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Our goal is to present an approach to the proof of the harmonic spheres conjecture based on the adiabatic
limit construction. This construction allows to associate with an arbitrary Yang–Mills G-field on the
Euclidean 4-dimensional space a harmonic map of the Riemann sphere to the loop space of the group G.
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1. Harmonic spheres conjecture
Let G be a compact Lie group and ΩG = C∞(S1, G)/G denotes its based loop space. In

paper [1] it was proved the following theorem relating G-instantons on R4 with holomorphic
maps of the Riemann sphere to ΩG.

Theorem 1 (Atiyah–Donaldson theorem). There exists a bijective correspondence between{moduli space of G-
instantons on R4

}
←→

{
space of based holomorphic maps S2 =
CP1 → ΩG

}
.

Under a based map S1 → ΩG we understand here a map sending the north pole of the
Riemann sphere S2 to the origin [G] of the homogeneous space ΩG = C∞(S1, G)/G. This
correspondence may be also considered as a correspondence between{local minima of Yang–

Mills action on R4

}
←→

{local minima of the energy
functional on S2 → ΩG

}
.

Switching from the local minima to arbitrary critical points of these functionals, we obtain the
formulation of the harmonic spheres conjecture:{critical points of Yang–Mills ac-

tion on R4

}
←→

{critical points of the energy func-
tional on S2 → ΩG

}
.

In other words, the conjecture asserts that it should exist a bijective correspondence between{moduli space of Yang–Mills G-fields on
R4

}
←→ {space of based harmonic maps S2 → ΩG} .

This conjecture may be also considered as a "realification" of Atiyah–Donaldson theorem in
which instantons are replaced by arbitrary Yang–Mills fields and holomorphic maps S2 → ΩG
are replaced by arbitrary harmjnic maps.

Unfortunately, the proof of Atiyah–Donaldson theorem essentially uses the theory of holo-
morphic vector bundles over the space CP2 and by this reason does not extend to arbitrary
Yang–Mills fields and harmonic maps.
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The first idea of the proof of conjecture (cf. [12]) was to use the twistor approach. In other
words, switch from the formulated conjecture to its twistor version by replacing both sides of
the correspondence, proclaimed by the conjecture, to their twistor analogues. To the proof of
so obtained twistor conjecture one can already apply purely holomorphic methods. The twistor
interpetation of the space of harmonic maps S2 → ΩG was constructed in a joint paper of the
author with I. V.Beloshapka [2]. On the other hand, in papers by Isenberg–Green–Yasskin [4],
Witten [15] and Manin [6] it was given the twistor realization of Yang–Mills fields. However,
we are still not able to establish a correspondence between these two twistor spaces (the arising
difficulties are discussed in the paper [11]). By this reason we propose to use for the proof of the
harmonic spheres conjecture another approach presented in this paper.

This approach is based on the adiabatic limit construction for the Yang–Mills equations on
R4 proposed by A. D.Popov in [8]. The adiabatic limit was already successfully used earlier for
the study of Ginzburg–Landau and Seiberg–Witten equations (cf. [7, 10, 13, 14]). The adiabatic
limit construction for the Yang–Mills equations on R4 uses an interesting parameterization of the
sphere S4 without a circle S1 found in the paper by Jarvis and Norbury [5]. In this parameteri-
zation the space S4 \ S1 is sliced by complex disks parameterized by the Riemann sphere S2. In
adiabatic limit a given Yang–Mills G-field on S4 \S1 degenerates into a harmonic map S2 → ΩG
which allows to associate with this Yang–Mills field a harmonic sphere in the loop space. Note
however that the transition to adiabatic limit is based on the assumption that the Yang–Mills
field reduces to flat connections on the slicing disks. This assumption is not yet proved and needs
an additional justification.

2. Jarvis–Norbury parameterization
We identify the Euclidean sphere S4 with quaternion projective line HP1 consisting of pairs

of quaternions [q1, q2] defined up to multiplication from the right by nonzero quaternions. The
affine part of this line is identified with the set

U0 = {[q, 1] : q = a+ bj ∈ H, a, b ∈ C}.

The restriction of the standard spherical metric on U0 is given by the formula

ds2 = 4
dā da+ db̄ db

(1 + |a|2 + |b|2)2
.

For the description of Jarvis–Norbury parameterization we need to employ two subsets of S4 =
= HP1. The first of them is a 2-dimensional sphere S2

∞, identified with the closure of the set
{(a, b) ∈ C2 : b = 0}, and the second is the circle S1

0 = {(a, b) ∈ C2 : a = 0, |b| = 1}. The subset
S4 \ S1

0 of the sphere S4 is sliced by the disks with the common boundary S1
0 over the base S2

∞.
The bundle S4 \ S1

0 → S2
∞ is trivial, i.e. isomorphic to the direct product S2

∞ ×D where D is
the unit disk in C. Denote by z the complex parameter in the fibre Dw := {w} × D over the
point w ∈ S2

∞ so that
Dw = {(w, z) ∈ S2

∞, z ∈ C, |z| < 1}.

The boundary of the disk Dw coincides with the circle ∂Dw = {(w, z) : z ∈ C, |z| = 1} = S1
0

so that all disk Dw have the joint boundary S1
0 and intersect with S2

∞ only in one point (w, 0)
(Fig. 1).

It is convenient to consider w in the sequel as the stereographic coordinate on S2
∞ so that the

metric on S4 \ S1
0 in coordinates (w, z) takes the form

ds2 =

(
1− |z|2

1 + |z|2

)2
4dw̄ dw

(1 + |w|2)2
+

4dz̄ dz

(1 + |z|2)2
.
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Fig. 1

This metric is conformally equivalent to the metric

ds2 =
4dw̄ dw

(1 + |w|2)2
+

4dz̄ dz

(1− |z|2)2
=: ds2w + ds2z (1)

coinciding with the metric of direct product of the spherical metric on S2
∞ and hyperbolic metric

on the disk D.

3. Adiabatic limit in Yang–Mills equations

Let G be a compact Lie group. By Uhlenbeck theorem any Yang–Mills G-field with finite
action on R4 extends to a Yang–Mills field with values in some G-bundle over S4. So we shall
suppose from the beginning that it is given a Yang–Mills G-field on S4. Such field is determined
by a gauge potential A = Aµdx

µ with smooth coefficients taking values in the Lie algebra g of
the Lie group G where we assume the summation in the repeated index µ with µ = 1, . . . , 4.
We provide the Lie algebra with an invariant (under the adjoint representation) inner product
denoted by Tr.

The Yang–Mills field F is a 2-form on S4 with smooth coefficients taking values in g of the
form

F = dA+A ∧A

or in tensor notations

F =
1

2
Fµνdx

µ ∧ dxν с, Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ], µ, ν = 1, . . . , 4,

where ∂µ = ∂/∂xµ. The Yang–Mills Lagrangian has the form

LYM(A) = Tr(FµνF
µν)

where the tensor indices are raised and lowered with the help of metric tensor of the sphere S4.
The Yang–Mills equations, coinciding with the Euler–Lagrange equations for the Yang–Mills
action functional given by the integral over S4 of Yang–Mills Lagrangian, have the form

DµF
µν := ∂µF

µν + [Aµ, F
µν ] = 0, µ, ν = 1, . . . , 4.

Introduce now a small parameter ε > 0 and consider the dilation of the original metric (1)
on S4 \ S1

0 of the form
ds2ε = ds2w + ε2ds2z. (2)
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In coordinates (w, z) the Yang–Mills tensor for the metric (1) on S4 \ S1
0 is written in the form

F =
1

2
Fww + Fwz +

1

2
Fzz

where the component Fww (resp. Fzz) contains only the dw and dw̄ (resp. dz and dz̄). The
mixed component Fwz contains only mixed differentials of the form dw̄ ∧ dz and dw ∧ dz̄.

The Yang–Mills tensor Fε with respect to the dilated metric ds2ε will have the components

Fww
ε = Fww, Fwz

ε = ε−2Fwz, Fzz
ε = ε−4Fzz

where the indices of the tensors are raised and lowered with the help of the metric (1). The
Yang–Mills equations for the tensor Fε take the form{

ε2DwFww +DzFwz = 0,

DwFwz + ε−2DzFzz = 0.

In order to get rid of the growing term ε−2Tr(FzzFzz) in Yang–Mills Lagrangian we impose an
additional condition

Fzz = 0,

i.e. suppose that the connection A is flat on the disks Dw.
Then in the limit for ε→ 0 the Yang–Mills equations will turn into the adiabatic equations{

DzFwz = 0,

DwFwz = 0.

4. Flat connections on the disk
The flat G-connections AD on the disk D are represented in the form

AD = g−1dg

where g ∈ C∞(D,G) is a smooth map. So the space of such connections may be identified with
the space of based smooth maps N := C∞

0 (D,G) consisting of smooth maps g : D → G taking
value e ∈ G at the point 1 ∈ S1.

On this space we have an action of the group

GD = {g ∈ C∞
0 (D,G) : g|S1 = e}.

The quotient C∞
0 (D,G) with respect to this action may be identified with the loop space

ΩG −→ C∞
0 (D,G)/GD,

and this map preserves natural Kähler structures on both manifolds (cf. [9]).

5. Construction of harmonic spheres
As we have remarked in Sec. 3., solutions of Yang–Mills equations on S4 \ S1

0
∼= S2 × D in

the adiabatic limit are represented by connections

A = Az +Aw
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on S2 ×D which are solutions of adiabatic equations

DzFwz = 0, (AD1)

DwFwz= 0 (AD2)

with restrictions to D given by flat connections. According to the interpretation of flat connec-
tions given in Sec. 4, these solutions are given by smooth maps

φ : S2 −→ ΩG, φ = (φα(w)),

depending smoothly on the parameter w ∈ S2 and satisfying the equations (AD).
The flat connections Az depend on w as on parameter so the derivatives ∂wAz, belonging to

the tangent space TAzN = TAzC
∞
0 (D,G) at Az, should satisfy the linearized equations of zero

curvature. This tangent space may be represented in the form

TAzN = π∗TAz (ΩG)⊕ TAzG

where G is the group of gauge transformations which being restricted to D = Dw coincides
with GD. According to this decomposition derivatives ∂wAz are represented in the form

∂wAz = (∂wφ
α)ξαz +Dzϵw

where ξα = ξαz form a local basis of tangent vector fields on TA(ΩG) and Dzϵw is local basis of
tangent vector fields on TAG. The fields Dzϵw are chosen from the gauge fixing condition

Dzξαz = 0⇐⇒ Dz∂wAz = DzDzϵw. (3)

The mixed components of the curvature have the form

Fwz = ∂wAz −DzAw = (∂wφ
α)ξαz +Dz(Aw − ϵw).

Note that we have fixed the components Az with the help of condition (3) while the components
Aw still remain free. Now we shall fix them by setting Aw = ϵw. Under this condition the
formula for the mixed components of the curvature will take the form

Fwz = (∂wφ
α)ξαz = π∗(∂wAz) ∈ TA(ΩG).

Plugging this expression into the adiabatic equation (AD2), we obtain

∂w(∂
wφα)ξzα + (Dwξzα)∂

wφα = 0. (4)

The vector fields ξα define a metric on the loop space ΩG given by the formula

⟨ξα, ξβ⟩ =
∫
D

Tr(ξαξβ)dzdz̄. (5)

As it is shown in [8], the equations (4) coincide with harmonic equations for the map φ :
S2 → ΩG if we define the metric on ΩG by the formula (5). In other words, the Yang–Mills
G-equations on S4 \ S1

0 in the adiabatic limit reduce to the harmonic equations for the maps
S2 → G which allows to associate with every Yang–Mills G-field on R4 a harmonic sphere in
ΩG.

While preparing this paper the author was partially supported by the RFBR grants 16-52-
12012, 18-51-41011 and the Program of Presidium of RAS "Nonlinear Dynamics" .
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Адиабатический предел в уравнениях Янга–Миллса на R4

Армен Г.Сергеев
Математический институт имени В.А.Стеклова РАН

Губкина, 8, Москва, 119991
Россия

Целью этой работы является изложение подхода к решению гипотезы о гармонических сферах,
основанного на конструкции адиабатического предела. Указанная конструкция позволяет сопо-
ставить произвольному G-полю Янга–Миллса на евклидовом 4-мерном пространстве гармониче-
ское отображение сферы Римана в пространство петель группы G.

Ключевые слова: gоля Янга-Миллса, пространства петель, адиабатический предел, гармонические
отображения.
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