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ABSTRACT
The Soret coefficients of a set of ternary systems of 1,2,3,4-tetrahydronaphthalene (THN), isobutylbenzene (IBB), and n-dodecane (nC12) at
298.15 K were measured under microgravity condition aboard the International Space Station in the frame of the DCMIX1 experiment. The
present work includes a comprehensive study of possible data processing sequences for the interpretation of interferometric Soret experiments
in ternary systems. Several data processing methodologies are discussed. A significant concentration dependence of the Soret coefficients is
observed. In the present study, we have obtained large and positive values for THN and negative ones for IBB in all investigated systems. A lin-
ear relation between the Soret coefficients of two components is derived for each system and allows validating experimentally the coefficients
measured in other experiments.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5100595., s

I. INTRODUCTION

The study of thermodiffusion in multicomponent systems
raises a great level of interest in the scientific community. Molec-
ular diffusion and thermodiffusion play an important role in many
natural1,2 and industrial3 processes and for the fundamental under-
standing of the behavior of liquid mixtures.4–6 Thermodiffusion, or
the Soret effect,7 refers to a species transfer mechanism due to a local
temperature gradient. The experimental techniques for the measure-
ment of Soret coefficients in binary mixtures are well known and
were presented in several reviews.8–11 In recent years, a large amount
of experimental work was devoted to the study of the Soret effect in
multicomponent systems.12

In the present paper, we provide the Soret coefficients obtained
from the measurements performed in ternary liquid systems aboard
the International Space Station (ISS) during the DCMIX1 (Diffusion
Coefficient Measurements in mIXtures) experiment. DCMIX1 is
part of the DCMIX program that is endorsed by the European Space
Agency and includes four experiments, studying several ternary liq-
uid systems. During the DCMIX1 measurement campaign, a series
of experimental runs were performed, studying ternary mixtures
composed of 1,2,3,4-tetrahydronaphthalene (THN), isobutylben-
zene (IBB), and n-dodecane (nC12) with different concentrations at
25 ○C. The experimental conditions are such that species transport
results from the combined effect of thermal gradient and molecular
diffusion. In a ternary system, the diffusive flux Ji of component i
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can be written as13

Ji = −ρ∑2
j=1 Dij∇wj − ρD′T,i∇T, (1)

where ρ is the density of the liquid, Dij are the molecular dif-
fusion coefficients, wi and D′T,i are, respectively, the mass frac-
tion and thermodiffusion coefficient of component i, and T is the
temperature.

Significant data analysis and processing work is required in
order to retrieve accurate values for the Soret coefficients. The raw
data were simultaneously analyzed by several research teams and
compared prior to publication. In the present paper, we detail the
experimental setup and procedure, compare the different data pro-
cessing methodologies, and report and discuss the obtained Soret
coefficients.

II. EXPERIMENTAL
In this section, we discuss several aspects of the experiments.

First, we explain the principle of the experimental technique in
Sec. II A. The choice of the studied systems, the experimental setup,
and the experimental procedures are described in Sec. II B.

A. DCMIX experiment
The principle of the DCMIX experiment was proposed in

Ref. 14 for the experimental determination of the diffusion coeffi-
cients of liquid mixtures. The concentration gradient used to observe
molecular diffusion is created through the Soret effect by plac-
ing the liquid in a nonuniform temperature field. This idea was
already used in a number of previous studies, such as the laser beam
deflection technique by Kolodner in 1987,15 but here the chem-
ical composition field is observed by the means of an interfero-
metric technique. Modern interferometric techniques allow obtain-
ing a map of the chemical composition in liquid systems with a
high spatial and temporal resolution. The Selectable Optical Diag-
nostic Instrument (SODI) allows obtaining in one single experi-
ment both the Soret and the diffusion coefficients. In this paper,
the study is limited to the determination of the Soret coefficients
only.

The experiment starts with a homogeneous system at constant
temperature; at the beginning of the “Soret step” of a run, a temper-
ature gradient is created in the liquid by placing the bottom and top
walls of the liquid volume at two different temperatures. The tem-
perature gradient is kept constant, and thermodiffusion induces the
migration of the components. Once the system has reached a steady
state, in a closed cell, with no convection and no chemical reaction,
the diffusion fluxes vanish and the composition gradient along the
cell is proportional to the temperature gradient. From Eq. (1), this
can be written as

∇wi = −S′T,i∇T, (2)

where we introduced the modified Soret coefficients S′T,i. 99% of
the separation is obtained after about five times the characteris-
tic diffusion time. In ternary systems, characteristic diffusion time
τ = L2/(π2Ds) can be computed using the cell height L and the
smaller eigenvalue Ds of the diffusion matrix.16 This corresponds
to the end of the Soret step of the runs in on-board operations.

The so-obtained concentration differences Δwi of the components
across the cell provide the Soret coefficients by the relation

Δwi = −S′T,iΔT, (3)

where the differences Δ are from the top wall with respect to the
bottom wall of the cell. After the Soret step, the temperature gradient
is removed; the “Diffusion step” then develops and Eq. (1) applies
with a vanishing temperature gradient,

Ji = −ρ∑2
j=1 Dij∇wj. (4)

The typical timeline of an experimental run is shown schemat-
ically in Fig. 1.

B. Experimental
The primary objective of the DCMIX1 experiment is to obtain

accurate and reliable experimental data about the diffusive proper-
ties of multicomponent systems, in a convection free environment.
The project originated from the collaboration between several aca-
demic research centers with partners from the oil industry dur-
ing which binary, ternary, and quaternary Soret coefficients were
obtained in microgravity conditions in the SCCO experiment.17–19

Three chemical species were selected to represent three major fami-
lies of compounds found in crude oils: THN, IBB, and nC12, respec-
tively, for the families of naphthenic, aromatic, and aliphatic com-
pounds. The selected systems involve three components and are
away from the dilution limits. Nondiluted ternary systems carry
the main aspects of multicomponent systems, and chemo-diffusive
couplings specific to multicomponent systems appear as soon as
more than two nondiluted components are diffusing. The concen-
trations of the systems investigated in DCMIX1 are summarized in
Table I.

FIG. 1. Principle of an interferometric Soret diffusion experiment. Prior to the
experiment, during the thermalization phase, the entire cell is kept at constant
temperature. During the “Soret step,” a temperature gradient is applied to the liq-
uid and the Soret effect induces a gradient of the chemical components in the
system. During the “Diffusion step,” the temperature gradient is removed and the
diffusion coefficients are quantified by observing the relaxation of the liquid induced
by molecular diffusion.
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TABLE I. Concentrations of the systems investigated in the DCMIX1 experiment.

Component mass
fraction (%) Experimental runs processed

Cell THN IBB nC12 in this study

0 50 . . . 50 NA
1 10 10 80 16, 21
2 10 80 10 2E, 07, 17, 22, 27
3 80 10 10 See Ref. 12
4 45 10 45 4E, 19, 24
5 40 20 40 5E, 15, 20, 25

In Fig. 2, the mixtures investigated in DCMIX1 are shown with
red points. Five primary cells, cells 1–5, were filled with ternary mix-
tures, and one companion cell, cell 0, was used to study a binary
system with equal mass factions of THN and nC12. The composi-
tions are such that points are aligned in the ternary concentration
diagram, with the aim of investigating mixing rules.17,20–23

The diffusion and Soret coefficients of the correspond-
ing binary systems have been measured by several experimen-
tal techniques in the frame of the Fontainebleau benchmark,24,25

and the ternary diffusion coefficients were recently measured on
ground.12,16,26,27 For each system investigated during the DCMIX1
campaign aboard the ISS, several experimental runs were performed.
For cell 1, liquid leaked out of the cell during the measurement cam-
paign. A bubble appeared in the cell, and only two experimental runs
were completed.

For each cell, two different durations of the runs were used.
In addition to the “standard runs,” “extended runs,” denoted with
superscript E in tables Table I, have been proposed in the event that

FIG. 2. Concentrations of the systems investigated in DCMIX1. The concentrations
of the systems investigated under microgravity conditions in DCMIX1 are shown
by red dots in a ternary diagram. Systems characterized by aligned points in the
diagram were selected for the investigation of mixing rules.

the diffusion coefficients of one investigated system are significantly
lower than foreseen.

Each run starts with a thermalization phase during which the
temperature of the cell is stabilized to 25 ○C. The top and bottom
cell walls are then brought to 20 and 30 ○C, respectively. A stationary
temperature gradient quickly establishes in the liquid, and the ther-
modiffusion process is monitored during a given time. The tempera-
ture gradient is then removed, and isothermal diffusion is observed.
The duration of the “Soret step” was selected so that the Soret sep-
aration attains the steady state. The duration of the “diffusion step”
was chosen to cover several characteristic molecular diffusion times.

For some runs, data are acquired simultaneously for the com-
panion cell and for a primary cell. The measurements in the com-
panion cell are carried out in order to study the possible influence of
the residual gravity on the experiments, a topic of interest for micro-
gravity assessment,28–31,57 and to cross-check with ground based
measurements.

The liquid is placed in a parallelepipedic cell, as shown in
Fig. 3. The four lateral sides of the cell are transparent, allowing
optical probing. The temperatures of the upper and lower metal-
lic walls of the cell are controlled precisely and independently by
Peltier modules. During the DCMIX1 measurement campaign, the
six systems presented in Table I are arranged in a cell array and stud-
ied sequentially.32 Details regarding the cell design can be found in
Ref. 26.

The chemical composition within the binary system of the
companion cell is visualized with a standard Mach-Zehnder type
interferometer. A movable two-wavelength interferometer, which
can be moved to the selected cell, probes the primary cells.33

The wavelengths of the laser diodes used are λ1 = 670 nm and
λ2 = 935 nm.

The components of the experimental setup were assembled
inside the US Destiny module where ISS residual gravity is lowest.
A set of parameters monitoring the functioning of the experiment
are both simultaneously displayed in real time on ground and stored

FIG. 3. Schematic of a DCMIX experimental cell. The liquid volume is sealed by
O-rings. Two Peltier elements are used to control the temperatures of copper parts.
Temperature sensors probe the temperatures of the copper parts.
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on flash disks. The data were distributed to the science team by the
MARS center.34

III. DATA PROCESSING
The data obtained from the experiment are a set of digitized

interferograms. The data processing methodology implemented to
obtain the Soret coefficients from the experimental data consists of
a sequence of five main steps. As discussed in Ref. 35, for each step,
several possibilities can be envisaged; this results in a wide variety
of data processing approaches, as shown diagrammatically in Fig. 4.
During the course of previous benchmarking for DCMIX1,12 sev-
eral teams have processed the same set of experimental data by dif-
ferent processing schemes. The mass transfer coefficients, obtained
by different procedures, have revealed large dispersion. To address
this problem, in the present study, we investigate 7 data processing
schemes, referred to as DP 1–7 in Table II, and we compare in detail
the transport coefficients obtained.

The different possible implementations of the 5 steps of Fig. 4
are discussed in the following.

The capital letters A to E refer to the major successive steps of
the data processing sequence. The possible implementations of each
step are indicated by numbered panels.

A. Input experimental data
The first step of the data processing scheme is the selection of

the experimental data used for the estimation of the transport coef-
ficients. In Table II, data processing schemes 1–4 analyze the data
collected during the Soret phase of an experimental run, while data
processing schemes 5–7 use the data corresponding to the diffusion
phase of the runs.

TABLE II. Data processing sequences used in the present study.

DP Processing sequence Authors

1 A1 B1 C1 D3 E3+4 AM, VS (ULB)
2 A1 B1 C1 D3 E2+3 AM, VS (ULB)
3 A1 B1 C3 D3 E4 TT, WK (UB)
4 A1 B2 C1 D4 E3+4 OK, IR, TL (RAS)
5 A2 B2 C1 D4 E3+4 OK, IR, TL (RAS)
6 A2 B1 C3 D2 E4 QG, SVV (ULB)
7 A2 B1 C1 D1 E4 QG, SVV (ULB)

In optical probing, the spatial concentration variation in the liq-
uid is evaluated by measuring changes in the refractive index. During
the Soret step of the experimental runs, the refractive index n of
the ternary system varies with its temperature and with its chemical
composition,

Δni = ∂ni
∂T
∣w1 ,w2 ΔT +

∂ni
∂w1
∣w2 ,T Δw1 +

∂ni
∂w2
∣w1 ,T Δw2, (5)

where the symbol ∆ here denotes the changes of quantities with
respect to their equilibrium values. The thermal and molecular dif-
fusivities differ by about two orders of magnitude, and it is easy to
separate the two last terms on the right hand side (RHS) of Eq. (5)
from the thermal signal contribution. The thermal field is obtained
from the early images of the Soret step of the runs, while the images
recorded later are used to obtain the concentration changes Δw1
and Δw2. During the diffusion step of the experiments, the liquid
is isothermal and the first term on the RHS of Eq. (5) vanishes. The
fringe density significantly increases when the temperature gradient

FIG. 4. Simplified diagram of possible schemes for processing interferometric Soret-diffusion experimental data. The top panels A to E indicate the major successive steps.
The possible implementations of each step are indicated by numbered panels.
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is imposed across the cell, as easily observed from two experimental
images shown in Fig. 5.

B. Image processing
By design, the interpretation of interferometric experimental

data requires the use of a 5 step image processing method. Before
the image processing procedure, the images are cropped and rotated
to exclude the regions outside the sample volume and to align the
plates of the cell horizontally. The first step, the phase calculation,
is the determination, directly from the interferograms, of a wrapped
phase change Ψ. In the second step, a reference image is subtracted
from every image since the individual phase values are meaningful
only when compared to a reference state. ΔΨ is wrapped into the
interval [−π, π]. The third step, phase unwrapping, allows obtaining
the phase change Δφ of the light of wavelength λ traversing the sam-
ple along the geometrical path e that results from a refractive index
change Δn,

Δφ = 2πe
λ

Δn. (6)

Finally, the unwrapped phase is converted into the refractive
index using Eq. (6).

1. Phase calculation
The image acquisition technique used is a phase shifting inter-

ferometry.36,37 It consists in acquiring several fringe images that are
phase shifted by an integer fraction of 2π of the object and calcu-
lating the resulting phase signal with a phase shifting algorithm. In
SODI, phase shifts are obtained by stepping the laser diode currents.
For DCMIX1, the selected technique is based on the acquisition of a
set of five fringe images with a phase shift of π/2. The acquisition of
five images is achieved within less than a second, a time where the
refractive index field can be considered constant. This assumption is
perfectly reasonable since the characteristic time of the experiments
is of the order of several hours. In the data processing schemes DP 1
and 2 of Table II, phase images were computed using the Hariharan
algorithm.38 In DP3, a modified39 version of the Hariharan equation
was implemented.40 In DP 4 and 5, the widely known Fourier filter-
ing method41,42 was applied. This method allows reconstructing the
optical phase from a single interference image. A detailed descrip-
tion of the method is provided in Refs. 33 and 43. As discussed
in Ref. 38, for many DCMIX images, significant phase shift errors
were observed, resulting in strong disturbances of the phase signal
when standard stepping algorithms are straightforwardly applied. In

DP 6 and 7, to address this problem, the phase signals were recov-
ered with iterative algorithms.44 All the above-mentioned meth-
ods differ substantially in their basic principles; therefore, one can
expect some differences between the obtained signals. Note that
even within the same methodology, difference in results obtained
by different researchers may arise due to the implementation of the
algorithms.

2. Reference subtraction
Interferometry, by principle, is a differential measuring tech-

nique: the measured quantity is the variation of the refractive index
field with respect to a reference, commonly referred to as the “refer-
ence image.” When processing the images acquired during the Soret
phase of the runs, the reference image corresponds to the beginning
of the Soret phase, right after the establishment of the temperature
gradient in the liquid, so that the reference subtraction allows sep-
arating the thermal and compositional parts of the experimental
signals of Eq. (5). On the other hand, when performing the process-
ing of the images of the diffusion phase of the runs, the reference
image is acquired at the end of the thermalization phase of the runs,
prior to the Soret phase.

3. Phase unwrapping
Phase unwrapping is a well-known problem in interferometry,

and many different algorithms have been proposed to remove the
phase ambiguity.45 In DP1, DP2, and DP3, a modified40 version of
the Itoh algorithm46 was implemented; in DP 4 and 5, the wrapped
phase images are of sufficient quality, the phase exhibit a strict hori-
zontal alignment, and a one-dimensional sequential phase unwrap-
per was employed;33 in DP6 and 7, the Costantini47 algorithm was
used.48

4. Contrast factors
These image processing operations are performed indepen-

dently for the two sets of images acquired for the two wavelengths
of the two-color interferometer and allow obtaining two series of
refractive index maps Δni(x, y, t). The concentration fields are then
obtained with the following equation:

(Δw1

Δw2
) = (n1,1∣2 n1,2∣1

n2,1∣2 n2,2∣1
)
−1

(Δn1

Δn2
), (7)

where we introduced the optical contrast factors ni,j|k, defined as

ni,j∣k =
∂ni
∂wj
∣T,P,wk,k≠j . (8)

FIG. 5. Comparison of typical interfer-
ence patterns. Left: pattern recorded dur-
ing the Soret phase of an experimental
run. Right: pattern recorded during the
diffusion phase.
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TABLE III. Contrast factors for the 5 ternary systems studied in the DCMIX1 exper-
iment at T = 25 ○C. Component 1 is THN, component 2 is IBB, and component 3
is nC12. Contrast factors are defined in Eq. (8). Those values were computed from
Ref. 49.

Cell w1 w2 w3 n1,1∣2 n1,2∣1 n2,1∣2 n2,2∣1 K

1 10 10 80 0.0960 0.0547 0.0926 0.0521 342
2 10 80 10 0.1248 0.0758 0.1198 0.0714 254
3 80 10 10 0.1427 0.0887 0.1374 0.0838 241
4 45 10 45 0.1149 0.0686 0.1107 0.0655 495
5 40 20 40 0.1164 0.0696 0.1120 0.0667 1092

The contrast factors are experimentally measured in ground exper-
iments. The computed values of the Soret coefficients strongly
depend on the values of the contrast factors used for the calculations.
In the present study, all teams used identical contrast factors, com-
puted using the methodology and the experimental data reported in
Ref. 49 and summarized in Table III.

An algorithm for identification of the transport coefficients
requires the inversion of the matrix of optical contrast that can be
ill conditioned.49 The conditioning of a matrix is characterized by a
condition number K.35 The smaller the condition number, the lower
the error amplification when computing the concentration of the
components from the interferograms.

C. Data fitting
Identification of the mass transport coefficients is performed

by fitting the analytical solution of Eq. (1) to the experimental data
extracted from the processed images. The concentration distribu-
tion can be written in different ways. The most widely used ana-
lytical solutions are the full path solution26,35,43,51 that includes all
available data points, both in time and in space; the gradient solu-
tion,33,35,52 similar to the optical beam deflection (OBD) approach,53

which describes the gradient of concentration at midheight of the
cell; and the concentration difference solution,32,54 which describes
the temporal evolution of the difference of concentration between
the top and the bottom of the cell. Each of the above provides both
Soret and diffusion coefficients, but the amount of data involved in
the identification of the mass transport coefficients is essentially dif-
ferent and the use of the different approaches can lead to slightly
different results. Finally, one can simply analyze the concentration
gradient at steady state by processing the image obtained at the end
of the Soret phase of the run (or alternatively at the beginning of the
diffusion phase, as proposed in Ref. 48). This method allows retriev-
ing the Soret coefficients directly with Eq. (2) and does not require
identifying the diffusion coefficients. As can be seen from Fig. 6Q2 ,
the two phase signals obtained at different wavelengths are clearly
separated from each other.

In general, the mathematical solution of a Soret diffusion exper-
iment in ternary mixture comprises six unknowns, four diffusion
coefficients D11, D12, D21, and D22, and two Soret coefficients S′T,1
and S′T,2. To obtain reliable fitting results, different strategies were
tested in this study. In the first, as done in DP 7, the six unknowns
are fitted directly. This technique, however, provides diffusion coef-
ficients that are very sensitive to noise. Using specific combinations
of unknown quantities in the analytical solutions, the problem can

FIG. 6. Typical phase signals obtained after image processing of the data of a
DCMIX1 experimental run. The two optical signals, corresponding to the two wave-
lengths of the two-color interferometer, λ1 = 670 nm, λ2 = 935 nm, are of similar
shape but different amplitude.

be converted to four parameters33 (two Soret coefficients and two
diffusion eigenvalues, D̂1 and D̂2). The mathematical details of
different models are available elsewhere.35 This methodology was
applied in DP2 and DP3. Moreover, assuming that the two diffusion
eigenvalues are equal

Q3
,

D̂1 = D̂2 = Dqb, (9)

meaning that ternary diffusion can be modeled as quasibinary diffu-
sion, the problem is then simplified to a three-parameter fit.26 This
methodology was used in DP1 and DP2. In DP3 to DP5, the mathe-
matical modeling requires defining an amplitude matrix M.27,52 The
fitting identifies 6 unknowns, the four elements of M and the two
diffusion eigenvalues. Alternatively, in the steady state concentra-
tion gradients method, used in DP6, only the two Soret coefficients
are fitted.48

We want to emphasize that for the present work, the shapes
of the transients and, hence, the diffusion eigenvalues, were not
analyzed in full detail since they are irrelevant for the asymptotic
amplitudes that determine the Soret coefficients. This becomes most
apparent in the quasibinary approximation of Eq. (9), where the
two eigenvalues are even set equal. The diffusion eigenvalues of the
systems were measured elsewhere, by the Taylor Dispersion Tech-
nique (TDT),16 by the Optical Beam Deflection (OBD),52 and by
the Sliding Symmetric Tubes (SST).55 Additional experimental data
obtained by the SST56 and by the open ended capillary method48

were also reported for cell 3 in the frame of a benchmark.12 Those
data are summarized in Table IV.

D. Corrections
Due to the DCMIX cell design, the temperature field in the

liquid is not perfectly linear. As a consequence, see Eq. (1), the con-
centration distribution, and therefore the measured refractive index
fields, is also not linear. However, the working equations describing
the problem apply linear concentration profiles. As a consequence,
optical integration of the deformed refractive index fields leads to
underestimated values of the Soret separation. Different suggestions
for the correction of the data were proposed. In Ref. 32, the authors
use a so-called “optical temperature” (see Sec. IV A) in Eq. (3) to

J. Chem. Phys. 151, 000000 (2019); doi: 10.1063/1.5100595 151, 000000-6

Published under license by AIP Publishing

349

350

351

352

353
354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE IV. Diffusion eigenvalues and mean eigenvalue D̄ for the DCMIX1 systems. Those values were obtained by the Taylor
Dispersion Technique (TDT) in Ref. 16, by the optical beam deflection in Ref. 52, by the Sliding Symmetric Tubes (SST) in
Refs. 55 and 56, and by the open ended Capillary in Ref. 48.

C Reference D̂1 (10−10 m2 s−1) D̂2 (10−10 m2 s−1) D̄ (10−10 m2 s−1)

1
TDT16 11.9 8.8 10.35
OBD52 6.02
SST55 11 9 10

2
TDT16 10.9 9 9.95
OBD52 9.82
SST55 12 9 10.5

3

Benchmark12 6.61 5.48 6.04
TDT16 7.4 5.3 6.35
OBD52 9.29
OEC48 6.60 5.50 6.05
SST65 8.08 5.43 6.75

4
TDT16 8.5 6.2 7.35
OBD52 6.65
SST55 7 7 7

5
TDT16 8.9 6.5 7.7
OBD52 7.03
SST55 7 4 5.5

compute the Soret

Q4

coefficients. In the present study, all the Soret
coefficients were computed with a temperature difference of 10 ○C,
as measured by the temperature sensors. In Refs. 26, 35, 57, and 58,
the authors recommend performing a tomography reconstruction of
the concentration profiles in the center of the cell to account for the
curvature of the temperature field. This approach is used in DP2 in
our study.

At short times, both in the Soret and the diffusion phase of the
runs, the hypothesis of the temporal separation of the thermal and
compositional transients is not strictly valid

Q5

.50 During the temper-
ature transient, diffusive concentration changes do happen close to
the top and bottom walls of the cell,59 but are not observed in the
interferograms, due to the reference image subtraction. In DP1, DP2,
DP4, and DP5, this effect is taken into account by introducing an
additional fitting variable, an initial time t0, as discussed in Refs. 26,
33, and 43.

The temperature field in the cell is more linear in the central
part, and more curved in the external regions of the cell, approach-
ing the upper and lower heating elements or the Quartz walls. DP 4,
DP5, DP6, and DP7 only take into account a limited central region
of the field of view of the interferograms.

IV. RESULTS AND DISCUSSION
A. Thermal analysis

The thermal regulation timeline of the cells includes several
steps. We present in the following figures the typical evolution of

the temperatures T1 and T2 in the top and bottom part of each
experimental cell. For all the runs for cells 0–4, the performance of
the temperature regulation was very similar. A typical plot of the
temperatures T1 and T2 for those runs is showed in Fig. 7.

In Fig. 7, the speed of the regulation during the buildup and
the removal of the temperature gradient are illustrated by temporal
zooms. For all the runs, 90% of the temperature gradient is estab-
lished or removed within a little less than 1 min and more than
99% is stabilized within 2 min. The third zoom shows that the
temperature regulation is stable and precise: during the Soret
step, the maximum deviation between the measured and set point
temperatures is 0.02 ○C; during the diffusion step, it is 0.05 ○C.
Similar temperature profiles were observed for all runs for cells
0–4. For all runs on cell 5 however, notable deviations from
the nominal temperatures were observed throughout the exper-
iments, as depicted in Fig. 8. The cause of the occasional mal-
function of the temperature regulation for this cell could not be
revealed.

For those runs, numerous temperature spikes were detected,
during which the difference between the set-point and measured
temperatures was of the order of 0.2–0.4 ○C.

As mentioned earlier, the characteristic heat and mass diffu-
sion times differ by about two orders of magnitude. The analysis
of the interferometric data at the beginning of the Soret step allows
obtaining information about the temperature field across the cell.
We report here the data obtained for the binary system, referred
to as cell 0 in Table I. Both temperatures were stabilized at 25 ○C
before acquiring a reference image. T1 was then raised to 30.00 ○C,
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FIG. 7. Typical temperature cycle per-
formed in a DCMIX1 run for cells 0–4. In
the bottom of the figure, several zooms
are shown to illustrate the performances
of the temperature regulations.

while T2 was cooled down to 20.00 ○C. 2 min later, a second inter-
ferometric image was acquired. This corresponds to more than
5 times the characteristic heat diffusion time for the investigated
liquids. The corresponding phase images were calculated and pro-
cessed as described in Fig. 9. The observed phase change is shown in
Fig. 10.

A map of the refractive index change was calculated with
Eq. (10). Interferometry measures the average refractive index

change across the liquid sample (here, average means integrated
along the optical axis of the interferometer). It is then possible to
determine a 2D map of the average temperature in the liquid, the
“optical temperature” Topt ,

Topt = Δn1

n1,T
, (10)

FIG. 8. Typical temperature cycle performed in a DCMIX1 run for cell 5. These measurements show that temperature control did not function nominally for cell 5. Notable
deviations from the nominal temperatures were observed. The cause of the malfunction could not be revealed.

Q6

FIG. 9. Image processing steps for the translation of interferometric experimental of a Soret diffusion experiment. Step 1 is phase calculation, step 2 is reference image
subtraction, step 3 is phase unwrapping, and step 4 is computation of refractive from the unwrapped phase.
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FIG. 10. Temperature field in cell 0. Top left: phase map recorded right after the establishment of a stationary temperature field in the cell. Top right: colormap of the computed
temperature in the liquid. Bottom left: vertical temperature profiles in the liquid. Bottom right: horizontal temperature profiles in the liquid. Q7

where n1,T = ∂n1/∂T|w1,w2 = −0.004 47 is the thermal contrast factor
at wavelength λ1.60 In Fig. 10, we observe a strong curvature of the
temperature field approaching the edges of the cell. The temperature
difference between the top and the bottom of the cell is close to 10 ○C
in the center of the cell but significantly smaller at the Quartz walls.
The temperature profiles along several vertical and horizontal lines
are plotted in Fig. 10.

B. Soret coefficients
The refractive index difference between the top and the bot-

tom of the cell (ntb)i for both wavelengths and the corresponding
Soret coefficients obtained by using the 7 different data processing
schemes are reported in Table V. We do not report data for cell 3 in
the present paper, as it was previously studied in detail.12,26,32,33,48,54

In Table V, outlier data points corresponding to S′T,1 or S′T,2
and deviating of more than 2 standard deviations from the mean
coefficients are indicated by a ∗ superscript. Based on this set of
results, we report in Table VI the mean Soret coefficients obtained
in the present study, together with the coefficients found in the
literature, including coefficients obtained by OBD,52 by a previ-
ous analysis of DCMIX1 data32,54 and by combination of SSTQ8 and
thermogravitational column experiments (SST + TC).55

For cells 1–4, at least 2 Soret coefficients were obtained with
a reasonable accuracy. For cell 5, the experimental data did not
allow identifying accurately the Soret coefficients. We provide the
coefficients obtained for cell 5, but we acknowledge that given the
amplitude of the standard deviation, these values should be taken
with caution. The first observation is that, in all systems, the heavier

component, tetralin, showed a positive Soret effect, which means
that it concentrated at the cold side of the cell. Moreover, the magni-
tude of the separation of tetralin is larger than that of the two other
components (except in cell 5). The systems studied through the first
three cells are located close to the three corners of the ternary con-
centration diagram (see Table I), where one of the components is
more concentrated than the other two (nC12 in cell 1, IBB in cell
2, and THN in cell 3). The comparison of the results obtained for
these cells provides an illustration of the complexity of thermodiffu-
sion in multicomponent mixtures. We do not observe any obvious
correlation between the concentration of the components and the
amplitude of the Soret coefficients. In the present study, we obtained
a negative coefficient for IBB, but this observation is not confirmed
by previous experimental studies. In cell 2, S′T,2 is larger than S′T,3,
while in cells 1 and 3, S′T,3 is larger. The separation of tetralin is
significantly larger in cells 4 and 5 than in cells 1–3.

1. Comparison of data processing approaches
As indicated in Eq. (2), the steady state thermodiffusive con-

centration fields are proportional to the temperature field in the
cells. Due to the curvature of the temperature field, the refractive
index differences measured by interferometry tend to underestimate
the Soret separation. Data processing sequences DP1 and DP2 used
identical image processing algorithms and mathematical models, the
only difference being the tomographic reconstruction of the refrac-
tive index fields. Thus, the refractive index differences, and the Soret
coefficients, computed by DP2 are significantly larger than the ones
obtained by DP1.
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TABLE V. Refractive index differences at both wavelengths and Soret coefficients
obtained with the 7 data processing sequences of Table II. Components 1, 2, and 3
are, respectively, THN, IBB, and nC12; C is the cell number; DP is the data processing
scheme according to Table II; and run is the run reference according to Table I. ∗

superscript denotes outlier data points.

−(ntb)1 −(ntb)2 ST
′

1 ST
′

2

C DP Run 10−4 10−4 K−1

1 1 16 6.103 5.929 9.41 −5.35
21 6.086 5.921 10.07 −6.53

2 16 6.852 6.662 11.04 −6.76
21 6.836 6.645 10.85 −6.54

3 16 6.107 5.952 11.0 −8.1
21 6.119 5.946 9.5 −5.5

4 16 5.78 5.73 ∗18.8 ∗−2.24
21 5.77 5.69 ∗15.8 ∗−17.1

5 16 6.22 6.07 12.2 −10.0
21 6.26 5.98 ∗1.0 ∗9.7

6
11 6.161 5.924 4.61 3.17
16 5.790 5.630 9.33 −5.79
21 5.710 5.520 6.64 −1.21

7 16 6.314 6.065 4.2 4.17
21 6.181 5.947 4.9 2.7

2

1

17 5.133 4.978 6.55 −4.01
02 5.199 5.041 6.58 −3.98
22 5.148 5.004 7.11 −4.91
27 5.172 5.023 6.93 −4.60
07r 5.202 5.042 6.50 −3.83

2

17 5.714 5.545 7.45 −4.73
02 5.757 5.578 7.09 −4.09
22 5.730 5.564 7.63 −5.00
27 5.742 5.578 7.76 −5.20
07r 5.780 5.622 8.14 −5.78

3

2 5.2428 5.087 6.8 −4.3
17 5.2307 5.063 6.2 −3.3
22 5.2122 5.062 7.0 −4.6
27 5.2272 5.073 6.9 −4.4

4

2 5.04 4.87 5.9 −3.0
17 4.92 4.84 9.3 −8.9
22 4.97 4.82 6.3 −3.8
27 4.96 4.84 7.6 −5.9

27 r 4.93 4.85 ∗9.8 ∗−9.6

5

2 5.06 4.81 ∗2.1 ∗3.3
17 −5.01 −4.79 ∗2.7 ∗2.2
22 −4.99 −4.81 4.8 −1.3
27 −4.99 −4.78 3.4 0.9
27r 4.98 4.86 7.8 −6.3

6
2 5.613 5.416 6.0 −2.4

12 5.359 5.192 6.08 −3.0
17 5.359 5.192 6.59 −3.78

TABLE V. (Continued.)

−(ntb)1 −(ntb)2 ST
′

1 ST
′

2

C DP Run 10−4 10−4 K−1

7

2 5.286 5.092 5.09 −1.41
7 5.251 5.063 5.31 −1.82

12 5.172 5.067 9.00 −8
22 5.241 5.067 5.91 −2.82

4
3

4 21.022 20.431 34.9 −27.8
19 20.898 20.312 34.8 −27.8
24 20.845 20.248 33.4 −25.6

6
4 20.719 20.063 27.39 −15.68

19 19.9621 19.3060 24.0 −11.0
24 19.5198 18.9097 26.6 −16.1

7
4 20.8220 20.2560 36.79 −31.28

19 20.6856 20.0665 30.90 −21.60
24 20.9056 20.3094 34.17 −26.76

5

1

15 18.65 18.10 47.31 −52.29
20 19.29 18.73 50.84 −57.27
5 19.13 18.71 79.49 −105.4

25 18.80 18.25 48.64 −54.30

2

15 20.96 20.34 55.32 −62.39
20 22.16 21.52 57.41 −64.18
5 20.89 20.54 110.44 −54.22

25 21.23 20.69 70.55 −87.46

3

5 19.815 19.193 42.2 −42.1
15 19.105 18.488 37.1 −34.5
20 19.021 19.169 ∗200.0 ∗−308
25 19.442 18.728 19.2 −4.2

6
5 ∗18.27 ∗17.11 ∗6.69 ∗−1.15

10 19.561 18.915 34.7 −29.9
15 17.46 17.01 57.9 −71.7

7

5 18.65 17.93 11.3 7.9
10 18.5 17.78 8.9 11.7
15 18.3 17.59 11.0 7.9
20 18.21 17.49 9.0 11.1
25 18.48 17.82 23.0 −11.9

DP5 results in the most scattered Soret coefficients. In DP5, the
optical phases of the experimental data were collected during the
diffusion step of the experiments. Due to the alignment of the inter-
ferometer in wide fringe configuration, the images collected during
this step of the runs only contain a few fringes, and the Fourier
algorithm results in noisy phase signals.

DP3 and DP7 are based on very different mathematical mod-
eling of the diffusive processes but implement similar image pro-
cessing algorithms. The coefficients obtained through these two data
processing sequences are very consistent. This seems to indicate that
the influence of the image processing algorithms is more critical than
the mathematical modeling of the experiments.
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TABLE VI. Average Soret coefficients obtained in this study, compared with literature data.32,52,54,55 Components 1, 2, and 3
are, respectively, THN, IBB, and nC12. ∗∗ superscript denotes corrected data.

C References ST
′

1/10−4 (K−1) ST
′

2/10−4 (K−1) ST
′

3/10−4 (K−1)

1

This study 8.6 ± 2.8 −3.8 ± 4.8 −4.8 ± 2
TC + SST55 5.4 ± 0.7 3.2
OBD52 5.8 3.9 −9.0
DCMIX154 6.02 ± 0.4 −0.42 ± 0.2

2

This study 6.7 ± 1.2 −4.1 ± 2.0 −2.6 ± 0.8
DCMIX132 −7.42 (+7.42∗∗) −0.59 (−5.90∗∗)
TC + SST55 3.1 ± 0.6 2.9
OBD52 4.1 0.2 −4.4
DCMIX154 4.53 ± 0.6 −0.98 ± 0.2

3 Benchmark12 12.8 ± 0.4 −5.8 ± 0.3 −7

4

This study 31.40 ± 4.5 −22.6 ± 7 −8.8 ± 2.5
TC + SST55 19 ± 2 1.0
OBD52 21.7 −1.4 −20.3
DCMIX154 21.5 ± 0.6 −4.94 ± 0.4

5
This study 44.56 ± 27 −44.8 ± 44 1.34 ± 17
TC + SST55 15 ± 4 6
OBD52 19.5 −1.7 −17.7

In DP7, the mathematical modeling of the diffusive processes
is simplified and can only be used if the Soret separation actually
attains steady state at the end of the Soret phase of the runs.

2. Analysis of errors on the Soret coefficients
In

Q9

Fig. 11, we have plotted in a S′T1-S′T2 space the Soret coef-
ficients obtained through the 7 data processing sequences together
with the coefficients found in the literature.

A first observation is that, as discussed in Ref. 29, the coeffi-
cients obtained with different data processing methods are aligned in
the S′T1-S′T2 space. The error of the Soret coefficients has a remark-
able property: instead of forming a radially uniform scattering cloud
around the solution point {S′T1, S′T2}, it forms a very elongated ellip-
soid, practically degenerated into a line. This means that all data
processing sequences of Table II lead to consistent optical analy-
sis of the experimental data. The dispersion on the obtained Soret
coefficients is due to the conversion of optical quantities to concen-
tration quantities. This step, in Eq. (7), requires inverting the matrix
of optical contrast factors. This matrix is quite ill-conditioned, and
the inversion amplifies a low optical noise into a large uncertainty in
the concentrations. The orientation of the line in the S′T1-S′T2 space
is defined by the properties of the contrast factor matrix. In Ref. 61, it
has been shown that the directions of the major and the minor axis
of the uncertainty ellipsoid are given by the right-singular vectors
of the contrast factor matrix. Based on this observation, it appears
that DCMIX1 experimental data do not allow retrieving the ternary
Soret coefficients with the same accuracy as for typical binary mix-
tures. However, these data provide a linear correlation between the

Soret coefficients. By writing this correlation as

S′T,2 = AS′T,1 + B, (11)

we obtain the values of parameters A and B provided in Table VII.
This linear correlation corresponds essentially to the result of

a single-color experiment. The second detection color narrows the
solution space down from a straight line to a line segment, whose
length depends on the condition number of the contrast factor
matrix.

The consistency of the obtained results shows that, in general,
all data processing sequences of Fig. 4 and Table II can reliably be
used for the interpretation of ternary thermodiffusion experiments
and we cannot point out clear criteria for preferring one data pro-
cessing methodology over the others. On the other hand, such crite-
ria may appear from a particularity of the raw data itself. The choice
of a particular data processing methodology must be made on a case
by case basis, depending on the characteristics of the experimental
data.

3. Comparison with literature data
The comparison of our results with literature data,32,52,54,55 as

summarized in Fig. 11, shows that the coefficients found in previous
publications are also located on the lines defined by Eq. (11). The
coefficients of Refs. 32 and 54 were obtained from previous analysis
of DCMIX1 data and computed using similar contrast factor matri-
ces. These coefficients therefore unsurprisingly display the same
trend as our results. Although, in the previous analysis, the authors
did not notice and describe the scattering of S′T,1 and S′T,2 because
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FIG. 11. Comparison of Soret coefficients with literature data, for DCMIX1 cells 1,
2, 4, and 5. The coefficients were obtained through data processing sequences
DP1 to DP7 and compared with literature data, including coefficients obtained by
the Optical Beam Deflection (OBD) technique,52 by a previous analysis of DCMIX1
data,32,54 and by combination of sliding symmetric tubes and thermogravitational
column experiments (SST + TG).55 All the obtained coefficients are aligned in the
S′T1-S′T2 space.

TABLE VII. Coefficients of the linear correlation between the Soret coefficients
obtained in this study.

Cell A B

1 −1.6877 0.0011
2 −1.5856 0.0007
4 −1.5449 0.0026
5 −1.6347 26.2379

the conversion of refractive index into concentration in their algo-
rithm was applied at an early stage, which resulted in overlooking
the effect.

V. CONCLUSIONS
The Soret coefficients of a series of five ternary systems were

performed under microgravity conditions aboard the International
Space Station in the frame of the DCMIX1 experiment. In the
present paper, we have detailed the experimental setup, the pro-
cedure, and the experimental data analysis. We have provided an
extended review of the different possible data processing schemes
used in the interpretation of digital interferometric ternary thermod-
iffusion experiments. We have shown that different choices of image
processing algorithm and mathematical modeling of the experi-
ments are possible and lead to consistent results. We have observed
that the measured Soret coefficients are aligned in the S′T,1-S′T,2
space and that there remains an indetermination on the values of the
measured Soret coefficients due to the ill-conditioned matrix of opti-
cal contrast factors. We have derived a linear correlation between the
Soret coefficients for each ternary system. These correlations allow
for an experimental validation of the Soret coefficients measured
by OBD52 and by the combination SST + TG55 in ground condi-
tions by comparison with the results of the microgravity DCMIX1
experiment.

From the comparison with literature data, we can conclude
the consistency of the data obtained from the SODI instrument by
different data processing approaches. Besides, we have compared
our results with coefficients obtained in ground laboratories, by
SST + TC in Ref. 55 or by OBD in Ref. 52. Those coefficients were
computed using density and refractive index or refractive index
at two different wavelengths (405 and 635 nm), respectively, for
the concentration measurements. These techniques are therefore
based on different contrast factor matrices, which provide some
advantages for this particular system.

Nevertheless, all the coefficients, although measured with very
different experimental techniques, using a variety of data process-
ing approaches, and computed with different sets of contrast fac-
tors, are all located on the lines of Fig. 11. This observation suggests
that the results of DCMIX1 allow for an experimental validation of
the coefficients measured under gravity conditions in Refs. 52 and
55. As a general result, the Soret coefficients can be fixed in the
direction of the short axis of the confidence ellipsoid with a high
accuracy. How far they can be narrowed down in the perpendicu-
lar direction of the long axis very strongly depends on the contrast
factor matrix and, hence, on the particular ternary mixture and the
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employed experimental technique. For a mixture containing both
aromatic and aliphatic compounds, it is advantageous to choose
one wavelength in the blue, close to the UV-absorption of the delo-
calized π-electrons.62 The DCMIX1 system belongs to this class of
mixtures. But this advantage may be gone for systems without an
aromatic compound. Also, the combination of density and refrac-
tive index detection, as employed in the thermogravitational column
technique, can in certain cases profit from superior contrast factor
matrices. Unfortunately, no perfect experimental technique exists
that could cover all possible mixtures, and a change of the detection
wavelengths is not feasible for the microgravity experiments.
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