrange polynomial and provide a 

smooth splicing.  

For templates 5.1 and 5.2, the interpolation is reasonable only in the interval 
1,k N kt t - +

й щ
л ы, where k is 

a parameter of template. In this case, the gluing of the neighboring templates should be carried out at 

the ends of this interval (at the nodes 
kt  and 1N kt - + ). Moreover, to improve the smoothness of gluing at 

these points, not only the values of the function, but also the values of its derivatives are used. The 

number of insignificant nodes (parameter k) can vary.  

In figure 1, the templates for the 11th degree polynomials are shown, but the result can be generalized 

to polynomials of any degree 3K-1. For an interpolation polynomial of degree n constructed using the 

jth template, j = {1, 2, 3, 4, 5.1, 5.2}, we introduce the notation ( )n

j tj .    

Results and discussion  

To complete covering an orbit, it is necessary to use several glued templates, and an interpolation 

polynomial is constructed on each template independently. To provide smoothness of the approximation 

of the satellite trajectory, the neighboring templates have to intersect at least at one node. The values of 

the interpolation polynomials and, possibly, their derivatives (if they are used in the template) coincide 

at the gluing nodes. For templates 5.1 and 5.2, the gluing is performed at the ends of a significant interval 

1,k N kt t - +
й щ
л ы, i.e., the interpolation polynomials have 2(k+1) common nodes. 

Test 1. We compare the accuracy of the interpolation polynomial constructed with the use of the 

templates for the test function ( ) sinf t t=  on the interval [ ]3,7 3t p pО , where the function is 

nonsymmetric.  

Since the goal is the interpolation of satellite positions, additional restrictions have to be put in the 

interpolation problem. Firstly, the most accurate satellite positions are spaced at 15 minutes intervals. If 

we coarsely estimate the circuit time as 12 hours, then the step in the template should not be less than 

24p . In numerical experiments, the step 6p  is chosen, which corresponds to the satellite orbital 

period of little less than an hour. Secondly, the expected interpolation error for the test function should 

not exceed 10–12, which corresponds to the accuracy of a fraction of mm of the orbit. 

The interpolation errors sin ( )n

jt tj-  are shown in figure 2 for polynomials constructed with the use 

of all considered templates. For a fixed time step, the templates are of different widths, and the Hermite 

polynomial is of the smallest template width. In numerical experiments, the interpolation intervals for 

each case were chosen in such a way that all of them contain the Hermite interpolation interval in the 

middle of their own one. The errors of all polynomials are shown in figure 2 only on the segment that 

coincides with the Hermite polynomial template. Observe that the Hermite polynomial of the 11th 

degree gives the smallest error among the examined versions. Moreover, the interpolation polynomials 

of the 14th degree constructed with the use of templates 4 and 5.1 give the error of the same order as the 

Hermite polynomial. 

The derivative approximation error ( )11

2cos ( )t tj
ў

-  is shown in figure 3. The interpolation on the 

interval [ ]3,7 3p p  was constructed with four Hermite 11th degree polynomials for time step 6p . 

These polynomials are glued at the ends of the templates. We can see that the derivative approximation 

error does not exceed 
1110-

. 

Test 2. The recovery of the satellite position from the data calculated using a mathematical model. 

We use the initial position and velocity of the satellite from a sp3 file [4]. Further, according to the 

model of satellite motion, taking into account the non-sphericity of the geopotential and the influence 

of the Sun and the Moon, the ephemeris, velocity, and acceleration of the satellite were calculated. 
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According to this data, the Hermite polynomial of the 11th degree was constructed for time step of 

45 minutes. The interpolation error of the x-coordinate is shown in figure 4. Here we use four glued 

Hermite polynomials (13 nodes) to approximation 9 hours of the satellite motion. The graph shows that 

the error does not exceed a fraction of mm. The differentiation of the interpolation polynomial allows 

one to obtain the approximation of the satellite velocity at the same calculated interval within 1 mm/s. 

 

Figure 2. The interpolation error sin ( )n

jt tj- for polynomials constructed with the use of all 

considered templates (figure 1),   / 6t p= , the segment is [ ],3 2p p . 

  

Figure 3. The derivative approximation error 

( )11

2cos ( )t tj ў-  of 4 gluing Hermite 

polynomials of the 11th degree,   / 6t p= , the 

segment is [ ]3,7 3p p . 

Figure 4. The interpolation error for the x-

coordinate for the glued Hermite polynomials 

of the 11th degree for time step of 45 minutes. 

The data are calculated using a mathematical 

model. 

Conclusions  

Although the interpolation using the Hermite polynomial gives the best approximation of ephemeris, it 

has some obvious drawbacks. First, it is necessary to know the values of first and second order 

derivatives at each interpolation node, which are difficult to obtain using the standard data on the 

position of the satellite. Second, the Hermitian template is the shortest among the considered ones for 

the same template-size.  

In some applications, along with ephemeris, satellite velocity and even acceleration can be known or 

may be recovery from available data. In the absence of data, it is recommended to use templates 3 or 5, 

which, within reasonable accuracy, expand the template and do not require the values of derivatives at 

each node.  
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