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Abstract 22 

The phase formation sequence was studied in the preparation of solid solutions of RE2O2S:  n’ (RE =  a, Y; 23 

 n’ = Ce, Eu, Dy, Er) by the reduction of the match co-precipitated sulfates, followed by sulfidization of the 24 

reduction products. For uniform distribution of cations in the matrix, a method of chemical homogenization 25 

was used, consisting in the preparation of an aqueous solution containing all the necessary cations and their 26 

subsequent precipitation in the form of sulfates. The use of sulfates as precursors facilitates the process of 27 

obtaining solid solutions of oxysulfides, since sulfates already contain SO4
2-

-ions. The phase and 28 

morphological certification of the obtained solid solutions was carried out. The study of steady state 29 

luminescent properties demonstrated characteristic bands which are assigned to 4f-4f and 5d-4f transition. 30 

The obtained results showed the possibility of applying the method to synthesize optical ceramics based on 31 

solid solutionsRE2O2S: Ln (RE = La, Y; Ln = Ce, Eu, Dy, Er). 32 

 33 

 34 

Keywords: oxysulfides, sulfates, rare-earth, reduction, optical ceramic, luminescence 35 

 36 

1. Introduction 37 

Oxygen-containing compounds of rare-earth elements have long attracted the attention of researchers 38 

due to their effective luminescent properties, which have found application in many optical systems [1-39 

6].Despite the fact that the luminescence is mainly determined by the nature of the substituting ion, the host 40 

matrix into which this ion is embedded influences on the emission lines intensity through its crystal field [7-41 

10]. Lanthanide ions can emit light in the near UV, visible and infrared regions of the spectrum. Each ion 42 

has a characteristic absorption and emission spectrum. Ln
3+

 radiationis characterized by high color purity; 43 

therefore, materials activated by lanthanides are attractive for creating LEDs, fluorescent lamps, plasma 44 

displays, and active media for solid-state lasers [11-13]. 45 

Activated materials based on oxisulfides of rare-earth elements are widely used in various fields [14-46 

22]. However, in recent years, only laborious, poorly reproducible methods of producing nanoparticles are 47 

*Revised Manuscript (corrections hidden)
Click here to download Revised Manuscript (corrections hidden): RE2O2S_Ln_2 (Corrected manuscript KH).docx

http://ees.elsevier.com/yjssc/download.aspx?id=1040335&guid=4cb46cf1-86f2-44b1-9a3b-012b64cda80f&scheme=1


2 
 

described in the literature for these objects. At the same time, the need for relatively simple synthesis 1 

methods allowing large batches of optical ceramics does not decrease[23–27]. 2 

 Thermal decomposition methods are convenient for obtaining materials with different properties [28-3 

32]. In the preparation of oxysulfides, particular attention is drawn to methods for reducing sulfur containing 4 

compounds to higher oxidation degrees. Compared with solid-phase methods, the recovery method differs in 5 

manufacturability, reproducibility, and the ability to produce several tens of grams of a product at once [33–6 

39]. 7 

 Thus, the aim of the work is to study the chemistry of reactions in the sequential processing of co-8 

precipitated sulfates of rare earth elements in the atmosphere of H2, H2S to obtain activated oxysulfides and 9 

investigate the morphology of the obtained reaction products and their luminescent properties. 10 

 11 

2. Materials and methods 12 

2а. Preparative Methods 13 

Powders of co-precipitated sulfates were obtained by precipitation from a nitrate solution with concentrated 14 

sulfuric acid. For the synthesis, high purity reagents were used: Ln2O3 (≥99.99%, ultrapure, TDM-96 Ltd. 15 

Russia). Concentrated nitric acid solution (C(HNO3) = 14.6 mol/L, ultrapure, Vekton Ltd., Russia), 16 

concentrated sulfuric acid solution (C (H2SO4) = 17.9 mol/L, ultrapure, Vekton Ltd., Russia). Weighing was 17 

carried out on an analytical balance with an accuracy of 0.1 mg. Before weighing, the oxides were calcined 18 

in a muffle furnace at a temperature of 1000°C for 12 hours to remove sorbed gases and products of their 19 

interaction with oxides (Ln(OH)3, Ln2(CO3)2). Acid solutions were measured using glass measuring 20 

cylinders with an accuracy of 0.1 ml. 21 

The calculated weighed amount of oxides with a total weight of 5.0 g was placed in a 100 mL glass round-22 

bottom flask, then 7.0 mL of a concentrated solution of nitric acid was poured in small portions. The 23 

reaction mixture was heated on a mantle until the oxides were completely dissolved. As a result, a nitrate 24 

solution was obtained with evenly distributed cations: 25 

0.99RE2O3 + 0.01Ln2O3 + 6HNO3 → 2(RE0.99Ln0.01)(NO3)3 + 3H2O (1) 26 

After cooling the solution, 3.0 ml of concentrated sulfuric acid was poured in small portions to it, avoiding 27 

strong heating of the reaction mixture. As a result, a precipitate of co-precipitated sulfates and their 28 

crystalline hydrates forms: 29 

2(RE0.99Ln0.01)(NO3)3 + 3H2SO4 + nH2O → (RE0.99Ln0.1)2(SO4)3·nH2O + 6HNO3 (2) 30 

After carrying out the precipitation reaction, the reaction mixture is distilled off to the dry residue. The 31 

obtained polycrystalline product is additionally calcined in a tubular furnace at a temperature of 500°C to 32 

remove sorbed moisture and acids. Later, the powder is annealed at the same temperature for 7 days, in 33 

order to form an acceptable crystallite structure. 34 

This method of chemical homogenization has a number of significant advantages: 35 

- In the process of synthesis, no cations other than Ln
3+ 

are added to the reaction mixture, which excludes 36 

their replacement and the formation of defects in the crystal structure. 37 

- Sulfates precipitate from a homogeneous nitrate solution, which ensures high stoichiometry and uniform 38 

distribution of cations within the crystal lattice. 39 

- Conducting the reaction in an environment of concentrated sulfuric acid allows to form the structure of 40 

anhydrous sulfate at the earliest stages. 41 

The reduction of sulfates in a hydrogen atmosphere was carried out on the apparatus shown in Figure S1. 42 

High purity hydrogen was obtained by the electrolytic method in the SPECTR - 6M hydrogen generator. 43 

The temperature in the furnace was set using a microprocessor controller. The temperature in the furnace 44 

was controlled using chromel-alumel thermocouple. A weighed amount of co-precipitated sulfates was 45 

placed in a quartz reactor, and for 30 minutes it was purged with hydrogen from a generator at a rate of 6 46 
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L/h. After that, the reactor was placed in a heated vertical furnace and kept for the required amount of time. 1 

After completion of the process, the rector was removed from the furnace and cooled to room temperature. 2 

Processing of the reduced products in an atmosphere of hydrogen sulfide was carried out on a similar setup 3 

(Fig. S2). The difference lies in the fact that before being fed into the reactor, the hydrogen passes through a 4 

flask with molten elemental sulfur and heated to 350 °C. As a result, hydrogen sulfide is formed: 5 

H2 + S → H2S (3) 6 

Consequently, it is not a hydrogen inflows the reactor, but a hydrogen sulfide. 7 
 8 

2b. Methods of physical-chemical analysis 9 

X-ray phase analysis (XRD) was performed on a BRUKER D2 PHASER diffractometer with a linear 10 

detector LYNXEYE (CuKα radiation, Ni-filter). Rietveld refinement of all six samples was performed by 11 

using TOPAS 4.2 [40]. Almost all peaks were indexed.  12 

Electron-microscopic analysis was carried out on electron microscope JEOL JSM-6510LV. X-ray energy-13 

dispersive analyzer was used to register X-rays at element spectrum plotting in selected sample surface 14 

areas. The inaccuracy in element content determination was equal to ±0.2%. 15 

All measurements of the luminescent properties were carried out on a research-grade spectrofluorimeter. 16 

Horiba JobinYvon Fluorolog-3 equipped with double monochromators for excitation and emission channels 17 

and 450 W xenon lamp as an excitation source. 18 

 19 

3. Result and Discussion 20 

 21 

3a. Synthetic experiment 22 

Detailed consideration of the chemical transformations taking place during the transformation of co-23 

precipitated sulfates into the corresponding solid solutions of oxysulfides was made on the basis of two 24 

model systems La2(SO4)3:Dy
3+

 and Y2(SO4)3:Er
3+

. The results obtained were used to synthesize all other 25 

solid solutions, which are reported in this work. 26 

The carrying out of the co-precipitation of sulfates and the subsequent annealing led to the formation of 27 

structures of solid solutions of sulfates in which the doping ion is fullyincorporated into the crystal lattice of 28 

the matrix and occupies the crystallographic positions of the host cation. According to X-ray diffraction 29 

data, all samples of co-precipitated sulfates are single-phase (Fig. 1a, b). There is a slight shift in the unit 30 

cell parameters caused by the difference in the radii of the cations of the matrix and the dopant. 31 

The appearance of gaseous reduction products was recorded at a temperature of 570°C. In this connection, 32 

sulfate reduction was carried out at t = 600°C. At this temperature, after 60 minutes of the process, the 33 

products mainly consist of 4 phases: (RE0.99Ln0.01)2(SO4)3- (RE0.99Ln0.01)2O2SO4 - (RE0.99Ln0.01)2O2S - 34 

(RE0.99Ln0.01)2O3 (Fig. 1c, d).There was an incomplete transformation of the initial sulfates into the reaction 35 

products. The following chemical equations correspond to the formation of the corresponding reduction 36 

products: 37 

(RE0.99Ln0.01)2(SO4)3 + 6H2 → (RE0.99Ln0.01)2O2SO4 + 2S + 6H2O (4) 38 

(RE0.99Ln0.01)2(SO4)3 + 10H2 → (RE0.99Ln0.01)2O2S + 2S + 10H2O (5) 39 

(RE0.99Ln0.01)2(SO4)3 + 5H2 → (RE0.99Ln0.01)2O3 + 2SO2 + 5H2O (6) 40 

(RE0.99Ln0.01)2O2SO4 + 4H2 → (RE0.99Ln0.01)2O2S + 4H2O (7) 41 

After 10 hours of carrying out the process at a given temperature, polycrystalline products consist of two 42 

phases: (RE0.99Ln0.01)2O2S, (RE0.99Ln0.01)2O3 (Fig. 1 e, f). The absence of compounds containing sulfur in the 43 

highest degree of oxidation of in the synthesis products indicates on a complete redox transformation. In all 44 

samples, the phase output (RE0.99Ln0.01)2O2S was not lower than 80%. Thus, the stage of sulfate reduction in 45 

a hydrogen atmosphere allows the formation of two-phase polycrystalline intermediates with a predominant 46 

content of the oxysulfide phase, which should greatly facilitate the sulfidation procedure. 47 
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The interaction of two-phase intermediates with hydrogen sulfide at a temperature of 800 ° C for 5 hours 1 

leads to the formation of single-phase powders (RE0.99Ln0.01)2O2S (Fig. 1 g, h). The transformation 2 

corresponds to the transformation of the oxide phase to the oxysulfide under the action of a mild sulfiding 3 

agent H2S: 4 

(RE0.99Ln0.01)2O3 + H2S → (RE0.99Ln0.01)2O2S + H2O (8) 5 

Sulfate powders, formed predominantly by loose agglomerates (Fig. 2, a) with sizes up to 10 µm. The 6 

resulting oxysulfide powders have a more distinct cut shape, a denser structure and a uniform size 7 

distribution (Fig. 2, a). The morphological transformation is evidently due to the elevated temperatures and 8 

the diffusion character of the reduction and sulfidation processes.  9 

The enlargement obviously occurs as a result of the desire of the system to lower its energy. What 10 

corresponds to a decrease in the surface area of the polycrystalline samples. Particle cutting appears as a 11 

result of high rates of chemical reactions and rapid mass transfer. The indicated tendency to particle 12 

aggregation is often observed during similar processes [27, 32-35]. 13 

 14 

3b. Structural and spectroscopic properties 15 

Crystal structure of both hosts belongs to P-3m 1 space group of trigonal symmetry class. Y and La occupy a 16 

single inequivalent site. In both oxysulfides the local environment of them is a distorted polyhedron with 17 

seven vertices, four of them being oxygen ions and three being sulfur ions. Layered structure of oxysulfides 18 

implies that sulfur and oxygen are positioned in opposite hemispheres of the local environment of either Y 19 

or La. Rare-earth doping ions are expected to occupy Y and La sites, and their local environment is 20 

determined by the structure host, with the local symmetry C3v. Therefore, absence of inversion symmetry 21 

must be pronounced in optical spectra of doping ions. Variation of luminescence properties of doping RE 22 

ions in one host with respect to another is usually ascribed to the change of the extent of inversion symmetry 23 

violation. Examining the geometry of local environment of RE ion in Y2O2S and La2O2S (Fig. 3) we observe 24 

that both environments are geometrically identical. 25 

The excitation and emission spectra of RE2O2S (RE = Y, La) activated by 1% of Dy
3+

 ions are shown in 26 

Fig. 4. The observed spectra exhibit characteristic intra-configurational 4f-4f transitions. Excitation 27 

spectrum of Y2O2S:Dy
3+

 monitored at 579 nm (
4
F9/2–

6
H13/2), displays following transitions: 

6
H15/2–

4
P7/2 (355 28 

nm), 
6
H15/2–

4
P5/2 (369 nm), 

6
H15/2–

4
I13/2(388 nm), 

6
H15/2–

4
G11/2 (427 nm), 

6
H15/2–

4
I15/2 (451 nm) and 

6
H15/2–29 

4
F9/2 (479 nm). The emission spectrum Y2O2S:Dy

3+
 sample is dominated by green-yellow band (579 nm) 30 

corresponding to the hypersensitive 
4
F9/2–

6
H13/2 transition. Other observed lines are attributed to the 

4
I15/2–31 

6
H15/2 (457 nm), 

4
F9/2–

6
H15/2 (487 nm), and

4
F9/2–

6
H11/2 (670 nm) transitions. It is well-known that 

4
F9/2–

6
H13/2 32 

is the forced electric dipole transition, which is hypersensitive and its intensity can vary by orders of 33 

magnitude depending on the local site symmetry, whereas 
4
F9/2–

6
H15/2 transition intensity is insignificantly 34 

affected by the environment [40-42]. The excitation and emission spectra of La2O2S:Dy
3+

 are similar to the 35 

Y2O2S:Dy
3+

 ones. Small blue shift of bands and redistribution between them were observed. So, the most 36 

prominent transitions in excitation and emission spectra of La2O2S:Dy
3+

are centered at 353 and 576 nm, 37 

respectively. Observed luminescence spectra of Dy ion are consistent with the concept that they occupy 38 

Y(La) sites with the local symmetry C3v. 39 

To compare the crystal structure and crystal field of Y2O2S:Dy
3+

 and La2O2S:Dy
3+

 powders, we calculated 40 

ratio (RDy) between 
4
F9/2–

6
H13/2 and 

4
F9/2–

6
H15/2 intensities. This parameter is similar to the well-known 41 

asymmetry ratio for Eu
3+

 ions [43, 44]. RDy value give information about the local surrounding and 42 

environmental changes near the Dy
3+

 ions. The higher the calculated parameter is, the more apart from a 43 

centrosymmetric geometryluminescent center is located. It is well-known that if Dy
3+

 is located at low 44 

symmetry without the inversion symmetry, the yellow emission is the most intense of all the transitions, as 45 

is the case with our synthesized nanocrystalline phosphors [45]. Experimental RDy values for Y2O2S:Dy
3+

 46 
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and La2O2S:Dy
3+

 samples are 3.13 and 4.65. In view of geometrical identity of local environments, this 1 

difference must be ascribed to the interplay between ionic radii of Y and La and the unit cell parameters, i.e. 2 

closer ligands at the same degree of inversion symmetry violation. 3 

The steady state luminescence spectra of RE2O2S (RE = Y, La) powders doped with 1% of Er
3+

 ions are 4 

presented in Fig. 5. The excitation spectrum of Y2O2S:Er
3+

was monitored at 549 nm(
4
F9/2–

4
I15/2) within 5 

spectral range of 330–530 nm. It consists of 
4
I15/2–

4
G7/2 (360 nm), 

4
I15/2–

4
G9/2 (367 nm), 

4
I15/2–

4
G11/2 (379 6 

nm), 
4
I15/2–

2
H9/2 (408 nm), 

4
I15/2–

4
F3/2 (446 nm),

4
I15/2–

4
F5/2 (453 nm),

4
I15/2–

4
F7/2 (491 nm), and 

4
I15/2–

2
H11/2 7 

(522 nm).The emission spectrum includes narrow bands, which are assigned to the following transitions: 8 
2
H9/2–

4
I15/2 (409 nm), 

2
H11/2–

4
I15/2 (524 nm), 

4
S3/2–

4
I15/2 (549 nm), and 

4
F9/2–

4
I15/2 (670 nm).The spectral line 9 

positions of La2O2S:Er
3+

 spectra are the same. Change of host leads to the intensity redistribution, which is 10 

most pronounced for 
4
I15/2–

4
G11/2 transition in the excitation spectrum. 11 

Fig. 6 displays excitation and emission spectra of RE2O2S (RE = Y, La) activated by 1% of Eu
3+

 ions. The 12 

excitation spectrum of Y2O2S:Eu
3+

 monitored at 545 nm (
5
D1–

7
F1) consists of following transitions:

7
F0–

5
D4 13 

(353 nm),
7
F0–

5
L7(378 nm) and 

7
F2–

5
D2(488 nm). The emission spectrum shows narrow bands originating 14 

from 
5
D1and 

5
D0 excited levels. Surprisingly, that the emission spectrum of Y2O2S:Eu

3+
 is dominated by 15 

transition
5
D1–

7
F1(545 nm), whereas the most prominent luminescence bands are usually attributed to the 16 

5
D0–

7
FJ transition [46-48]. Such behavior was previously reported for La2O2S:Eu

3+
 bulk phosphors [49, 50]. 17 

Dominance of 
5
D1 emission can be explained by small phonon energy in regarded host, because significant 18 

amount of ionsrelax to 
5
D1 level after the UV excitation , and they radiatively decay to the ground state 19 

before nonradiative decay to 
5
D0 metastable level. We also observed 

5
D2–

7
F2(490 nm), 

5
D1–

7
F3 (587 nm), 20 

5
D0–

7
F1 (592 nm), 

5
D0–

7
F2 (621 nm) and 

5
D0–

7
F3 (670 nm) transitions. 21 

The excitation and emission spectra of La2O2S:Eu
3+

 display situation, which is more usual for Eu
3+

-doped 22 

compounds. The excitation spectrum of Y2O2S:Eu
3+

 monitored at 623 nm (
5
D0–

7
F2) consists of broad 23 

intense band corresponding to charge transfer S
2-
–Eu

3+
 (338 nm) and low-intense line assigned to the typical 24 

intra-configurational transitionsof the Eu
3+

 ion: 
7
F0–

5
L6 (394 nm), 

7
F0–

5
D2 (466 nm), 

7
F0–

5
D1 (536 nm) and 25 

7
F1–

5
D0 (593 nm). The emission spectrum is dominated by the forced electric dipole transition 

5
D0–

7
F2 with 26 

maximum at 623 nm. Other observed lines are attributed to the 
5
D1–

7
F1 (538 nm), 

5
D1–

7
F2 (555 nm), 

5
D1–

7
F3 27 

(586 nm), 
5
D0–

7
F1 (594 nm), 

5
D0–

7
F3 (670 nm) and 

5
D0–

7
F4 (704 nm). 28 

Due to the unique luminescence properties of Eu
3+

 ions, it is quite easy to analyze the luminescent center 29 

local surrounding and its symmetry using only emission spectrum. The asymmetry ratio (REu) gives 30 

information about local changes around the Eu
3+

 ions. It is defined as intensity ratio of forced electric dipole 31 
5
D0–

7
F2 and magnetic dipole 

5
D0–

7
F1 transitions. The higher the asymmetry parameter REu is, the more apart 32 

from a centrosymmetric geometry luminescent center is located. The calculated REu values of Y2O2S:Eu
3+

 33 

and La2O2S:Eu
3+

 samples are 0.58 and 3.16, respectively. It is worth noting that the calculated REu values of 34 

Y2O2S:Eu
3+

 and La2O2S:Eu
3+

 samples significantly differ, which indicate big difference in local surrounding 35 

of Eu
3+

 ions in these hosts.  36 

The steady state luminescence spectra of RE2O2S (RE = Y, La) powders doped with 1% of Ce
3+

 ions are 37 

shown in Fig. 7. The excitation spectrum of Y2O2S:Ce
3+

 sample displays two broad bands centered at 265 38 

and 407 nm (λem = 545 nm). These bands correspond to direct excitation of the Ce
3+

 ions via transitions to 39 

the components of Ce
3+

 5d configuration. The emission spectrum also consists of two lines attributed to 40 

allowed 5d–4f transition of Ce
3+

 ion. Generally, emission lines attributed to allowed 5d–4f transition in 41 

Ce
3+

-doped materials are quite broad [51, 52]. Sometimes they are split into two components separated by 42 

approximately 2000 cm
-1

 due to the spin-orbit splitting of the 4f
1
 ground state into two components 

2
F5/2 and 43 

2
F7/2. The bands observed in Y2O2S:Ce

3+
 and La2O2S:Ce

3+
 exhibit splitting by 5000 cm

-1
 and cannot be due 44 

to splitting of the ground stated mentioned above. Therefore, two bands ib  Ce
3+

 luminescence must be  45 

ascribed to the electron transitions from the lowest and second 5d levels to the ground state of Ce
3+

[53]. 46 
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Change of host to La2O2S does not affect spectroscopic properties of Ce
3+

-doped material. The line positions 1 

are almost the same for both excitation and emission spectra. 2 

 3 

4. Conclusions 4 

In summary, a method for the production of luminescent materials on the basis of rare-earth oxysulfides was 5 

developed. The advantage of the method consists in the precipitation of a sulfur-containing precursor from a 6 

homogeneous nitrate solution and subsequent transformation in a reducing and sulfidating atmosphere. The 7 

use of chemical homogenization made it possible to achieve an excellent uniform distribution of cations in 8 

the structure. The use of sulfates as precursors, in view of the presence of sulfur in the structure, greatly 9 

simplifies the process of obtaining solid solutions of oxysulfides. All synthesized samples have single phase 10 

without any impurities. The excitation and emission spectra of RE2O2S:Ln (RE = Y, La; Ln = Dy, Er, Eu) 11 

consist of characteristic bands corresponding to the 4f-4f intra configurational transitions. The study of Dy
3+

 12 

and Eu
3+

-doped powders revealed that Y2O2S host possesses higher local symmetry than La2O2S one. The 13 

excitation and emission spectra of RE2O2S:Ce
3+

 (RE = Y, La) phosphor displayed allowed 5d–4f transition. 14 

 15 
 16 
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Abstract 22 

The phase formation sequence was studied in the preparation of solid solutions of RE2O2S: Ln’ (RE =  a, Y; 23 

 n’ = C , Eu, Dy, E ) by        uc ion of     match co-precipitated sulfates, followed by sulfidization of the 24 

reduction products. For uniform distribution of cations in the matrix, a method of chemical homogenization 25 

was used, consisting in the preparation of an aqueous solution containing all the necessary cations and their 26 

subsequent precipitation in the form of sulfates. The use of sulfates as precursors facilitates the process of 27 

obtaining solid solutions of oxysulfides, since sulfates already contain SO4
2-

-ions. The phase and 28 

morphological certification of the obtained solid solutions was carried out. The study of steady state 29 

luminescent properties demonstrated characteristic bands which are assigned to 4f-4f and 5d-4f transition. 30 

The obtained results showed the possibility of applying the method to synthesize optical ceramics based on 31 

solid solutionsRE2O2S: Ln (RE = La, Y; Ln = Ce, Eu, Dy, Er). 32 

 33 

 34 

Keywords: oxysulfides, sulfates, rare-earth, reduction, optical ceramic, luminescence 35 

 36 

1. Introduction 37 

Oxygen-containing compounds of rare-earth elements have long attracted the attention of researchers 38 

due to their effective luminescent properties, which have found application in many optical systems [1-39 

6].Despite the fact that the luminescence is mainly determined by the nature of the substituting ion, the host 40 

matrix into which this ion is embedded influences on the emission lines intensity through its crystal field [7-41 

10]. Lanthanide ions can emit light in the near UV, visible and infrared regions of the spectrum. Each ion 42 

has a characteristic absorption and emission spectrum. Ln
3+

 radiationis characterized by high color purity; 43 

therefore, materials activated by lanthanides are attractive for creating LEDs, fluorescent lamps, plasma 44 

displays, and active media for solid-state lasers [11-13]. 45 

Activated materials based on oxisulfides of rare-earth elements are widely used in various fields [14-46 

22]. However, in recent years, only laborious, poorly reproducible methods of producing nanoparticles are 47 

*Revised Manuscript (corrections highlighted)
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described in the literature for these objects. At the same time, the need for relatively simple synthesis 1 

methods allowing large batches of optical ceramics does not decrease[23–27]. 2 

 Thermal decomposition methods are convenient for obtaining materials with different properties [28-3 

32]. In the preparation of oxysulfides, particular attention is drawn to methods for reducing sulfur containing 4 

compounds to higher oxidation degrees. Compared with solid-phase methods, the recovery method differs in 5 

manufacturability, reproducibility, and the ability to produce several tens of grams of a product at once [33–6 

39]. 7 

 Thus, the aim of the work is to study the chemistry of reactions in the sequential processing of co-8 

precipitated sulfates of rare earth elements in the atmosphere of H2, H2S to obtain activated oxysulfides and 9 

investigate the morphology of the obtained reaction products and their luminescent properties. 10 

 11 

2. Materials and methods 12 

2а. Preparative Methods 13 

Powders of co-precipitated sulfates were obtained by precipitation from a nitrate solution with concentrated 14 

sulfuric acid. For the synthesis, high purity reagents were used: Ln2O3 (≥99.99%, ultrapure, TDM-96 Ltd. 15 

Russia). Concentrated nitric acid solution (C(HNO3) = 14.6 mol/L, ultrapure, Vekton Ltd., Russia), 16 

concentrated sulfuric acid solution (C (H2SO4) = 17.9 mol/L, ultrapure, Vekton Ltd., Russia). Weighing was 17 

carried out on an analytical balance with an accuracy of 0.1 mg. Before weighing, the oxides were calcined 18 

in a muffle furnace at a temperature of 1000°C for 12 hours to remove sorbed gases and products of their 19 

interaction with oxides (Ln(OH)3, Ln2(CO3)2). Acid solutions were measured using glass measuring 20 

cylinders with an accuracy of 0.1 ml. 21 

The calculated weighed amount of oxides with a total weight of 5.0 g was placed in a 100 mL glass round-22 

bottom flask, then 7.0 mL of a concentrated solution of nitric acid was poured in small portions. The 23 

reaction mixture was heated on a mantle until the oxides were completely dissolved. As a result, a nitrate 24 

solution was obtained with evenly distributed cations: 25 

0.99RE2O3 + 0.01Ln2O3 + 6HNO3 → 2(RE0.99Ln0.01)(NO3)3 + 3H2O (1) 26 

After cooling the solution, 3.0 ml of concentrated sulfuric acid was poured in small portions to it, avoiding 27 

strong heating of the reaction mixture. As a result, a precipitate of co-precipitated sulfates and their 28 

crystalline hydrates forms: 29 

2(RE0.99Ln0.01)(NO3)3 + 3H2SO4 + nH2O → (RE0.99Ln0.1)2(SO4)3·nH2O + 6HNO3 (2) 30 

After carrying out the precipitation reaction, the reaction mixture is distilled off to the dry residue. The 31 

obtained polycrystalline product is additionally calcined in a tubular furnace at a temperature of 500°C to 32 

remove sorbed moisture and acids. Later, the powder is annealed at the same temperature for 7 days, in 33 

order to form an acceptable crystallite structure. 34 

This method of chemical homogenization has a number of significant advantages: 35 

- In the process of synthesis, no cations other than Ln
3+ 

are added to the reaction mixture, which excludes 36 

their replacement and the formation of defects in the crystal structure. 37 

- Sulfates precipitate from a homogeneous nitrate solution, which ensures high stoichiometry and uniform 38 

distribution of cations within the crystal lattice. 39 

- Conducting the reaction in an environment of concentrated sulfuric acid allows to form the structure of 40 

anhydrous sulfate at the earliest stages. 41 

The reduction of sulfates in a hydrogen atmosphere was carried out on the apparatus shown in Figure S1. 42 

High purity hydrogen was obtained by the electrolytic method in the SPECTR - 6M hydrogen generator. 43 

The temperature in the furnace was set using a microprocessor controller. The temperature in the furnace 44 

was controlled using chromel-alumel thermocouple. A weighed amount of co-precipitated sulfates was 45 

placed in a quartz reactor, and for 30 minutes it was purged with hydrogen from a generator at a rate of 6 46 
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L/h. After that, the reactor was placed in a heated vertical furnace and kept for the required amount of time. 1 

After completion of the process, the rector was removed from the furnace and cooled to room temperature. 2 

Processing of the reduced products in an atmosphere of hydrogen sulfide was carried out on a similar setup 3 

(Fig. S2). The difference lies in the fact that before being fed into the reactor, the hydrogen passes through a 4 

flask with molten elemental sulfur and heated to 350 °C. As a result, hydrogen sulfide is formed: 5 

H2 + S → H2S (3) 6 

Consequently, it is not a hydrogen inflows the reactor, but a hydrogen sulfide. 7 
 8 

2b. Methods of physical-chemical analysis 9 

X-ray phase analysis (XRD) was performed on a BRUKER D2 PHASER diffractometer with a linear 10 

detector LYNXEYE (CuKα  a ia ion, Ni-filter). Rietveld refinement of all six samples was performed by 11 

using TOPAS 4.2 [40]. Almost all peaks were indexed.  12 

Electron-microscopic analysis was carried out on electron microscope JEOL JSM-6510LV. X-ray energy-13 

dispersive analyzer was used to register X-rays at element spectrum plotting in selected sample surface 14 

areas. The inaccuracy in element content determination was equal to ±0.2%. 15 

All measurements of the luminescent properties were carried out on a research-grade spectrofluorimeter. 16 

Horiba JobinYvon Fluorolog-3 equipped with double monochromators for excitation and emission channels 17 

and 450 W xenon lamp as an excitation source. 18 

 19 

3. Result and Discussion 20 

 21 

3a. Synthetic experiment 22 

Detailed consideration of the chemical transformations taking place during the transformation of co-23 

precipitated sulfates into the corresponding solid solutions of oxysulfides was made on the basis of two 24 

model systems La2(SO4)3:Dy
3+

 and Y2(SO4)3:Er
3+

. The results obtained were used to synthesize all other 25 

solid solutions, which are reported in this work. 26 

The carrying out of the co-precipitation of sulfates and the subsequent annealing led to the formation of 27 

structures of solid solutions of sulfates in which the doping ion is fullyincorporated into the crystal lattice of 28 

the matrix and occupies the crystallographic positions of the host cation. According to X-ray diffraction 29 

data, all samples of co-precipitated sulfates are single-phase (Fig. 1a, b). There is a slight shift in the unit 30 

cell parameters caused by the difference in the radii of the cations of the matrix and the dopant. 31 

The appearance of gaseous reduction products was recorded at a temperature of 570°C. In this connection, 32 

sulfate reduction was carried out at t = 600°C. At this temperature, after 60 minutes of the process, the 33 

products mainly consist of 4 phases: (RE0.99Ln0.01)2(SO4)3- (RE0.99Ln0.01)2O2SO4 - (RE0.99Ln0.01)2O2S - 34 

(RE0.99Ln0.01)2O3 (Fig. 1c, d).There was an incomplete transformation of the initial sulfates into the reaction 35 

products. The following chemical equations correspond to the formation of the corresponding reduction 36 

products: 37 

(RE0.99Ln0.01)2(SO4)3 + 6H2 → (RE0.99Ln0.01)2O2SO4 + 2S + 6H2O (4) 38 

(RE0.99Ln0.01)2(SO4)3 + 10H2 → (RE0.99Ln0.01)2O2S + 2S + 10H2O (5) 39 

(RE0.99Ln0.01)2(SO4)3 + 5H2 → (RE0.99Ln0.01)2O3 + 2SO2 + 5H2O (6) 40 

(RE0.99Ln0.01)2O2SO4 + 4H2 → (RE0.99Ln0.01)2O2S + 4H2O (7) 41 

After 10 hours of carrying out the process at a given temperature, polycrystalline products consist of two 42 

phases: (RE0.99Ln0.01)2O2S, (RE0.99Ln0.01)2O3 (Fig. 1 e, f). The absence of compounds containing sulfur in the 43 

highest degree of oxidation of in the synthesis products indicates on a complete redox transformation. In all 44 

samples, the phase output (RE0.99Ln0.01)2O2S was not lower than 80%. Thus, the stage of sulfate reduction in 45 

a hydrogen atmosphere allows the formation of two-phase polycrystalline intermediates with a predominant 46 

content of the oxysulfide phase, which should greatly facilitate the sulfidation procedure. 47 
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The interaction of two-phase intermediates with hydrogen sulfide at a temperature of 800 ° C for 5 hours 1 

leads to the formation of single-phase powders (RE0.99Ln0.01)2O2S (Fig. 1 g, h). The transformation 2 

corresponds to the transformation of the oxide phase to the oxysulfide under the action of a mild sulfiding 3 

agent H2S: 4 

(RE0.99Ln0.01)2O3 + H2S → (RE0.99Ln0.01)2O2S + H2O (8) 5 

Sulfate powders, formed predominantly by loose agglomerates (Fig. 2, a) with sizes up to 10 µm. The 6 

resulting oxysulfide powders have a more distinct cut shape, a denser structure and a uniform size 7 

distribution (Fig. 2, a). The morphological transformation is evidently due to the elevated temperatures and 8 

the diffusion character of the reduction and sulfidation processes.  9 

The enlargement obviously occurs as a result of the desire of the system to lower its energy. What 10 

corresponds to a decrease in the surface area of the polycrystalline samples. Particle cutting appears as a 11 

result of high rates of chemical reactions and rapid mass transfer. The indicated tendency to particle 12 

aggregation is often observed during similar processes [27, 32-35]. 13 

 14 

3b. Structural and spectroscopic properties 15 

Crystal structure of both hosts belongs to P-3m 1 space group of trigonal symmetry class. Y and La occupy a 16 

single inequivalent site. In both oxysulfides the local environment of them is a distorted polyhedron with 17 

seven vertices, four of them being oxygen ions and three being sulfur ions. Layered structure of oxysulfides 18 

implies that sulfur and oxygen are positioned in opposite hemispheres of the local environment of either Y 19 

or La. Rare-earth doping ions are expected to occupy Y and La sites, and their local environment is 20 

determined by the structure host, with the local symmetry C3v. Therefore, absence of inversion symmetry 21 

must be pronounced in optical spectra of doping ions. Variation of luminescence properties of doping RE 22 

ions in one host with respect to another is usually ascribed to the change of the extent of inversion symmetry 23 

violation. Examining the geometry of local environment of RE ion in Y2O2S and La2O2S (Fig. 3) we observe 24 

that both environments are geometrically identical. 25 

The excitation and emission spectra of RE2O2S (RE = Y, La) activated by 1% of Dy
3+

 ions are shown in 26 

Fig. 4. The observed spectra exhibit characteristic intra-configurational 4f-4f transitions. Excitation 27 

spectrum of Y2O2S:Dy
3+

 monitored at 579 nm (
4
F9/2–

6
H13/2), displays following transitions: 

6
H15/2–

4
P7/2 (355 28 

nm), 
6
H15/2–

4
P5/2 (369 nm), 

6
H15/2–

4
I13/2(388 nm), 

6
H15/2–

4
G11/2 (427 nm), 

6
H15/2–

4
I15/2 (451 nm) and 

6
H15/2–29 

4
F9/2 (479 nm). The emission spectrum Y2O2S:Dy

3+
 sample is dominated by green-yellow band (579 nm) 30 

corresponding to the hypersensitive 
4
F9/2–

6
H13/2 transition. Other observed lines are attributed to the 

4
I15/2–31 

6
H15/2 (457 nm), 

4
F9/2–

6
H15/2 (487 nm), and

4
F9/2–

6
H11/2 (670 nm) transitions. It is well-known that 

4
F9/2–

6
H13/2 32 

is the forced electric dipole transition, which is hypersensitive and its intensity can vary by orders of 33 

magnitude depending on the local site symmetry, whereas 
4
F9/2–

6
H15/2 transition intensity is insignificantly 34 

affected by the environment [40-42]. The excitation and emission spectra of La2O2S:Dy
3+

 are similar to the 35 

Y2O2S:Dy
3+

 ones. Small blue shift of bands and redistribution between them were observed. So, the most 36 

prominent transitions in excitation and emission spectra of La2O2S:Dy
3+

are centered at 353 and 576 nm, 37 

respectively. Observed luminescence spectra of Dy ion are consistent with the concept that they occupy 38 

Y(La) sites with the local symmetry C3v. 39 

To compare the crystal structure and crystal field of Y2O2S:Dy
3+

 and La2O2S:Dy
3+

 powders, we calculated 40 

ratio (RDy) between 
4
F9/2–

6
H13/2 and 

4
F9/2–

6
H15/2 intensities. This parameter is similar to the well-known 41 

asymmetry ratio for Eu
3+

 ions [43, 44]. RDy value give information about the local surrounding and 42 

environmental changes near the Dy
3+

 ions. The higher the calculated parameter is, the more apart from a 43 

centrosymmetric geometryluminescent center is located. It is well-known that if Dy
3+

 is located at low 44 

symmetry without the inversion symmetry, the yellow emission is the most intense of all the transitions, as 45 

is the case with our synthesized nanocrystalline phosphors [45]. Experimental RDy values for Y2O2S:Dy
3+

 46 



5 
 

and La2O2S:Dy
3+

 samples are 3.13 and 4.65. In view of geometrical identity of local environments, this 1 

difference must be ascribed to the interplay between ionic radii of Y and La and the unit cell parameters, i.e. 2 

closer ligands at the same degree of inversion symmetry violation. 3 

The steady state luminescence spectra of RE2O2S (RE = Y, La) powders doped with 1% of Er
3+

 ions are 4 

presented in Fig. 5. The excitation spectrum of Y2O2S:Er
3+

was monitored at 549 nm(
4
F9/2–

4
I15/2) within 5 

spectral range of 330–530 nm. It consists of 
4
I15/2–

4
G7/2 (360 nm), 

4
I15/2–

4
G9/2 (367 nm), 

4
I15/2–

4
G11/2 (379 6 

nm), 
4
I15/2–

2
H9/2 (408 nm), 

4
I15/2–

4
F3/2 (446 nm),

4
I15/2–

4
F5/2 (453 nm),

4
I15/2–

4
F7/2 (491 nm), and 

4
I15/2–

2
H11/2 7 

(522 nm).The emission spectrum includes narrow bands, which are assigned to the following transitions: 8 
2
H9/2–

4
I15/2 (409 nm), 

2
H11/2–

4
I15/2 (524 nm), 

4
S3/2–

4
I15/2 (549 nm), and 

4
F9/2–

4
I15/2 (670 nm).The spectral line 9 

positions of La2O2S:Er
3+

 spectra are the same. Change of host leads to the intensity redistribution, which is 10 

most pronounced for 
4
I15/2–

4
G11/2 transition in the excitation spectrum. 11 

Fig. 6 displays excitation and emission spectra of RE2O2S (RE = Y, La) activated by 1% of Eu
3+

 ions. The 12 

excitation spectrum of Y2O2S:Eu
3+

 monitored at 545 nm (
5
D1–

7
F1) consists of following transitions:

7
F0–

5
D4 13 

(353 nm),
7
F0–

5
L7(378 nm) and 

7
F2–

5
D2(488 nm). The emission spectrum shows narrow bands originating 14 

from 
5
D1and 

5
D0 excited levels. Surprisingly, that the emission spectrum of Y2O2S:Eu

3+
 is dominated by 15 

transition
5
D1–

7
F1(545 nm), whereas the most prominent luminescence bands are usually attributed to the 16 

5
D0–

7
FJ transition [46-48]. Such behavior was previously reported for La2O2S:Eu

3+
 bulk phosphors [49, 50]. 17 

Dominance of 
5
D1 emission can be explained by small phonon energy in regarded host, because significant 18 

amount of ionsrelax to 
5
D1 level after the UV excitation , and they radiatively decay to the ground state 19 

before nonradiative decay to 
5
D0 metastable level. We also observed 

5
D2–

7
F2(490 nm), 

5
D1–

7
F3 (587 nm), 20 

5
D0–

7
F1 (592 nm), 

5
D0–

7
F2 (621 nm) and 

5
D0–

7
F3 (670 nm) transitions. 21 

The excitation and emission spectra of La2O2S:Eu
3+

 display situation, which is more usual for Eu
3+

-doped 22 

compounds. The excitation spectrum of Y2O2S:Eu
3+

 monitored at 623 nm (
5
D0–

7
F2) consists of broad 23 

intense band corresponding to charge transfer S
2-
–Eu

3+
 (338 nm) and low-intense line assigned to the typical 24 

intra-configurational transitionsof the Eu
3+

 ion: 
7
F0–

5
L6 (394 nm), 

7
F0–

5
D2 (466 nm), 

7
F0–

5
D1 (536 nm) and 25 

7
F1–

5
D0 (593 nm). The emission spectrum is dominated by the forced electric dipole transition 

5
D0–

7
F2 with 26 

maximum at 623 nm. Other observed lines are attributed to the 
5
D1–

7
F1 (538 nm), 

5
D1–

7
F2 (555 nm), 

5
D1–

7
F3 27 

(586 nm), 
5
D0–

7
F1 (594 nm), 

5
D0–

7
F3 (670 nm) and 

5
D0–

7
F4 (704 nm). 28 

Due to the unique luminescence properties of Eu
3+

 ions, it is quite easy to analyze the luminescent center 29 

local surrounding and its symmetry using only emission spectrum. The asymmetry ratio (REu) gives 30 

information about local changes around the Eu
3+

 ions. It is defined as intensity ratio of forced electric dipole 31 
5
D0–

7
F2 and magnetic dipole 

5
D0–

7
F1 transitions. The higher the asymmetry parameter REu is, the more apart 32 

from a centrosymmetric geometry luminescent center is located. The calculated REu values of Y2O2S:Eu
3+

 33 

and La2O2S:Eu
3+

 samples are 0.58 and 3.16, respectively. It is worth noting that the calculated REu values of 34 

Y2O2S:Eu
3+

 and La2O2S:Eu
3+

 samples significantly differ, which indicate big difference in local surrounding 35 

of Eu
3+

 ions in these hosts.  36 

The steady state luminescence spectra of RE2O2S (RE = Y, La) powders doped with 1% of Ce
3+

 ions are 37 

shown in Fig. 7. The excitation spectrum of Y2O2S:Ce
3+

 sample displays two broad bands centered at 265 38 

an  407 nm (λem = 545 nm). These bands correspond to direct excitation of the Ce
3+

 ions via transitions to 39 

the components of Ce
3+

 5d configuration. The emission spectrum also consists of two lines attributed to 40 

allowed 5d–4f transition of Ce
3+

 ion. Generally, emission lines attributed to allowed 5d–4f transition in 41 

Ce
3+

-doped materials are quite broad [51, 52]. Sometimes they are split into two components separated by 42 

approximately 2000 cm
-1

 due to the spin-orbit splitting of the 4f
1
 ground state into two components 

2
F5/2 and 43 

2
F7/2. The bands observed in Y2O2S:Ce

3+
 and La2O2S:Ce

3+
 exhibit splitting by 5000 cm

-1
 and cannot be due 44 

to splitting of the ground stated mentioned above. Therefore, two bands ib  Ce
3+

 luminescence must be  45 

ascribed to the electron transitions from the lowest and second 5d levels to the ground state of Ce
3+

[53]. 46 
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Change of host to La2O2S does not affect spectroscopic properties of Ce
3+

-doped material. The line positions 1 

are almost the same for both excitation and emission spectra. 2 

 3 

4. Conclusions 4 

In summary, a method for the production of luminescent materials on the basis of rare-earth oxysulfides was 5 

developed. The advantage of the method consists in the precipitation of a sulfur-containing precursor from a 6 

homogeneous nitrate solution and subsequent transformation in a reducing and sulfidating atmosphere. The 7 

use of chemical homogenization made it possible to achieve an excellent uniform distribution of cations in 8 

the structure. The use of sulfates as precursors, in view of the presence of sulfur in the structure, greatly 9 

simplifies the process of obtaining solid solutions of oxysulfides. All synthesized samples have single phase 10 

without any impurities. The excitation and emission spectra of RE2O2S:Ln (RE = Y, La; Ln = Dy, Er, Eu) 11 

consist of characteristic bands corresponding to the 4f-4f intra configurational transitions. The study of Dy
3+

 12 

and Eu
3+

-doped powders revealed that Y2O2S host possesses higher local symmetry than La2O2S one. The 13 

excitation and emission spectra of RE2O2S:Ce
3+

 (RE = Y, La) phosphor displayed allowed 5d–4f transition. 14 

 15 
 16 
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Fig.1. Experimental, calculated, and difference  Rietveld plot of: a,b) (RE0.99Ln0.01)2(SO4)3; c,d) 9 

(RE0.99Ln0.01)2(SO4)3-(RE0.99Ln0.01)2O2SO4-(RE0.99Ln0.01)2O2S-(RE0.99Ln0.01)2O3; e,f) (RE0.99Ln0.01)2O2S - 10 

(RE0.99Ln0.01)2O3; g,h) (RE0.99Ln0.01)2O2S. 11 

Fig. 2. SEM image of a) (La0.99Dy0.01)2(SO4)3; b) (La0.99Dy0.01)2O2S 12 

Fig. 3.  Coordination polyhedron structure La2O2S 13 
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Table 1. Main parameters of processing and refinement of the samples La-O-S 
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(La0.99Dy0.01)2O2S 

 

 

 

(La0.99Dy0.01)2O3 

 

 

85.5(1) 

 

 

 

14.4(9) 

 

P-3m 1 

 

 

 

 

P-3m 1 

a=4.0521 

c=6.9428 

V=98.72(5) 

 

a=3.9402 

c=6.1493 

V=82.67(9) 

 

 

12.97 

9.91 

 

 

9.12 

 

 

(La0.99Dy0.01)2O2S 

 

(La0.99Dy0.01)2O2S 

 

100 

 

P-3m 1 

a=4.0520 

c=6.9425 

V=98.71(6) 

4.71 

3.51 

1.46 
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Table 2. Main parameters of processing and refinement of the samples Y-O-S 

 

Compound Phase Weight 

(%) 

Space  

group 

Cell parametrs 

(°, Ǻ), 

Cell volume 

(Ǻ
3
) 

Rwp, 

Rp 

 

(%) 

 

 

Χ
2
 

 

(Y0.99Er0.01)2(SO4)3 

 

Y0.99Er0.01)2(SO4)3 

 

100 

 

Pbcn 

a=12.4770 

b=9.0354 

c=9.8348 

V=1108.72(3) 

 

10.68 

7.67 

 

3.22 

 

(Y0.99Er0.01)2(SO4)3 

- 

(Y0.99Er0.01)2O2SO4 

- 

(Y0.99Er0.01)2O2S - 

(Y0.99Er0.01)2O3 

 

(Y0.99Er0.01)2(SO4)3  

 

 

 

 

(Y0.99Er0.01)2O2SO4 

 

 

 

 

(Y0.99Er0.01)2O2S 

 

 

 

 

(Y0.99Er0.01)2O3 

 

 

 

38.0(0) 

 

 

 

 

26.5(1) 

 

 

 

 

30.6(2) 

 

 

 

 

4.8(8) 

 

 

 

Pbcn 

 

 

 

 

C2/c 

 

 

 

 

P-3m 1 

 

 

 

 

 

a=12.4804 

b=9.0406 

c=9.8392 

V=1110.16(0) 

 

a=14.3439 

b=4.2850 

c=8.3858 

V=493.09(1) 

 

a=3.7800 

c=6.5631 

V=81.21(3) 

 

 

a=10.6051 

 

V=1192.73(6) 

 

6.54 

5.11 

 

 

1.22 

 

(Y0.99Er0.01)2O2S - 

(Y0.99Er0.01)2O3 

 

(Y0.99Er0.01)2O2S 

 

 

 

(Y0.99Er0.01)2O3 

 

 

83.8(7) 

 

 

 

16.1(3) 

 

P-3m 1 

 

 

 

Ia-3 

a=3.7801 

c=6.5638 

V=81.22(6) 

 

a=10.6055 

 

V=1192.87(1) 

 

 

7.98 

5.59 

 

 

2.81 

 

(Y0.99Er0.01)2O2S 

 

(Y0.99Er0.01)2O2S 

 

100 

 

P-3m 1 

a=3.7800 

c=6.5632 

V=81.21(4) 

 

5.01 

3.31 

 

 

1.06 
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(RE0.99Ln0.01)2O3; g,h) (RE0.99Ln0.01)2O2S. 4 
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