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Elastoplastic Bending of the Console with Transverse Force
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In the article an elastoplastic boundary for the console being bent with transverse force when the point
of force is not situated in the centroid of transverse section was built with the use of the conservation
laws. In this case bending moments and torques appear of the console. The case when the point of force
is situated in the centroid of transverse section is considered in the previous works of the authors. In
the work an infinite system of conservation laws has been built that allows us to reduce the problem of
calculating elastoplastic boundary to a few quadratures, at the outer contour of transverse section. At
that the contour can be random piecewise smooth. It is assumed that the lateral surface of the console is
free from strains and is in its plastic condition.

Keywords: conservation laws, elastoplastic bending.
DOI: 10.17516/1997-1397-2019-12-5-637-643.

Introduction

Problems with unknown boundaries are ones of the most complex that appear when solving
a number of continuum mechanics problems [1]. In the theory of plasticity to such a class
belong problems that require building an elastoplastic boundary. The methods of building such
boundaries, for some transverse sections, can be successfully solved with the use of the theory
of functions of a complex variable methods and minimisation of functionals [2]. In the authors’
works with the use of conservation laws it turned out well to build elastoplastic boundaries for
rods, boundaries of which were random piecewise smooth contours [3]. Later it turned out that
these methods could also be used to find elastoplastic boundaries in a console being bent.

In article [4] there is a solution for the problem of elastoplastic bending of the console with
transverse force if the transverse force is applied to the centroid of transverse section. In this
case only bending moments appear in the console. And if the transverse force is applied not
to the centroid of transverse section then also torques appear in the console. This very case is
considered in the suggested work.
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1. Statement of a Problem

Let us consider a straight console of constant section. Assume it is fixed in Section Z = 0

and is loaded in its end section Z = l with a force with resultant P = (P, 0, 0). Let us situate the
origin of coordinates on the fixed end, but we assume that it does not coincide with the centroid
of the console’s section. Also we assume that the console’s lateral surface is free from strains and
is in its plastic condition.

Fig. 1. Console

In this case [5] in elastic zone stress tensor components satisfy the equations
F1 =

∂τxz
∂x

+
∂τyz
∂y

− P
(
α1(x− xC) + α2(y − yC)

)
= 0,

F2 =
∂τxz
∂y

− ∂τxz
∂x

− 1

µ

[
K − Py

2 (1 + v)
(α2x− α1y)

]
= 0,

(1)

Where (xC , yC) — the coordinates of transverse section centroid,

α1 =
I11S − S2

1

∆
, α2 =

I12S − S1S2

∆
,

S =

∫ ∫
dxdy, S1 =

∫ ∫
ydxdy, S2 =

∫ ∫
xdxdy,

I11 =

∫ ∫
y2dxdy, I12 =

∫ ∫
xydxdy, I22 =

∫ ∫
x2dxdy,

∆ =

(
I22 I12 S2

I12 I11 S1S2 S1 S

)
.

Here Iij are moments of inertia, S1, S2 are static moments of inertia about Axes x and y; ν, µ

are elastic constants, K =
Py

2 (1 + v)
(α2xC − α1yC) .

As a result we will need to solve System of equations (1) with the following boundary condi-
tions on Contour Г that limits the transverse section.

τxzl1 + τyzl2 = 0, τ2xz + τ2yz = 1. (2)

Here l1, l2 are the normal’s vector components to Contour Г.
The first equation from (2) means that the lateral surface is free from strains and the second

condition means that the lateral surface is in its plastic state. For simplicity of further calculations
let us consider yield point at pure shear be equal to one. This can always be achieved with the
help of introducing nondimensional variables.
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By reason of the above made assumptions —- plastic strain range covers the entire lateral
surface Fig. 2.

It is required to solve the following problem: determine the unknown boundary L taking into
account the assumptions made.

Fig. 2. G is the outer boundary, L is the elastoplastic boundary, P is the plastic deformation
range, E is the elasticity deformation range

2. Conservation laws
Definition. Assume F1 = 0, F2 = 0, system of two differential equations (1) of two inde-

pendent variables x, y. By conservation law the relation

∂xA+ ∂yB = ∆1 F1 +∆2 F2 = 0.

is called that is fulfilled on all solutions of System F1 = 0, F2 = 0, Here ∆1, ∆2 are some linear
differential operators. Vector (A,B) is called conserved current.

Let us build conservation laws for System of equations (1).
We find conserved current in the form of

A = a1u+ b1v + γ1, B = a2u+ b2v + γ2, (3)

where τxz = u, τyz = v, ai, bi, γi are functions only x, y. Then the conservation law will be
written as

∂xA+ ∂yB = ω1 F1 + ω2 F2 = 0. (4)

In this case Operators ∆1, ∆2 reduce to multiplying by some functions of independent variables.
Inserting (3) into (4) we obtain

a1xu+ a1ux + b1xv + b1vx + γ1
x + a2yu+ a2uy + b2yv + b2vy + γ2

y =

= ω1 (uy − vx − f(x, y)) + ω2 (ux + vy − g(x, y)) .
(5)

Here by f, g the right-hand sides of Equation (1) are shown.
Since Relation (5) is fulfilled identically, then all the coefficients at the required functions and

their derivatives must be equal to zero. As a result we obtain

a1x + a2y = 0, b1x + b2y = 0, a1 = ω2, b1 = −ω1, a2 = ω2, b2 = ω2, γ1
x + γ2

y = −ω1f − ω2g.

It follows
a1 = b2 = ω2, b1 = −a2 = −ω1, a1x − b1y = 0, b1x + a1y = 0.
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In order to find a1, b1 it will be required to solve the equations

a1x − b1y = 0, b1x + a1y = 0. (6)

From (6), in particular it follows that the system of equations being studied allows an infinite
number of nontrivial conservation laws.

3. Solution of Problem

We will be finding two special solutions of Equations (6), i.e. such solutions that have a
special feature in Point x0, y0.

The first solution of Equations (6), let us represent it as a11, b
1
1, γ

1
1 , γ

2
1 is written as:

a11 = (y − y0)/
(
(x− x0)

2
+ (y − y0)

2
)
,

b11 = (x− x0)/
(
(x− x0)

2
+ (y − y0)

2
)
,

∂γ1
1

∂x
= b11f − a11g, γ

2
1 = 0.

(7)

From (7) we obtain

γ1
1 = α1x+

1

2

(
α1(x0 − xC)−

(y − y0)νPα2

2µ(1 + ν)

)
ln
(
(x− x0)

2
+ (y − y0)

2
)
+

+

(
α2

y − yC
y − y0

− α1(y − y0) +
K

µ
− νP

2(1 + ν)
(α2x0 − α1y)

)
arctg

x− x0

y − y0
.

(8)

The second solution of Equations (6), let us represent it as a12, b
1
2, γ

1
2 , γ

2
2 is written as:

a12 = − (x− x0) /
(
(x− x0)

2
+ (y − y0)

2
)
,

b12 = (y − y0) /
(
(x− x0)

2
+ (y − y0)

2
)
,

∂γ1
2

∂x
= b12f − a12g, γ

2
2 = 0.

(9)

From (9) we obtain

γ1
2 =

α2νP

2(1 + ν)µ
x+

1

2
Pα1(y − y0)−

− 1

2µ

(
K − νPα2

(1 + ν)
(α2x0 − α1y)

)
ln
(
(x− x0)

2
+ (y − y0)

2
)
+

+

(
Pα1(x0 − xC) + Pα2(y − yC)−

νPα2

2(1 + ν)
(y − y0)

)
arctg

x− x0

y − y0
.

(10)

Let us convert the obtained conservation laws.
Conservation law (4) can be written using Green formula:∫

Γ

(
a1u+ b1v + γ1

)
dy −

(
−b1u+ a1v + γ2

)
dx = 0,

where Γ is a random piecewise smooth contour.
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Assume (x0, y0) – some points in the area covered by Contour Γ. Let us consider an ellipse
inside of which there is Point(x0, y0). Then we obtain see Fig. 3.∫

Γ

(
a1u+ b1v + γ1

)
dy −

(
−b1u+ a1v + γ2

)
dx+

∫
Γ1

+

∫
Γ2

+∫
(x−x0)2+k2(y−y9)

2=ε2

(
a1u+ b1v + γ1

)
dy +

(
−b1u+ a1v + γ2

)
dx = 0.

Encirclement is carried out in such a way that the exceptional point stays outside the area covered
by the contours. Since

∫
Γ1

+
∫
Γ2

= 0, then we obtain∫
Γ

(
a1u+ b1v + γ1

)
dy−

(
−b1u+ α1v + γ2

)
dx =

=

∫
Γ1

(
a1u+ b1v + γ1

)
dy −

(
−b1u+ a1v + γ2

)
dx+

+

∫
Γ2

(
a1u+ b1v + γ1

)
dy −

(
−b1u+ a1v + γ2

)
dx =

= −
∫

(x−x0)
2+k2(y−y9)

2=ε2

(
a1u+ b1v + γ1

)
dy +

(
−b1u+ a1v + γ2

)
dx.

(11)

Here the integral in the right-hand side is calculated around the circle O : (x− x0)
2
+(y−y0)

2
=ε2,

in the centre of which there is an exceptional point.

Fig. 3. Arrows show the direction of going around the boundaries

Assume a1 = a11, b
1 = b11 from (7) we will calculate the integral in the right-hand side (11).

We have
−
∫
O

(
a11u+ b11v + γ1

1

)
dy +

(
−b11u+ a11v + γ2

)
dx (12)

Assume x− x0 = ε sinϕ, (y − y0) = ε cosϕ then a11 =
cosϕ

ε
, b11 =

sinϕ

ε
and expression (12) will

be written as∫ 2π

0

(
cosϕ

ε
u+

sinϕ

ε
v + γ1

)
ε sinϕdϕ−

∫ 2π

0

(
− sinϕ

ε
u+

cosϕ

ε
+ γ2

)
ε cosϕdϕ =

=

∫ 2π

0

(
(
−cos2ϕ+ sin2ϕ

)
v + (cosϕ sinϕ+ cosϕ sinϕ)u+ γ1ε sinϕ− γ2ε cosϕ)dϕ =

= −v(x0, y0)/2

∫ 2π

0

dϕ =− v(x0, y0)π.
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For the development of this formula we sent and used the mean-value theorem. Hence

πµ (x0, y0) = −
∫
Γ

(
a11u+ b11v + γ1

1

)
dy −

(
−b11u+ a11v + γ2

1

)
dx. (13)

Let us now consider the second solution a11 = a12, b
1
1 = −b12. Doing the same thing as in the first

case we have

−
∫
O

(
a12u+ b12v + γ1

2

)
dy −

(
−b12u+ a12v + γ2

2

)
dx =

= −
∫
O

(
(x− x0)

r
u− (y − y0)

r
v + γ1

2

)
dy −

(
(y − y0)

r
u+

(x− x0)

r
v + γ2

2

)
dx =

=

∫ 2π

0

(
sinϕ

ε
u− cosϕ

ε
v + γ1

2

)
ε sinϕdϕ−

∫ 2π

0

(
cosϕ

ε
u+

sinϕ

ε
v + γ2

2

)
(cosϕ) εdϕ =

=

∫ 2π

0

u
(
−cos2ϕ+ sin2ϕ

)
dϕ = −u (x0, y0)π.

Finally we will get

u (x0, y0) =
1

π

∫
Γ

(
a12u+ b12v + γ1

2

)
dy −

(
−b12u+ a12v + γ2

2

)
dx. (14)

Now the only thing remaining is to calculate the integral in the right-hand sides of Formulas
(13), (14). For that we will use Formulas (2). They allow us to calculate u = τxz, v = τxz on Γ.
We have

ul1 + vl2 = 0, u2 + v2 = 1.

From here we get expressions for u = τxz, v = τxz on Γ

u = − l2
l1
v,

(
l2
l1

)2

v2 + v2 = 1.

v2 =
l21

(l22 + l21)
, v = ± l1√

(l22 + l21)
. (15)

u = ∓ l2√
(l22 + l21)

. (16)

In accordance with frontal moments, see Fig. 1, in Formulas (15) and (16) we choose the upper
sign.

We insert (7)–(10) and (15), (16) into (13) and (14) and we find expressions for u = τxz,

v = τxz in all the points in the area limited by Contour Γ. This allows us to determine plastic
and elastic zones. Those points where τ2xz + τ2yz < 1 belong to elastic zone, and others fall into
plastic zone. We point out that the solution of such a complex problem as building an unknown
elastoplastic boundary has been reduced to calculating of a few quadratures.
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Упругопластический изгиб бруса поперечной силой
Сергей И. Сенашов

Ирина Л. Савостьянова
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Россия

В статье с помощью законов сохранения построена упругопластическая граница для бруса, изги-
баемого поперечной силой, когда точка приложения силы не лежит в центре тяжести попереч-
ного сечения. В этом случае в стержне возникают изгибающие и крутящие моменты. Случай,
когда точка приложения силы лежит в центре тяжести поперечного сечения, рассмотрен в
предыдущих работах авторов. В работе построена бесконечная система законов сохранения, ко-
торая позволяет свести задачу вычисления упругопластичной границы к нескольким квадрату-
рам, по внешнему контуру поперечного сечения. При этом контур может быть произвольным
кусочно-гладким. Предполагается, что боковая поверхность бруса свободна от напряжений и на-
ходится в пластическом состоянии.

Ключевые слова: законы сохранения, упругопластический изгиб.
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