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ARTICLE

Modelling the effect of temperature changes on plant life-form distribution
across a treeline ecotone in the tropical Andes
Alberto Arzac a, Luis D. Llambíb, Raphael Dulhosteb,c, José M. Olanod and Eulogio Chacón-Morenob

5 aInstitute of Ecology and Geography, Siberian Federal University, Krasnoyarsk, RussiaQ1 ; bInstituto de Ciencias Ambientales y Ecológicas
(ICAE), Facultad de Ciencias, Universidad de los Andes, Mérida, Venezuela; cAEESP Saint-Genès La Salle, Bordeaux, FranceQ2 ; dÁrea de
Botánica, Departamento de Ciencias Agroforestales, Escuela Universitaria de Ingenierías Agrarias, iuFOR-Universidad de Valladolid,
Soria, España

ABSTRACT
10 Background: Classifying plant species from the high tropical Andes into distinct plant life

forms (PLF) can provide a more functional understanding of tropical treeline dynamics.
However, little is known about the potential response of different PLFs to climate warming.
Aims: The objective of this work was to evaluate the response of PLFs to environmental
conditions above the upper montane forest in the Venezuelan Andes and forecast their

15 potential distribution under warming scenarios based on habitat suitability models.
Methods: We classified the plant species present above the forest line into nine PLFs
including trees, shrubs, tussock grasses and caulescent rosettes, analysed and modelled
their current distribution using Canonical Correspondence Analysis and non-linear multiple
regressions and forecasted their potential distribution under warming scenarios (RCP4.5,

20 RCP6.0, and RCP8.5). We used anatomical leaf traits for shrubs and caulescent rosettes to
refine their potential responses to climate change.
Results: Tree cover sharply decreased with increasing elevation, while the distribution of
shrubs and caulescent rosettes at higher elevations differed depending on their leaf traits.
Projections suggested an upslope shift of all PLFs as a response to warming and an increase

25 in tree cover.
Conclusions: The analysis of the distribution of PLFs, by linking different plant adaptive
strategies to topography/climate, allowed projecting changes in vegetation physiognomy in
response to warming. Projections of a moderate increase in tree cover in the grassland
páramo did not indicate the formation of closed forests above the current upper forest line.Q3
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30 Introduction

The tropical Andes constitute the largest tropical
mountain region worldwide, harbouring more than
20,000 endemic plant species (Myers et al. 2000;
Young et al. 2002; Swenson et al. 2012) and providing

35 critical ecosystem services such as carbon storage and
water regulation (Price 2003; Harden et al. 2013;
Molina et al. 2015; Hribljan et al. 2016, 2017).
However, the dynamics and structure of the ecosys-
tems are being increasingly affected by land use

40 (Young 2009; Feeley and Silman 2010; Mathez-
Stiefel et al. 2017) and climate (Young and León
2007; Anderson et al. 2011; Tovar et al. 2013).
Moreover, future climate projections suggest poten-
tial species loss in the tropical Andes (Ramirez-

45 Villegas et al. 2014; Báez et al. 2016).
In the tropical Andes, the transition between the

upper montane forest and grassland páramo (treeline
ecotone) is a zone of particular interest due its out-
standing species and functional diversity (Bader et al.

502007a; Ramírez et al. 2009; Hofstede et al. 2014;
Peters et al. 2014; Llambí 2015). The treeline is char-
acterised by clear physiognomic changes with eleva-
tion, where tussock grasses, small sclerophyllous
shrubs and caulescent rosettes replace trees and tall

55shrubs (Sklenář and Jørgensen 1999; Arzac et al.
2011; Sarmiento Pinzón and León Moya 2015).
Reported temperature increases of up to 0.4–0.5°C
per decade above 3000 m a.s.l. in the tropical Andes
(Vuille and Bradley 2000; Vuille et al. 2018) demand

60a better understanding on how changes in environ-
mental conditions along topographic gradients influ-
ence vegetation distribution at the Andean treeline.
However, to date there is little information on this
topic, as most treeline studies globally have concen-

65trated on extra-tropical regions (Holtmeier and Broll
2005; Holtmeier 2009; Körner 2012).

Evidence from permanent plots established in the
1990s indicates an upward migration and thermo-
philisation of tree communities in Andean upper
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70 montane forests (Duque et al. 2015; Fadrique et al.
2018). The displacement of the main vegetation
types because of climate warming has also been
forecasted by models based on topographic/climatic
variables (Bader and Ruijten 2008; Tovar et al.

75 2013). However, it is species, and not whole plant
communities, that respond to climate change on the
bases of their adaptive strategies, inducing the
assembly of novel non-analogue communities
(Williams and Jackson 2007). Hence, given the out-

80 standing species and functional diversity character-
istic of tropical treeline vegetation, an approach
based on functional traits would be useful to
model the patterns of change in plant community
structure in response to climate.

85 High Andean plant species have been classified
into architectural types or plant life forms (PLFs)
using readily identifiable morphological traits
(Hedberg 1964; Hedberg and Hedberg 1979; Wolfe
1979; Ramsay and Oxley 1997). The use of PLFs is as

90 a functionally meaningful strategy to represent spa-
tial and temporal changes in the distribution of
plant species, linking the adaptive characteristics
expressed in a PLF with environmental gradients
(Furze et al. 2013). Analysing the current distribu-

95 tion of PLFs at a landscape scale, and potential
changes in it, may be used to assess and compare
treeline dynamics under warming scenarios
between regions with widely contrasting floristic
composition but similarities in vegetation structure

100 (e.g. Scherrer and Körner 2011). Some previous
studies have analysed the distribution of PLFs
along elevation gradients in the tropical Andes
(e.g. Balslev and de Vries 1989; Ramsay and Oxley
1997; Arzac et al. 2011). However, the potential

105 response of vegetation and life-form structure to
climate change scenarios remains unexplored.

In this work, we analysed the spatial distribution
of dominant PLFs in a relatively undisturbed land-
scape above the continuous limit between upper

110 montane forest and grassland páramos and
assessed their potential response to climate warm-
ing. We expanded the basic PLF classification sys-
tem of Hedberg (1964) by including trees and
forbs, which are important components structuring

115 vegetation across the treeline. Moreover, we
explored the effect of adaptive traits that can influ-
ence leaf thermal/radiation balance (i.e. pubescence
and leaf size, see Cuatrecasas 1968; Vareschi 1992),
in modulating the spatial distribution of caulescent

120 rosettes and sclerophyllous shrubs, which consti-
tute dominant PLFs above the treeline (Arzac et al.
2011; Sarmiento Pinzón and León Moya 2015).

We characterised the current distribution of PLFs
in relation to local topographic variables (slope orien-

125tation and inclination) along an elevation/thermal
gradient with low anthropogenic impact and hypothe-
sised that: (1) anatomical leaf attributes would be an
important factor in the distribution of PLFs along the
elevation/thermal gradient; and (2) warming scenarios

130would have a differential impact on the potential dis-
tribution of PLFs, expressed as elevational shifts linked
to slope orientation, modifying landscape vegetation
physiognomy above the treeline.

Materials and methods

135Study area

We sampled six transects along an elevation gra-
dient of 250 m ranging from 3300 to 3550 m a.s.l.
(Figure 1(a)), above the upper montane forest in
the Sierra Nevada mountain range, Mérida,

140Venezuela, near La Aguada station of the Mérida
cable car system (8° 33ʹ 54.56” N, 71° 5ʹ 22.65” W).
The area is within the limits of the Sierra Nevada
National Park, created in 1952, where land-use has
been restricted in the last decades to very low-

145density livestock grazing (density below 0.1 ani-
mals ha−1) without the use of fires. A diachronic
analysis of land-cover in the area, comparing aerial
photographs from 1952 and 1998, has shown no
evidence of vegetation cover changes related to

150agriculture or the creation of secondary pastures
(Santaella 2007), indicating the current treeline
position in the region has not been directly altered
by land-use change, at least in the last 60 years.

The climate in the region is characterised by two
155periods of high rainfall (April-June and October-

November). A dry period occurs between January
and March; during this time night frosts may occur
(reaching minima of −3°C). Mean annual tempera-
ture at the upper forest line is 7.1°C and the mean

160total annual precipitation is 1811 mm (data from
La Aguada meteorological station, 3452 m a.s.l.).

The vegetation of the upper montane forest
(3200–3300 m) is dominated by Psammisia penduli-
flora (Dunal) Klotzsch,Miconia tinifolia Naudin and

165Libanothamnus neriifolius Ernst. A grassland páramo
appears above (over 3300 m asl), dominated by the
tussock grass Calamagrostis effusa (Kunth) Steud.
and scattered woody species (small trees and tall
shrubs such as Cybianthus marginatus (Benth.)

170Pipoly, Hesperomeles ferruginea (Pers.) Benth.,
Diplostephium venezuelense Cuatrec., and Senecio
pachypus Greenm Trans. Vegetation at higher

2 A. ARZAC ET AL.



elevations is dominated by caulescent rosettes
(mainly Espeletia shultziiWedd. and Ruilopezia atro-

175 purpurea (A.C.Sm.) Cuatrec.), and smaller sclero-
phyllous shrubs (e.g. Hypericum laricifolium Juss.);
see Ramírez et al. (2009) and Llambí et al. (2014) for
further details.

Plant life-form (PLF) selection and field sampling

180 We complemented the life forms system of tropical
alpine vegetation (caulescent rosettes, sclerophyl-
lous shrubs, cushion plants, tussock grasses and
acaulescent rosettes) of Hedberg (1964) by includ-
ing trees and forbs as additional growth forms.

185 Based on morphological characteristics that could
influence the leaf energy balance, we subdivided
caulescent rosettes into pubescent and non-
pubescent and sclerophyllous shrubs into lepto-
phyllous and nanophyllous types (Rada et al.

190 1985; Meinzer et al. 1994; Azócar and Rada
2006). In total, nine PLFs were identified: acaules-
cent rosettes (AR), caulescent pubescent rosettes
(CPR), caulescent non-pubescent rosettes (CNR),
leptophyllous sclerophyllous shrubs (LSS, leaf size

195 <0.2 cm2), nanophyllous sclerophyllous shrubs
(NSS, 0.2–2 cm2), microphyllous sclerophyllous
shrubs (MSS, 2–20 cm2), tussock grasses (TG),
forbs (F) and trees (T).

During July and August 2007 six transects were
200established over an elevation gradient from the upper

natural limit of montane forest (3300 m a.s.l.) to the
grassland páramo (3550 m a.s.l.). The upper limit of
the transects was established at the elevation at which
no forest trees were observed within the páramo

205matrix (isolated or in clumps). Each replicate transect
was separated from the other by 100 to 500 m in the
direction perpendicular to the slope (to increase
independence between replicate transects). Two
transects were located on the dominant slope orien-

210tations within the area (north, north-west, and west).
In each transect, 10 sampling units (consisting of two
10-m-long parallel lines separated by 2 m) were
placed, separated by 25 m in elevation (Figure 1(b)).
The cover of selected PLFs was measured using the

215point quadrat method (Greig-Smith 1983), using 50
sampling points per line, each separated by 20 cm
(Figure 1(c)). For each sampling unit geographical
position, elevation, slope orientation and slope incli-
nation were recorded.

220PLF distribution along the elevation gradient

The relationship between the abundance (cover) of
PLFs and environmental factors (elevation, slope
orientation and slope inclination) was evaluated by
canonical correspondence analysis (CCA). The

Figure 1. Location of the study area in the Sierra Nevada mountain range, Venezuelan Andes. (a) Digital elevation model of the
sampling site showing the distribution of sampling transects (ST1-ST6). (b) Schematic distribution of sampling units along the
sampling transects; grey rectangles represent the position of sampling units. (c) Schematic design of sampling units; each black
square indicates a sampling point.
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225 elevation distribution optimum for the studied
PLFs along the gradient was determined by the
weighted arithmetic mean and the amplitude of
distribution by the weighted standard deviation
(or tolerance), combining the data for the six trans-

230 ects (see Legendre and Legendre 2012 for details).
Finally, regression models based on sigmoidal and
Gaussian response curves or a combination of both
were used to analyse the response of PLF cover-
abundance to the environmental factors. Here, we

235 used as replicates each of the six transects sampled
(more than 100 m of separation), which were dis-
tributed along the study area to attempt to obtain
an adequate representation of the distribution of
PLFs across the treeline in this sector (with an

240 observation window of ca. 3 km2).

PLF distribution models and warming scenarios

We modelled the spatial distribution of PLF’s under
current climate conditions by producing habitat suit-
ability models (Dirnböck et al. 2003), in response to

245 elevation/temperature and slope orientation and
their interaction. An environmental predictor was
obtained through non-linear multiple regression
models (Guisan and Zimmermann 2000) analysing
the cover of each PLF (dependent variable) as

250 a function of environmental factors (independent
variables). This approach allowed a smooth integra-
tion of the obtained environmental predictor vari-
ables into a geographical information system
(Chacón-Moreno 2007; Chacón-Moreno et al.

255 2007). Whereas the CCA was used to analyse the
relation between environmental variables and
changes in vegetation community structure when
all nine PLF are considered together, non-linear mul-
tiple regression regressions evaluated them one by

260 one, allowing the modelling of PLF spatial distribu-
tion and their potential changes in temperature
warming scenarios.

The geographical information used for the spa-
tial models (elevation and slope orientation) was

265 obtained from a digital elevation model (DEM)
produced by digitalising the 5941-I-SE contour
line map of the area (Venezuelan National
Cartography; scale 1:25,000). Habitat suitability
models were built with the ITC-ILWIS 3.8 software

270 (ITC-ILWIS 2001). Models were developed for the
most abundant PLFs (CPR, CNR, LSS, TG and T).
Each pixel of the distribution maps represents
a probabilistic cover value for a particular PLF.

To forecast potential PLF distribution patterns
275 under warming scenarios, we used as starting point

the habitat suitability models for current distribu-
tion (including elevation and slope orientation) in
which elevation was replaced by temperature
values, using the linear regression model:

280temperature = 27.98–0.006 x elevation (Suárez del
Moral and Chacón-Moreno 2011). This equation
was produced from linear interpolations of 89
meteorological stations in Mérida state, monitored
by the Ministry of Environment and Natural

285Resources (MARN) and the Universidad de Los
Andes (see Suárez del Moral and Chacón-Moreno
2011 for further details).

The selection of future warming scenarios was
based on projections from climate change models

290used in the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change
(AR5) (IPCC 2013). Thus, three Representative
Concentration Pathways (RCP) scenarios were
selected, identified by the twenty-first century

295peak or stabilisation value of the Radiative
Forcing: RCP4.5, RCP6.0, and RCP8.5 (IPCC
2013). We used the projections for temperature
expressed as anomalies over the mean temperature
values for the reference period 1986–2005, ana-

300lysed in two periods of 30 years (period 2025 to
2055, focused on the year 2040, and period 2045 to
2075, centred on the year 2060; Table 1).

Results

PLF distribution along the gradient and habitat
305suitability models

PLF distribution was structured along the elevation
gradient (Figure 2), with each PLF occupying
a different elevation (and temperature optimum),
although with some overlapping in their distribu-

310tion amplitude (±60 m on average), with CPR and
NSS showing the lowest and highest amplitude
values (±36 m and ±80 m respectively). Trees
occupied the lowest elevation at the bottom of the
gradient (3300 ± 69 m a.s.l.; corresponding to

315a mean temperature of 8.2°C), while LSS and AR
were found at the highest elevation at the top

Table 1. Temperature increments for the different
Representative Concentration Pathway (RCP) scenarios for
2040 and 2060 at the Sierra Nevada de Mérida, Venezuelan
Andes.

Temperature difference in relation to the period
1986–2005 (K)

2040 2060

RCP RCP4.5 0.7 0.9
RCP6.0 1.3 1.9
RCP8.5 1.8 2.6

4 A. ARZAC ET AL.
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(3526 ± 54 m a.s.l. and 3533 ± 52 m a.s.l. respec-
tively; 6.8°C). The thermal amplitude of the gradi-
ent ranged from 8.2 to 6.7°C (Figure 2), NSS, CNR,

320 TG, F, MSS and CPR occupied successive positions
along the elevation/thermal gradient (Figure 2).

Leaf morphological characteristics in caulescent
rosettes and sclerophyllous shrubs appeared to be
related with their spatial distribution in the land-

325 scape. Thus, CPR, LSS and MSS showed elevation
optima higher than CNR (rosettes without leaf pub-
escence) and NSS. At their optimum elevation dis-
tribution, TG reached the highest cover values (84%),
while other PLFs showed maximum cover values of

330 less than 30% at their optimum distribution.
Canonical correspondence analysis (CCA)

showed that slope orientation and elevation were
the most significant factors evaluated related to the
distribution of PLFs (Figure S1). The CCA ordina-

335 tion (over the two main axes comprising 60.0% and
29.9% of overall variance) suggested that CPR and
AR were associated with the highest elevations
whereas trees occupied the opposite extreme of
the ordination diagram. Slope orientation appeared

340 to be related with the distribution of caulescent
rosettes and shrubs, with CNR being associated
with north-facing slopes, while CPR, AR, NSS
and LSS showed higher cover in north-west- and
west-facing slopes (see Figure S1 for further

345 details); local slope inclination was not
a statistically significant factor related to the dis-
tribution of PLFs.

Regression models indicated a significant effect
of both elevation and slope orientation on the

350cover of all PLFs, with R2 values ranging between
0.38 and 0.77 (P < 0.001), with the lowest explained
variance for non-pubescent rosettes (R2 = 0.28;
P < 0.01; Table S1).

Habitat suitability models under current climate
355conditions for the selected PLFs (i.e. CPR, CNR,

LSS, NSS, TG and T) showed differences in the
spatial distribution of cover values for each of
them within the study site (Figure 3(a–e)). Trees
exhibited higher relative cover values (8–25%) at

360lower elevations, on north-west-facing slopes
(Figure 2(a)). Tussock grasses had the highest
cover values (60–90%) and a wide elevation distri-
bution across the gradient, with a slightly higher
cover on north-facing slopes (Figure 3(b)). Habitat

365suitability models predicted a higher abundance of
LSS towards the top of the gradient on west-facing
slopes (Figure 3(c)), with cover values between
8–15%, in comparison with NSS with a lower ele-
vation range (data not shown). The presence/

370absence of pubescence in studied species of caules-
cent rosettes also appeared to be related to their
distribution. Caulescent rosettes with pubescent
leaves (CPR) showed cover values (between 10
and 20%) at higher elevations, mostly in west-

375facing slopes (Figure 3(d)), while those without
pubescence (CNR) showed their higher cover
values (between 4 and 16%) at mid-elevations on
north-facing slopes (Figure 3(e)).

Figure 2. The distribution of PLFs along the elevation – temperature gradient, indicating the elevation optimum, amplitude of
distribution and thermic gradient. Vertical lines indicate the elevation optimum and horizontal lines show the amplitude of
distribution. T, trees; NSS, nanophyllous shrubs; CNR, caulescent non-pubescent rosettes; TG, tussock grasses; F, forbs; MSS,
microphyllous shrubs; CPR, caulescent pubescent rosettes; LSS, leptophyllous shrubs and AR, acaulescent rosettes.
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Habitat suitability models under warming
380 scenarios

Projections based on elevation and slope orientation
considering the increments of mean annual tempera-
ture under different warming scenarios, suggested an
upslope migration for all PLFs analysed, with conse-

385 quent changes in the configuration and structure of
vegetation above the upper montane forest by the
years 2040 and 2060, independently of the scenario
considered (RCP4.5, RCP6.0 and RCP8.5).
Projections suggested an elevational advance of

390 trees (Figure 4(a–f)), expanding their current distri-
bution limit and increasing their cover above the
current forest line. The rate of expansion was related
to the magnitude of the temperature increase, reach-
ing cover values of 30–40% in the middle of the

395 gradient (3450 m a.s.l.) for the scenario RCP6.0 by

the year 2040 (Figure 4(c)) and close to 40% at the top
of the gradient (3550 m a.s.l.) for the warmest sce-
nario RCP8.5 by the year 2060 (Figure 4(f)).
Projections for tussock grasses (Figure 4(g–l)) sug-

400gested a marked decrease in their cover and relative
importance above the forest line. Under the scenario
RCP4.5, TG cover would be reduced in the lower
elevations to 20–40% by the years 2040 and 2060,
respectively (Figure 3(g and h)). This trend was more

405pronounced for the scenario RCP6.0, for which the
cover could reach values around 40% at the top of the
gradient (3400–3550 m a.s.l.) by the year 2060
(Figure 4(j)). In the scenario RCP8.0, projections
suggest that by the year 2060 TG cover could be

410lower than 20% in the whole area, implying an
important change in vegetation physiognomy, cur-
rently dominated by TG.

Figure 3. Spatial distribution models showing the percentage of surface cover for the selected plant life-forms at the sampling
site, Sierra Nevada mountain range, Venezuela, under current climate conditions. (a) Trees, (b) tussock grasses, (c) nanophyllous
sclerophyllous shrubs, (d) leptophyllous sclerophyllous shrubs, (e) Caulescent pubescent rosettes and (f) caulescent non-
pubescent rosettes. Pixels in the habitat suitability models represent a probabilistic cover value for a particular PLF. Colours
represent the cover percentage from blue (low cover) to red (high cover).

6 A. ARZAC ET AL.
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Caulescent non-pubescent rosettes, currently
occupying lower elevations close to the upper mon-

415 tane forest limit, may shift upslope with a significant
decrease in their coverage by the year 2060 under
the scenario RCP4.5 (Figure 5(b)). By the year 2040
and the scenario RCP6.0, CNR would only occur at
the top of the gradient with cover values below 8%

420 (Figure 5(c)). On the other hand, caulescent pub-
escent rosettes (Figure 5(g)) currently occupying
a highest elevation, could reduce their cover to
values lower than 4% by the years 2040 in the
scenario RCP4.5 (Figure 5(g)) and absent thereafter.

425 In the rest of the scenarios considered, pubescent
rosettes could be absent from the study site, thus
moving to elevations above the current Andean
treeline ecotone. Scenario RCP8.5 could imply the
disappearance of both rosette life-forms within

430 the 300 m above the current Andean treeline within
the study area. Habitat suitability models under
future warming scenarios for sclerophyllous shrubs
suggested the displacement to higher elevations of
LSS above the study area by the year 2040 even in

435 the scenario RCP4.5, with a cover value below 9%
(Figure S2).

Discussion

Plant life form (PLF) distribution was associated
with changes in elevation/mean temperature, with

440tussock grasses, caulescent rosettes and sclerophyl-
lous shrubs replacing trees as the dominant PLF
above the current forest limit. The distribution of
shrubs and caulescent rosettes in relation to eleva-
tion and slope orientation was related to their leaf

445traits. Using habitat suitability models, we found
that changes in temperature could modify the eleva-
tion distribution range of the dominant PLFs and
the position of the Andean treeline under future
warming scenarios, with a moderate increase in

450tree cover in the grassland páramo over the next
decades without the formation of closed forests
above the current upper montane forest line.

Plant life-form distribution along the elevation/
thermal gradient

455Our results suggest that within an area with very
low anthropogenic pressure at least during the last
70 years, the distribution of PLFs was strongly

Figure 4. Cover distribution models for tress (a–f) and tussock grasses (g–l) under climate change scenarios for the study site in
the Sierra Nevada de Mérida, Venezuela. The Representative Concentration Pathway (RCP) and the future time periods are
indicated. Pixels in the habitat suitability models represent a probabilistic cover value for a particular PLF. Colours represent
the percent cover from blue (low cover) to red (high cover).
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related to topographic variables (elevation and
slope orientation). Both factors interact to deter-

460 mine incident radiation and temperature regimes
at the local scale. These results are supported by
previous studies within the same study area
(Ramírez et al. 2009; Llambí et al. 2014) and the
Ecuadorian Andes (Keating 1999; Wille et al. 2002;

465 Bader et al. 2008; Bader and Ruijten 2008; Hofstede
et al. 2014), documenting the relationship of spe-
cies abundance and forest cover patterns across the
tropical treeline. The thermal amplitude of the
studied gradient (where trees are replaced by char-

470 acteristic páramo PLF), ranged from 8.2 to 6.7°C,
corresponding with the mean growing season tem-
perature range that defines the treeline globally
(Körner 2012).

However, at local spatial scales PLFs distribution
475 patterns may be more complex, since other para-

meters associated with local topographic heteroge-
neity in mountain areas could also have an impact

on plant distribution ranges through their effect on
microhabitat conditions (Scherrer and Körner 2011;

480Frankin et al. 2013). This is indicated by the coeffi-
cient of determination of PLF response models to
elevation and slope orientation (R2 values ranged
from 0.76 for trees to 0.28 for caulescent non-
pubescent rosettes), which suggest the existence of

485unaccounted variation being associated with the
distribution of PLFs. Although, slope inclination
was not found to be a significantly related to the
distribution of PLFs, a more detailed understanding
of how changes in topography and vegetation cover

490modify local temperature regimes would be a key
step for improving our capacity to model the spatial
responses of vegetation to warming across the
Andean treeline. Other local features such as the
presence of rocky outcrops or biogenic microcli-

495matic changes attributable to local plant cover
could be important in influencing patterns of tree
establishment above upper montane forest (see

Figure 5. Cover distribution models of caulescent non-pubescent rosettes (a–f) and caulescent pubescent rosettes (only RCP4.5
by the year 2040 is shown, G) under climate change scenarios for the study site at the Cordillera de Mérida, Venezuelan
Andean, Mérida State. The Representative Concentration Pathway (RCP) and the future time periods are indicated. Pixels in the
habitat suitability models represent a probabilistic cover value for a particular PLF. Colours represent the percent cover from
blue (low cover) to red (high cover).

8 A. ARZAC ET AL.

Revisor
Sticky Note
print colour

Revisor
Pencil

Revisor
Cross-Out

Revisor
Inserted Text
A

Revisor
Cross-Out

Revisor
Inserted Text
F



Llambí et al. 2013; Bueno and Llambí 2015). In
addition, establishing a higher number of replicate

500 transects, distributed over a wider region could be
important to obtain a more representative set of
independent samples and to allow the validation of
the exploratory models presented here against an
independent data set.

505 A sharp decrease in the abundance of trees in the
grassland páramo and a non-linear decrease in max-
imum tree sizes (Arzac 2008) with increasing eleva-
tion, appears to be linked to an increase in the
abundance of small sclerophyllous shrubs and cau-

510 lescent rosettes (which are common elements of the
grassland páramo). On the other hand, the fact that
the highest tree cover-abundance values were found
on north-west facing slopes (Figure 3(a)) might be
related to lower incident radiation, which could

515 decrease tree mortalities (e.g. by decreasing either
photoinhibition or water stress). According to mod-
elling results from Bader and Ruijten (2008), varia-
bility in Andean treeline elevation can be associated
with slope orientation in Central Ecuador, which

520 influences solar radiation loads.
Plant species inhabiting grassland páramos have

developed adaptive mechanisms that allow them to
tolerate high incident radiation and daily tempera-
ture amplitude (Squeo et al. 1991; Azócar and Rada

525 2006). Modifications in leaf structure (size and
pubescence) might help to explain the contrasting
distribution pattern observed within sclerophyllous
shrubs (with larger leaf sizes being associated with
a lower elevation optimum) and caulescent rosettes

530 (species with non-pubescent leaves showing
a lower elevation optimum). The decrease in leaf
area of sclerophyllous shrubs with elevation has
been proposed as a drought resistance mechanism
(Vareschi 1992; Ely and Torres 2003). In fact, the

535 shrubs with the smallest leaf size (LSS) showed
their optimum abundance at higher elevations on
west-facing slopes, which had the highest incident
radiation in our study site (Arzac 2008).

Leaf pubescence in caulescent rosettes can
540 strongly influence the leaf energy balance, reducing

the absorption of solar radiation (Rada et al. 1985;
Vareschi 1992; Meinzer et al. 1994; Azócar and
Rada 2006). This mechanism might explain the
higher abundance observed for pubescent rosettes

545 (CPR) values towards the upper extreme of the
gradient, on the west-facing slopes, which tend to
show lower minimum temperatures but higher
solar irradiance in the study area (Figure 3(e)),
whereas non-pubescent rosettes (CNR) peaked at

550 lower elevations on north-facing slopes (with lower

radiation loads, see Arzac 2008). In addition, CPR’s
show freezing avoidance strategies through the
protection of organs by insulating structures (e.g.
marcescent leaves) and supercooling (Rada et al.

5551985; García-Varela and Rada 2003), allowing
them to resist low minimum air temperatures.

Forecasting PLF distribution under warming
scenarios

Our projections suggest an expansion of woody
560plants over the páramos just above the current

treeline, increasing the density of trees and their
elevation range, while tussock grasses and caules-
cent rosettes would decrease in abundance (Figures
4(g–l) and 5). The upslope extension projected for

565all life-forms as a response to warming is in accor-
dance with observed upslope migrations of plants
and animals in the Andes (e.g. Deutsch et al. 2008;
Chen et al. 2009; Feeley et al. 2011; Feeley 2012;
Morueta-Holme et al. 2015). However, there is

570a paucity of studies in the tropical Andes docu-
menting tree species and vegetation shifts specifi-
cally at the treeline ecotone; and those available,
indicate an upward response of the treeline in the
last decades only in sites within protected areas

575with limited human impacts (Lutz et al. 2013;
Rehm and Feeley 2015), as is the case in our
study region (Santaella 2007).

The elevation shift might not necessarily be linear
as parameters other than temperature can lead to

580azonal vegetation patterns, such as the presence of
nearby water sources which provide a heterogeneous
mosaic of micro-climatic conditions or water avail-
ability for tree growth (see Bush et al. 2010 results
from the Central; Andes and Arzac et al. 2016; Arzac

585et al. 2018 for soil moisture in Mediterranean envir-
onments). Albeit the high annual precipitation in our
study area (1,811 mm), low mean temperatures and
a very short dry season might suggest that soil water
availability is not a limiting factor, water availability

590could explain the higher elevations reached by forests
in azonal areas associated with ravines and water-
courses (which were excluded from our sampling
transects).

Interestingly, even under the warmest scenario
595(RCP8.5), the simple modelling exercise carried

out here indicates that tree cover would reach
values of ca. 40–50% in the study area in the next
decades (extending 300 m of elevation above the
present continuous forest), but without the forma-

600tion of a closed forest canopy. This agrees with an
analysis of changes in vegetation cover in the same
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region between 1952 and 1998, which indicated an
increase in tree densities at and above the treeline,
rather than a clear elevation advance of closed

605 forests over the páramo (Santaella 2007).
Previous studies in the Venezuelan and

Ecuadorian Andes have shown that only some
small tree and tall shrub species that dominate
the upper montane forest edge (e.g. Cybianthus,

610 Diplostephium, Hesperomeles) can establish and
reach adult sizes in the páramos outside upper
montane forests (Bader et al. 2007b; Ramírez
et al. 2009; Llambí et al. 2013). Some of these
species (e.g. Diplostephium spp.) have a higher tol-

615 erance to the high radiation characteristic of open
páramo environments than species dominating
continuous forests (Bader et al. 2007b).

The limitations faced by forest trees to establish
in open environments outside the forest canopy

620 may support the existence of positive feedback
mechanisms which could stabilise the dynamics
of the upper forest line in the tropical Andes
(Bader et al. 2008). Facilitation by shrubs might
play a role in seedling establishment outside of the

625 forest by providing the necessary micro-climatic
conditions (García-Cervigón et al. 2012; Cáceres
et al. 2015; Ramírez et al. 2015). Different pieces
of evidence suggest that this phenomenon may be
important at the tropical treeline ecotone

630 (González et al. 2011; Llambí et al. 2013; Rehm
and Feeley 2013; Bueno and Llambí 2015).

All of this would agree with scenarios (as the one
suggested by our modelling exercise) in which the
elevation advance of forest over the páramos is

635 initiated by the establishment of individual pioneer
trees outside the treeline border, prior to the forma-
tion of a closed canopy, facilitating the subsequent
colonisation of other tree species dependent on the
more favourable conditions within closed forests

640 (Rehm and Feeley 2013; Rehm et al. 2015).
However, incorporating biotic interactions into
treeline dynamics models would be necessary to
evaluate how much of the variance can be explained
by biotic vs abiotic drivers and their interactions.

645 Limitations of the approach and challenges
for further research

Our approach is an exercise to evaluate changes in
treeline structure and spatial dynamics using
a non-taxonomic classification based on PLF, mor-

650 phological traits and simple habitat suitability
models as a prospective tool. Further research is
needed to widen the spatial extent of field sampling

and validate the model with an independent data
set and at wider spatial scales. However, the use of

655PLFs seems a promising approach to synthesise the
response of individual species to environmental
factors in highly diverse environments.

There is also a need to develop a moremechanistic
understanding of treeline dynamics in climate

660change scenarios, considering variations in both,
temperature and precipitation, as well as the effects
of changes in soil properties and micro-topographic
heterogeneity across tropical Andean treelines
(Frankin et al. 2013). In addition, a further refine-

665ment would consider developing mechanistic spatial
models by incorporating information on the: (a) the
ecophysiological and demographic responses of
woody species to abiotic drivers (e.g. soil water and
nutrients, solar radiation, minium and maximum

670temperatures); (b) the role of biological interactions
such as competition/facilitation; and (c) differences
in dispersal abilities between species and life-forms
(Bader et al. 2007b; Llambí et al. 2013; Ramirez-
Villegas et al. 2014; Rehm and Feeley 2015).

675Conclusions

The analysis of plant life-form distribution patterns
was used in this work to link changes in vegetation
physiognomy with climatic drivers influenced by
topography, facilitating comparative analyses across

680regions with marked differences in floristic composi-
tion. Our analysis contribute novel information show-
ing that leaf traits can play an important role in the
distribution of caulescent rosettes and shrubs, improv-
ing our understanding of the underlying causes of PLF

685distribution patterns above the treeline. In addition,
our results highlighted that the distribution of PLF in
the treeline ecotone could be described by simple
habitat suitability models combining the effects of
elevation and slope orientation, which could, in turn,

690be linked with changes in temperature and incident
radiation. Our habitat suitability models predicted an
elevation advance of trees and a concomitant decrease
in the cover of tussock grasses, caulescent rosettes and
small-leaved sclerophyllous shrubs, but without the

695formation of closed forests above the current forest
line during the next decades.
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