ИЗУЧЕНИЕ ТЕПЛОЕМКОСТИ ОКСИКУПРАТОВ ЛАНТАНОИДОВ Лукина Т.И.

научный руководитель д-р хим. наук Денисов В. М. Сибирский федеральный университет

Поиск новых соединений часто ведется в направлении синтеза сложных многокомпонентных материалов. Интерес к таким материалам обусловлен не только возможностью сочетания в них разнообразных физических свойств, но и возможностью управления ими в зависимости от состояния исходных компонентов. Наряду с прикладным значением изучение термодинамических и других свойств таких материалов способствует выяснению общих физических закономерностей и механизмов электронных процессов, протекающих в твердых телах.

Длительное время не ослабевает интерес к металлоксидным соединениям, к которым относятся антиферромагнитные La_2CuO_4 , $La_2Cu_2O_5$, Sm_2CuO_4 . Этот интерес обусловлен тем что при нагревании антиферромагнетики испытывают фазовый переход в парамагнитное состояние при температуре T_N — точка Нееля. Для понимания протекающих в данных соединениях процессов, необходимы знания температурной зависимости термодинамических свойств.

Таким образом, целью данной работы является изучение термодинамических свойств соединений La_2CuO_4 , La_2CuO_5 , Sm_2CuO_4 .

Образец La_2CuO_4 был изготовлен методом твердофазной реакции спекания оксидов La_2O_3 и CuO. После перемешивания стехиометрической смеси и последующего прессования, таблетки отжигали на воздухе при 1173 K в течении десяти часов с двумя промежуточными перетираниями и прессованием. Такую же операцию повторяли при температуре 1273 K.

Соединение $La_2Cu_2O_5$ было получено смешением стехиометрической смеси La_2CuO_4 и CuO и спеканием при температуре 1273 К. Синтез длился в течении 30 часов с перемолом и прессованием через каждые 5 часов.

 Sm_2CuO_4 получали спеканием оксидов Sm_2O_3 и CuO в течении 25 часов с перемолом и прессованием через каждые 5 часов при температуре 1273 К.

Состав данных соединений был подтвержден результатами рентгенофазового анализа.

Измерение теплоемкости проводили в платиновых тиглях на приборе STA 449 C Jupiter (NETZSCH). Измерения проводились при скорости нагрева 20 К/мин в потоке аргона со скоростью подачи газа 25 мл/мин. В качестве вещества сравнения использовали сапфир.

По экспериментальным данным ДСК были построены графики зависимости теплоемкости от температуры для соединений La_2CuO_4 , $La_2Cu_2O_5$, Sm_2CuO_4 .(рисунок 1). Теплоемкость представлена в Дж/(моль К).

Коэффициенты для полинома температурной зависимости теплоемкости соединения La_2CuO_4 были рассчитаны с помощью программы Sigma Plot. Интервал температур для рассчитанного уравнения составляет $574-950~{\rm K}$

$$C_p(La_2CuO_4) = 158.73 + 25.60 \cdot 10^{-3}T - 70.00 \cdot 10^{5}T^{-2}.$$
 (1)

Это позволяет определить $\Delta H(298\text{-T})$ и $\Delta S(298\text{-T})$ по известным термодинамическим уравнениям (таблица 1).

Таблица 1 — Термодинамические функции, рассчитанные на основе экспериментальных данных для соединений La_2CuO_4 , La_2CuO_5 , Sm_2CuO_4 .

		AC(T. 200) Hardon - W	T I
Вещество	ΔΗ(Т-298), кДж/моль	ΔS(T-298),Дж/моль•К	T, K
La ₂ CuO ₄	-	-	350
	42,72	103,70	550
	77,79	158,04	750
La ₂ Cu ₂ O ₅	29,84	63,57	350
	59,55	139,73	550
	103,71	208,31	750
Sm ₂ CuO ₄	50,80	93,14	350
	55,66	124,36	550
	91,13	179,64	750

На рисунке 1 показано влияние температуры молярную на теплоемкость C_p La₂CuO₄. Видно, что на зависимости $C_p = f(T)$ виден четкий экстремум при температуре 526 К. Непрерывное изменение теплоемкости La₂CuO₄ в области экстремума может свилетельствовать о переходе второго Кроме того, достаточно рода. выраженная λ-образная форма пика теплоемкости говорит о влиянии термодинамических флуктуаций в теплоемкость La₂CuO₄ в области фазового перехода. Величина скачка области этого перехода

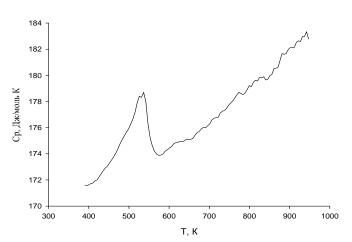


Рисунок 1 — Зависимость теплоемкости от температуры для La₂CuO₄

составляет $\Delta C_p(T_{\rm max}) \sim 7$ Дж/моль K, а ширина перехода $\Delta T \approx 140$ K. Полученное значение ΔT для экстремума кривой $C_p = f(T)$ достаточно велико, это свидетельствует о переходе второго рода, переход из высокотемпературной тетрагональной фазы в низкотемпературную фазу т.к. для переходов первого рода пик теплоемкости очень узкий с шириной порядка 10 K.

Для соединений $La_2Cu_2O_5$ и Sm_2CuO_4 также были рассчитаны коэффициенты полиномов температурной зависимости теплоемкости. Интервал температур составил $350-850~\mathrm{K}$.

$$C_p(La_2Cu_2O_5) = 205,85 + 36,0 \cdot 10^{-3}T - 9,63 \cdot 10^{5}T^{-2}.$$
 (2)

$$C_p(Sm_2CuO_4) = 169,84 + 40,60 \cdot 10^{-3}T - 21,46 \cdot 10^5T^{-2}.$$
 (3)

Синтезированы соединения La_2CuO_4 , $La_2Cu_2O_5$, Sm_2CuO_4 . Методом ДСК измерены значения теплоемкости данных соединений, определены коэффициенты в уравнении температурной зависимости теплоемкости, рассчитаны изменение энтальпии и энтропии для исследуемых соединений и определены температурные зависимости теплоемкости исследуемых образцов с помощью некоторых полуэмпирических методов.