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"Are antiderivatives of some elementary functions still elementary functions?"
Such questions arose at the beginning of differential algebra in the work of Liouville and other
authors [1, 2]. Here we discuss an analog to this question. In our question, we replace a class
of elementary functions with a class of analytical functions of two variables of complexity one:
Cl1 = {z(x, y) = c(a(x) + b(y))} (where (a, b, c) are some analytical functions of one variable).
This class is the simplest in the hierarchy of complexity classes [3] and the functions of this class
have a certain uniqueness property [4].

If a function z(x, y) has a complexity not more than n < ∞, then the complexity of its
partial derivative zx(x, y) is no more than 2n. This is the corollary of the rule of differentiation
of a complex function. If in this assumption we replace an inequality with an equality, it will
be possible to say that the antiderivative is twice simpler than the original function. But it is
possible to get by differentiation of higher complexity function a function of lower complexity.
Hence, it is possible that an antiderivative of a function is more complex than a function itself.
Though we have some open questions.

Let N(z) be a complexity of the function z(x, y). For an analytical z this number does not
depend on the choice of a point and a germ [5].

Question: Is it possible N(z) < ∞ and N(
∫
z(x, y) d x) = ∞?

The partial case of this question for N(z) = 1. Is it possible N(
∫
c(a(x) + b(y)) d x) = ∞?

If N(z) = 0, the answer is obvious. If z = a(x) then
∫
zdx = A(x)+B(y) and N(A+B) = 1.

If z = b(y), then
∫
z dx = b(y)x+ β(y) = B(x, y) and N(B) 6 2.

In this paper, we answer a simpler question. Which functions of complexity one have an-
tiderivatives of the same complexity?

Consider a function of complexity one z(x, y) = c(a(x)+b(y)), where (a, b, c) are not constant.
By differentiation we get

w(x, y) = z′x = c′(a(x) + b(y)) a′(x).

The complexity of w is no more than two. Let its complexity be no more than one. It means
(see [3])

δ(w) =
(
ln
(w′

x

w′
y

))′′
xy

= 0. (1)
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and we have
− c4a1

2a2c2
2c1 + 2 a1

2c3
2a2c2c1 − a1

2c3a2c2
3 − a1c3c2

2a3c1 + a1c2
4a3−

− c4a2
2c2c1

2 + c3
2a2

2c1
2 + 3 c3a2

2c2
2c1 − 3 a2

2c2
4 = 0 (2)

This differential polynomial depends on derivatives which we denote subscripts
(c′, c′′, c′′′, cIV , a′, a′′, a′′′). If we replace b−1(t − a(x)) with y in c(a(x) + b(y)) we will get c(t).
That’s why we can consider c, a and its derivatives as functions of independent variables t and x.

Case A. Let c2 = 0, i.e. c(t) is linear. After a change of a and b we can consider z = a(x)+b(y).
But in this case the derivative z′x = a′(x) has a complexity zero.

Case C. Let a2 = 0, i.e. a(x) = k x+ l. After a change of a and b we can consider a(x) = x,
i.e. z = c(x+ b(y)). And z′x has a complexity one for all non-constant a and c.

If a′ = a1 and c′ = c1 are non-constant, then we can consider A = a1 and C = c1 as
independent variables and P (A) = a2, Q(C) = c2 as unknown functions. And we can rewrite (2)
as

A2CQ (C)
d2

dC2
Q (C)−A2C

(
d

dC
Q (C)

)2

+A2Q (C)
d

dC
Q (C)+

+AC

(
d

dC
Q (C)

)
d

dA
P (A) + C2P (A)

d2

dC2
Q (C)−AQ (C)

d

dA
P (A)−

− 3CP (A)
d

dC
Q (C) + 3P (A)Q (C) = 0 (3)

For each fixed C the equation (3) is the ordinary differential equation in relation to P (A).
This equation has a form

k A
d

dA
P (A) + l P (A) +m A2 = 0 (4)

where

k = C
d

dC
Q (C)−Q (C) ,

l = C2 d2

dC2
Q (C)− 3C

d

dC
Q (C) + 3Q (C) ,

m = CQ (C)
d2

dC2
Q (C)− C

(
d

dC
Q (C)

)2

+

(
d

dC
Q (C)

)
Q (C) .

Case B. Let k = 0. As a solution to this equation we get Q(C) = λC and then c(t) =
= (µ/λ) exp(λ t) + ν. And we see that in this case z has a form z = a(x) b(y). It is clear that z′x
has a complexity one for all non-constant a and b.

Let G be a pseudo-group of transformations of the form

a(x) → a(αx+ α̃),

b(y) → b(β(y)),

c(t) → γ c(t) + γ̃.

for all constants α ̸= 0, α̃, γ ̸= 0, γ̃ and for any non-constant β(y). And let H be a
(pseudo)subgroup of G of transformations of the form

a(x) → a(x),

b(y) → b(β(y)),

c(t) → γ c(t) + γ̃.
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Statement: (a) An analytical function z(x, y) = c(a(x)+ b(y)) ((a, b, c) are non-constant) has a
derivative z′x(x, y) = c′(a(x) + b(y)) a′(x) of complexity one if and only if it is true for Z = g ◦ z,
where g ∈ G.

(b) A function z(x, y) = c(x b(y)) ((b, c) are non-constant) has a derivative z′x(x, y) =
= c′(x b(y)) b(y) of a complexity one if and only if it is true for Z = h ◦ z, где h ∈ H.

The proof we will get by the differentiation.
Case 1. Let l = 0, k ̸= 0. From the equation l = 0 we have

Q (C) = C3λ+ Cµ. (5)

From k ̸= 0 we get λ ̸= 0.
Case 1.1 (in the theorem, this case is denoted as(1)). Let µ = 0 then we get

c(t) = −
√
−2λ t+ ν

λ
, a(x) = τ x2 + κx+ ρ.

It is possible to transform function z = c(a(x) + b(y)) in

z =
√
x2 + y2, and its derivative in z′x =

x√
x2 + y2

by transformations from G.
Case 1.2. Let µ ̸= 0 then we get

c′ (t) =

√
(ν µ e−2µ t − λ)µ

ν µ e−2µ t − λ

and

c(t) = − 1√
λµ

arctan

(√
ν µ2e−2µ t − λµ√

λµ

)
By substitution (5) into (3) we get

2Aµ+
d

dA
P (A) = 0

then P (A) = −A2µ− ν2 or

d2

dx2
a (x) + µ

(
d

dx
a (x)

)2

+ ν2 = 0.

If ν = 0 then by integration we get

a (x) =
ln (µκx+ µρ)

µ

(in the theorem, this case is denoted as (2)). By transformations from G we can transform this
z = c(a(x) + b(y)) into

z = arctan

(√
−x2y2 + 1

xy

)
, and its derivative into z′x = − y√

−x2y2 + 1
.

If ν ̸= 0 then by integration we get

a (x) =
1

2µ
ln

(
µ
(
κ sin

(
ν
√
µx
)
− ρ cos

(
ν
√
µx
))2

ν2

)

– 498 –



Valery K. Beloshapka On Integration of Functions of Complexity One

(in the theorem, this case is denoted as (3)). By transformations from G we can transform such
function z = c(a(x) + b(y)) into

z = arctan


√
1− (sin (x))

2
y2

sin (x) y

 , and its derivative in z′x = − y cos (x)√
1− (sin (x))

2
y2

.

Case 2 (in the theorem, this case is denoted as (I)). Let k ̸= 0, l ̸= 0, l + 2 k = 0 then from
equation l + 2 k = 0 we get

Q (C) = λC + µC ln (C) .

If µ = 0 then Q (C) = λC and k = 0. From this contradiction we get µ ̸= 0. Now we have
Q (C) = λC + µC ln (C), i.e. c(t) satisfies the equation

c′′(t) = c′(t) (λ+ µ ln (c′(t))).

After substitution this expression for Q(C) into (3) we get

A2µ−A
d

dA
P (A) + 2P (A) = 0

and then we get P (A) = (µ ln (A) + ν)A2. Then we solve the equation

a′′(x) = (µ ln (a′(x)) + ν) a′(x)
2

and get a(x).

Case 3. Let k ̸= 0, l ̸= 0, l + 2 k ̸= 0. From equation (4) we get

P (A) = − mA2

2 k + l
+A− l

kn (6)

or
d2

dx2
a (x) +

m
(

d
dxa (x)

)2
2 k + l

−
(

d

dx
a (x)

)− l
k

n = 0.

Case 3.1 (in the theorem, this case is denoted as (4)). Let n = 0 then P (A) = − mA2

2 k + l
and

we get

a(x) = −2 k + l

m
ln(x) + ρ.

Now we can represent z as z = c(x b(y)). Let us write the first class condition (1) for w = z′x =
= c′(x b(y)) b(y). Then after substitution x = t/b(y) we get

c3c1
2c0t

2 − 2 c1c0c2
2t2 + c1

3c2t
2 + c3c1c0

2t− c0
2c2

2t−
− 2 c1

2c0c2t+ 2 c1
4t+ c1c0

2c2 − 2 c1
3c0 = 0.

Then from this equation we get

c (t) =
eµν

t

(
t−λ−1

e
µ
λ − 1

)−λ

.

By transformation from H we can transform such function z = c(x b(y)) into

z = (1 + (xy)
m
)(1/m), а ее производную в z′x =

(1 + (xy)
m
)(1/m) (xy)

m

x (1 + (xy)
m
)

.
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Case 3.2 (in the theorem, this case is denoted as (II)). Let n ̸= 0 then we can substitute (6)
into (2), separate the terms with a multiplier A2 and the terms with a multiplier A− l

k . We have
two equations

− C2kmq2+ 2Ck2q0q2− 2Ck2q1
2+ Cklq0q2− Cklq1

2+ Ckmq1 + 2 k2q0q1 + klq0q1 − kmq0= 0,

2C2k2nq2 + C2klnq2 − 6Ck2nq1 − 5Cklnq1 − Cl2nq1 + 6 k2nq0 + 5 klnq0 + l2nq0 = 0.

By elimination of q2 from this equations we get (see our inequalities)

C

(
d

dC
Q (C)

)
k + Cm− 3Q (C) k −Q (C) l = 0.

From this equation we get

Q(C) =
Cm

2 k + l
+ C3+ l

k λ.

This equation with (6) transforms (3) into identity. This expression for Q(A) is equivalent to
the equation

d2

dt2
c (t)−

m d
dtc (t)

2 k + l
−
(

d

dt
c (t)

)3+ l
k

λ = 0.

So, we have proven our main theorem.

Theorem. Let an analytical function of a complexity one z(x, y) have a derivative of a complexity
no more than one z′x(x, y). Then the function is one of the following list:

(A) z = a(x) + b(y), z′x = a′(x),

(B) z = a(x) b(y), z′x = a′(x) b(y),

(C) z = c(x+ b(y)), z′x = c′(x+ b(y))

or the function z = c(a(x) + b(y)) up to transformations of G has the following form

(1) z =
√
x2 + y2, z′x =

x√
x2 + y2

,

(2) z = arctan

(√
−x2y2 + 1

xy

)
, z′x = − y√

−x2y2 + 1
,

(3) z = arctan


√
1− (sin (x))

2
y2

sin (x) y

 , z′x = − y cos (x)√
1− (sin (x))

2
y2

,

(4) z = (1 + (xy)
m
)(1/m), z′x =

(1 + (xy)
m
)(1/m) (xy)

m

x (1 + (xy)
m
)

or the function has a form z = c(a(x) + b(y)), where b(y) is arbitrary and (c(t), a(x)) are any of
the solutions of the following equations

(I) c′′(t) = (µ ln (c′(t)) +m) c′(t), a′′(x) = (µ ln (a′(x)) + n) a′(x)
2
,

(II) c′′ (t)− λ c′ (t) + ν (c′ (t))
3+µ

= 0, a′′ (x) + λ (a′ (x))
2
+ n (a′ (x))

−µ
= 0.

In both of these cases z′x = c′(a(x) + b(y)) a′(x) has a complexity one.
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Remark 1. In cases (I) and (II) it is possible to represent the functions c(t) and a(x) in quadra-
tures. In the case (I) c and a have a representation in a form of an exponential integral Ei(p, s).
In the case(II) we have a representation in a form of a hypergeometric function 2F1(α, β; γ; s).

Let us consider the equations from the case (I). With the use of the transformation c(t) →
γ c(t) we can make m = 0 in the first equation. With the use of the transformation a(x) → a(αx)
we can make n = 0 in the second equation. From the equation

c′′(t) = µ c′(t) ln (c′(t))

we get
c (t) = −Ei (1, ρ eµ t)

µ
+ σ,

where
Ei (p, s) =

∫ ∞

1

e−t s t−p d t

is the exponential integral. Then we can represent a(x) with the same Ei(p, s) (and by the
inverse function and integration).

Let us consider the equations from the case (II). From the first equation we get

c (t) =

∫ (
λ

ν eρ λµeλµ t (eρ λ)
2
(eλ t)

2
+ 1

)(µ+2)−1

eρ λeλ t dt+ σ.

It is clear that this function is the composition of the exponent and the integral of the form∫
d σ

(Λσ2 + 1)
1

µ+2

= σ 2F1

(
1/2, (µ+ 2)

−1
; 3/2; −Λσ2

)
,

This integral is a hypergeometric function. We may express the function a(x) from the second
equation with the use of the inverse function and integration∫

d σ

λσ2 + nσ−µ
.

After transformation σ → ρ

σ
this integral transforms into the integral of the form∫

d σ

σ2−µ + 1
= σ 2F1

(
1, (2− µ)

−1
; 1 + (2− µ)

−1
; −σ2−µ

)
.

This integral is a hypergeometric function.
Remark 2. The cases (A), (B), (C) and (1), (2), (3), (4) have very explicit descriptions.
Descriptions of the cases (I) and (II) are a little bit more complicated.
Remark 3. The description in our theorem has the following format: (function, its derivative).
By transposition of this pair we get a description of the following format: (function, antideriva-
tive).
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