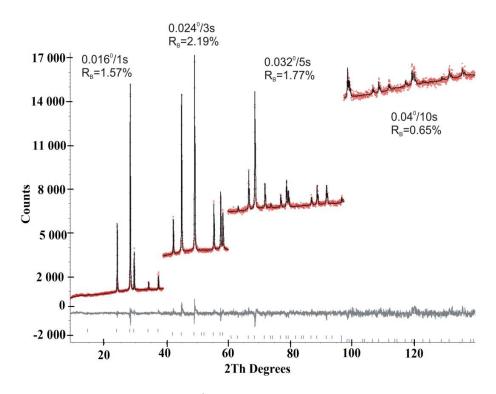
ИЗМЕНЕНИЯ СТРУКТУРЫ ПРИ ФАЗОВЫХ ПЕРЕХОДАХ, КРИТИЧЕСКИЕ И НЕКРИТИЧЕСКИЕ ПАРАМЕТРЫ ПОРЯДКА В КРИСТАЛЛЕ $CsFe_2F_6$ Осокина Л. В.

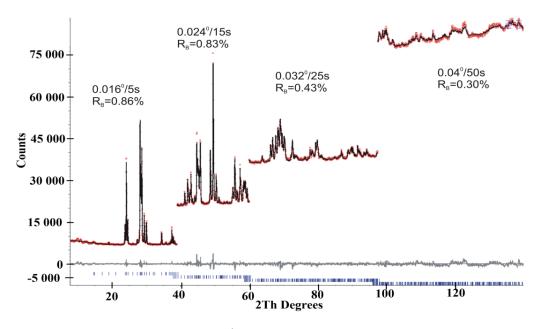
Научные руководители: д-р физ.-мат. наук Мисюль С. В. , канд. физ.-мат. наук Молокеев М. С.

Сибирский Федеральный Университет

Соединение $CsFe_2F_6$ в высокотемпературной фазе G_1 имеет кубическую симметрию с пространственной группой Fd3m и относится к неорганическим фторидам. Фториды с октаэдрическими группировками типа (MF_6) известны способностью образовывать трехмерные каркасные структуры такие как: перовскиты, эльпасолиты, криолиты, антифлюориты, пирохлоры [1, 2]. Многие из них обладают физическими свойствами ферромагнетиков, сегнетоэлектриков, сегнетоэластиков, а также мультиферроиков [1, 2]. Калориметрические исследования [3] показали наличие трёх фазовых переходов в промежутке между 520-560 К. Настоящая работа посвящена определению кристаллических структур исходной высокотемпературной кубической фазы и самой низкотемпературной ромбической фазы.


Рентгенограммы от поликристаллического образца кристалла $CsFe_2F_6$ получены с использованием температурной камеры TTK-450 Anton Paar, установленной на рентгеновском дифрактометре D8-ADVANCE (Cu-K α - излучение, θ -2 θ сканирование, линейный детектор VANTEC). Для улучшения качества рентгенограммы в эксперименте использовалась методики переменной скорости сканирования (VCT) и переменного шага (VSS) [4]. Преимущество указанных методик по сравнению с обычной состоит в том, что в них происходит выравнивание весов слабых на больших углах и сильных малоугловых рефлексов. Кроме этого, существенно сокращается время проведения эксперимента.

Итак, экспериментальные рентгенограммы кубической G_1 (рис.1) при 573К и ромбической G_2 (рис.2) при 298К фаз исследуемого образца $CsFe_2F_6$ разбивались на четыре интервала с шагом сканирования по 2θ на интервалах (рис.1, 2): 0.016° , 0.024° , 0.032° , 0.04° и экспозицией в каждой точке: 5, 15, 25, 50 секунд, соответственно. Уточнение профильных и структурных параметров $CsFe_2F_6$ в кубической и ромбической фазах проводилось методом полнопрофильной обработки рентгенограмм, реализованной в программе TOPASE 4.2 [5]. Результаты уточнения в табл.1 и 2.


В кубической ячейке $CsFe_2F_6$ все атомы структуры (рис.3а) распределены по частным позициям (табл.2). Характерные длины связей Fe-F-2.01(4) Å и Cs-F-3.18(1) Å. В независимой части ячейки ромбической фазы (рис.3b,c) находится одна позиция Cs, две позиции Fe и четыре позиции F. То есть, при переходе из кубической в ромбическую фазу позиция атома Fe расщепилась на две. Из анализа суммарного заряда следует, что в структуре должны присутствовать двух и трех валентные атомы Fe. Проанализировав длины связи, можно утверждать, что атому Fe₁ соответствует заряд +3, а атом Fe₂ имеет заряд +2 (табл.2).

Анализ смещений атомов и выбор критических (ведущих) параметров порядка переходов в структуре $CsFe_2F_6$ проведём, используя комплексы программ ISODISTORT [6] и ISOTROPY [7], которые позволяют проводить теоретикогрупповой анализ изменения симметрии при фазовых переходах и разложение

смещений или упорядочений атомов по базисным функциям неприводимых представлений группы исходной фазы.

Рис.1. Рентгенограмма кубической фазы соединения $CsFe_2F_6$ при температуре 573 К. Красные точки — экспериментальные интенсивности, сплошная чёрная линия — расчётная рентгенограмма, ниже приведена разностная рентгенограмма. R_B - Брэгговский интегральный фактор недостоверности

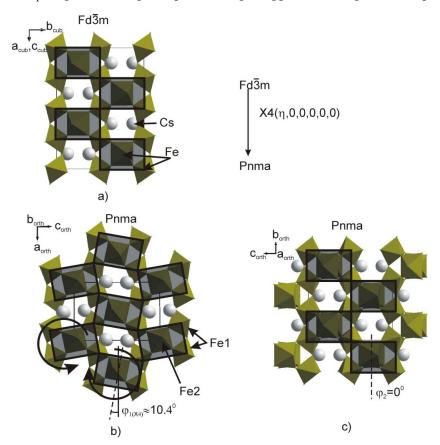


Рис.2. Рентгенограмма ромбической фазы соединения $CsFe_2F_6$ при температуре 298 K

Таблица 1. Параметры сбора данных и уточнения структуры $CsFe_2F_6$

Температура эксперимента, К	573	298	
Пространственная группа	Fd3m	Pnma	
a_i , Å	a _{cub} , 10.51820(13)	a _{orth} , 7.2443(1)	
$\mathbf{b_i},\mathbf{\mathring{A}}$	b _{cub} , 10.51820(13)	a _{orth} , 7.48230(9)	
c _i , Å	c _{cub} , 10.51820(13)	a _{orth} , 10.4238(1)	
Z	8	4	
V, A^3	1163.7(4)	565.01(1)	
20-интервал углов, °	5 – 140	5 – 140	
Число брэгговских рефлексов	71	577	
Число уточняемых параметров	17	29	
R _{wp} , %	1.939 1.121		

Примечание: R_{wp} – средний R-фактор по четырём фрагментам рентгенограмм

Рис.3. (а)Структура исходной кубической фазы $CsFe_2F_6$ при температуре 573K, серый прямоугольник-группа из пяти октаэдров FeF_6 ; (b, c) структура ромбической фазы $CsFe_2F_6$ при температуре 298K - проекции вдоль оси b_{orth} , a_{orth} , соответственно

Таблица 2. Координаты и изотропные тепловые параметры ионов кристалла Cs_2RbDyF_6 кубической и ромбической фаз

Пространственная группа	Атом	X	y	Z	$B_{iso}(\mathring{A}^2)$
Fd3m (T=573K)	Cs	3/8	3/8	3/8	5.29(6)
	Fe	0	0	0	1.72(6)
	F	-0.0731(4)	1/8	1/8	3.1(1)
Pnma (T=298K)	Cs	-0.0117(3)	0.25	0.37393(12)	3.01(4)
	Fe ₁ (Fe ⁺³)	0	0	0	1.15(6)
	$Fe_2 (Fe^{+2})$	0.7790(5)	0.25	0.7386(4)	1.12(7)
	F ₁	0.1500(8)	0.9730(10)	0.1485(7)	1.96(17)
	F ₂	0.7184(9)	0.4413(8)	0.5954(7)	1.83(18)
	F ₃	0.4601(14)	0.25	0.4502(7)	2.2(3)
	F_4	0.5383(14)	0.25	0.8223(8)	2.1(3)

Итак, структуры кубической и ромбической фаз (рис.3), и проведённый симметрийный анализ указывают на то, что критический (ведущий) параметр порядка при фазовом переходе в ромбическую фазу Pnma преобразуется по представлению X_4^+ группы Fd3m, и именно с ним связаны повороты октаэдрических групп FeF $_6$ кристалла $CsFe_2F_6$. Некритические параметры порядка, связанные с представлениями Γ_5^+ и Γ_3^+ , приводят к упорядочению двухзарядных и трёхзарядных ионов Fe и смещению ионов Cs.

Литература

- 1. Flerov I.N., Gorev M.V., Aleksandrov K.S., Tressaud A., Grannec J., Couzi M. Phase transitions in elpasolites (ordered perovskites)// Materials Science and Engineering. 1998. R24, № 3. P.81-151
- 2. Мисюль С.В., Молокеев М.С., Осокина Л.В., Сафонов И.Н. // Journal of Siberian Federal University. Mathematics & Physics. -2012. –V.5 (4). –P.566-575
- 3. Molokeev M.S., Bogdanov E.V., Misyul S.V., Tresaud A., Flerov I.N.// Journal of Solid State Chemistry.-2013.- V.200. –P.157-164
- 4. Diffrac-Plus Basic XRD Wizard. 2002-2007 Bruker AXS GmbH, Karlsruhe, Germany
- 5. Bruker AXS (2008): TOPAS V4: General profile and structure analysis software for powder diffraction data. User's Manual, Bruker AXS, Karlsruhe, Germany
- 6. Campbell B.J., Stokes H.T., Tanner D.E., Hatch D. M. J.//Applied Crystallography. 2006. -V.39. –P.607
- 7. Stokes H.T., Hatch D. M., and Campbell B.J. ISOTROPY, (2007) stokes.byu.edu/isotropy.html