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Our goal is to present an approach to the proof of the harmonic spheres conjecture based on the adiabatic

limit construction. This construction allows to associate with an arbitrary Yang—Mills G-field on the
Euclidean 4-dimensional space a harmonic map of the Riemann sphere to the loop space of the group G.
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1. Harmonic spheres conjecture

Let G be a compact Lie group and QG = C*(S',G)/G denotes its based loop space. In
paper [1] it was proved the following theorem relating G-instantons on R* with holomorphic
maps of the Riemann sphere to Q2G.

Theorem 1 (Atiyah-Donaldson theorem). There exists a bijective correspondence between

{modul’i space  of G—} «_ ) space of based holomorphic maps S2 =
instantons on R* CP!' —» QG )

Under a based map S' — QG we understand here a map sending the north pole of the
Riemann sphere S? to the origin [G] of the homogeneous space QG = C*(S!,G)/G. This
correspondence may be also considered as a correspondence between

{local minima of Yang—} PN {local minima of the energy}
Mills action on R* functional on S? — QG '

Switching from the local minima to arbitrary critical points of these functionals, we obtain the
formulation of the harmonic spheres conjecture:

{critical points of Yang—Mills ac—} {critical points of the energy func—}
tion on R4 tional on S? — QG ’

In other words, the conjecture asserts that it should exist a bijective correspondence between

{moduli space of Yang—Mills G-fields on

R } +— {space of based harmonic maps S? — QG }.

This conjecture may be also considered as a "realification" of Atiyah—-Donaldson theorem in
which instantons are replaced by arbitrary Yang Mills fields and holomorphic maps S? — QG
are replaced by arbitrary harmjnic maps.

Unfortunately, the proof of Atiyah—Donaldson theorem essentially uses the theory of holo-
morphic vector bundles over the space CP? and by this reason does not extend to arbitrary
Yang-Mills fields and harmonic maps.
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The first idea of the proof of conjecture (cf. [12]) was to use the twistor approach. In other
words, switch from the formulated conjecture to its twistor version by replacing both sides of
the correspondence, proclaimed by the conjecture, to their twistor analogues. To the proof of
so obtained twistor conjecture one can already apply purely holomorphic methods. The twistor
interpetation of the space of harmonic maps S? — QG was constructed in a joint paper of the
author with I. V. Beloshapka [2]. On the other hand, in papers by Isenberg—Green—Yasskin [4],
Witten [15] and Manin [6] it was given the twistor realization of Yang—Mills fields. However,
we are still not able to establish a correspondence between these two twistor spaces (the arising
difficulties are discussed in the paper [11]). By this reason we propose to use for the proof of the
harmonic spheres conjecture another approach presented in this paper.

This approach is based on the adiabatic limit construction for the Yang—Mills equations on
R* proposed by A.D.Popov in [8]. The adiabatic limit was already successfully used earlier for
the study of Ginzburg-Landau and Seiberg-Witten equations (cf. [7,10,13,14]). The adiabatic
limit construction for the Yang-Mills equations on R* uses an interesting parameterization of the
sphere S* without a circle S! found in the paper by Jarvis and Norbury [5]. In this parameteri-
zation the space S*\ S is sliced by complex disks parameterized by the Riemann sphere S2. In
adiabatic limit a given Yang—Mills G-field on S*\ S! degenerates into a harmonic map S? — QG
which allows to associate with this Yang—Mills field a harmonic sphere in the loop space. Note
however that the transition to adiabatic limit is based on the assumption that the Yang-Mills
field reduces to flat connections on the slicing disks. This assumption is not yet proved and needs
an additional justification.

2. Jarvis—Norbury parameterization

We identify the Euclidean sphere S* with quaternion projective line HIP! consisting of pairs
of quaternions [g1, ¢g2] defined up to multiplication from the right by nonzero quaternions. The
affine part of this line is identified with the set

Uo={lg;1]: ¢q=a+bj€H, a,beC}.
The restriction of the standard spherical metric on Uy is given by the formula

ds? — 4 dada + dbdb .
(14 |al* + [b]*)?

For the description of Jarvis-Norbury parameterization we need to employ two subsets of S* =
= HP'. The first of them is a 2-dimensional sphere S% , identified with the closure of the set
{(a,b) € C?: b= 0}, and the second is the circle S§ = {(a,b) € C?:a =0, |b| = 1}. The subset
S\ S} of the sphere S* is sliced by the disks with the common boundary S} over the base S%.
The bundle $* \ S} — S2 is trivial, i.e. isomorphic to the direct product S2 x D where D is
the unit disk in C. Denote by z the complex parameter in the fibre D,, := {w} x D over the
point w € S so that

Dy, ={(w,z2) € 82,2 € C,|z| < 1}.
The boundary of the disk D,, coincides with the circle dD,, = {(w,2) : 2z € C, |z| = 1} = 5}
so that all disk D,, have the joint boundary S§ and intersect with S2, only in one point (w,0)
(Fig. 1).
It is convenient to consider w in the sequel as the stereographic coordinate on S2, so that the
metric on S*\ S} in coordinates (w, z) takes the form

dSQ_(1—|z|2>2 4dw dw Adz dz
S\ A wP)? T (14 [22)2
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84
S2, o
Fig. 1
This metric is conformally equivalent to the metric
4dw dw 4dz dz
ds® = + =:ds? + ds> 1
I+ Jw*)? (1= [2?)? v M

coinciding with the metric of direct product of the spherical metric on S2, and hyperbolic metric
on the disk D.

3. Adiabatic limit in Yang—Mills equations

Let G be a compact Lie group. By Uhlenbeck theorem any Yang—Mills G-field with finite
action on R* extends to a Yang-Mills field with values in some G-bundle over S*. So we shall
suppose from the beginning that it is given a Yang-Mills G-field on S*. Such field is determined
by a gauge potential A = A,dz* with smooth coefficients taking values in the Lie algebra g of
the Lie group G where we assume the summation in the repeated index p with p = 1,...,4.
We provide the Lie algebra with an invariant (under the adjoint representation) inner product
denoted by Tr.

The Yang-Mills field F is a 2-form on S* with smooth coefficients taking values in g of the
form

F=dA+ANA

or in tensor notations
1
F = §Fde” Ndz¥ ¢, F, =0,A, —0,A, + AL, A, pv=1,....4,

where 0, = 0/0z". The Yang-Mills Lagrangian has the form
£YM (A) = TI“(FHVF’W)

where the tensor indices are raised and lowered with the help of metric tensor of the sphere S*.
The Yang—Mills equations, coinciding with the Euler-Lagrange equations for the Yang—Mills
action functional given by the integral over S* of Yang-Mills Lagrangian, have the form

D/_LF’“/ = auFMV+[A/JvFHV] =0, pr=1,....4

Introduce now a small parameter ¢ > 0 and consider the dilation of the original metric (1)
on S*\ S} of the form
ds? = ds? + ds. (2)
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In coordinates (w, z) the Yang—Mills tensor for the metric (1) on S*\ S§ is written in the form
F = 1f + Fuz + 1]:
- 2 ww wz 2 zz

where the component F,,,, (resp. F,,) contains only the dw and dw (resp. dz and dz). The
mixed component JF,,, contains only mixed differentials of the form dw A dz and dw A dz.
The Yang—Mills tensor F. with respect to the dilated metric ds? will have the components

]_—;uw _ ]_—ww’ J—_-swz _ é_72‘/—_-wz7 J—_'Ezz _ 874]:zz

where the indices of the tensors are raised and lowered with the help of the metric (1). The
Yang-Mills equations for the tensor F. take the form

2Dy, F + D, F"* =0,
D FY% +e 2D, F** = 0.

In order to get rid of the growing term e~ 2Tr(F,,F*?) in Yang-Mills Lagrangian we impose an
additional condition
Foz= 0,

i.e. suppose that the connection A is flat on the disks D,,.
Then in the limit for ¢ — 0 the Yang-Mills equations will turn into the adiabatic equations

D, F** =0,
DypF¥* =0.
4. Flat connections on the disk
The flat G-connections Ap on the disk D are represented in the form
Ap =g~ 'dg

where g € C*°(D, G) is a smooth map. So the space of such connections may be identified with
the space of based smooth maps N := C§°(D, G) consisting of smooth maps g : D — G taking
value e € G at the point 1 € S*.

On this space we have an action of the group

Gp ={9€C5°(D,G): glsr = e}
The quotient C§°(D, G) with respect to this action may be identified with the loop space
QG — C5°(D,G)/9p,

and this map preserves natural Kéhler structures on both manifolds (cf. [9]).

5. Construction of harmonic spheres

As we have remarked in Sec. 3., solutions of Yang-Mills equations on S*\ S} = S? x D in
the adiabatic limit are represented by connections

A=A, + A,
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on S? x D which are solutions of adiabatic equations
D, FY* =0, (AD1)

Dy F* =0 (AD2)

with restrictions to D given by flat connections. According to the interpretation of flat connec-
tions given in Sec. 4, these solutions are given by smooth maps

87— OG, o= (p"(w)),

depending smoothly on the parameter w € S? and satisfying the equations (AD).

The flat connections A, depend on w as on parameter so the derivatives d,,.4,, belonging to
the tangent space Ty, N = T4, C§°(D,G) at A,, should satisfy the linearized equations of zero
curvature. This tangent space may be represented in the form

T.AZN = W*TAZ (QG) (&5) TAZQ

where G is the group of gauge transformations which being restricted to D = D,, coincides
with Gp. According to this decomposition derivatives 0,4, are represented in the form

Ow A, = (aw(pa)gaz +D.ey

where £, = £,. form a local basis of tangent vector fields on T4 (2G) and D€, is local basis of
tangent vector fields on T'4G. The fields D,¢,, are chosen from the gauge fixing condition

ngaz =0+ DzawAz = DZDzew' (3)
The mixed components of the curvature have the form
-sz = 811)-/42 - DzAw = (aw@a)gaz + Dz (-Aw - ew)-

Note that we have fixed the components A, with the help of condition (3) while the components
Ay, still remain free. Now we shall fix them by setting A, = €,. Under this condition the
formula for the mixed components of the curvature will take the form

Fuz = (0wp®)eaz = T (0w A:) € TA(QG).
Plugging this expression into the adiabatic equation (AD2), we obtain
0 (0" p™)E5 + (D*E5)0" " = 0. (4)

The vector fields £, define a metric on the loop space QG given by the formula

(€arés) = /D Tr(€nts)dzdz. (5)

As it is shown in [8], the equations (4) coincide with harmonic equations for the map ¢ :
S? — QG if we define the metric on QG by the formula (5). In other words, the Yang—Mills
G-equations on S*\ S} in the adiabatic limit reduce to the harmonic equations for the maps
S? — @ which allows to associate with every Yang-Mills G-field on R* a harmonic sphere in
QG.

While preparing this paper the author was partially supported by the RFBR grants 16-52-
12012, 18-51-41011 and the Program of Presidium of RAS "Nonlinear Dynamics” .
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A mnabaTudeckuii mpegea B ypaBHeHusx dura—Mmuica Ha R?

Apwmen I'. Cepreesn

Maremarnaeckuit nacruryt nmenu B. A. CreksoBa PAH
I'ybxuna, 8, Mocksa, 119991

Poccnsa

Leav1o s5moti pabomvl ABAAEMCA UA0IAHCEHUE NOOTO0G K PEWEHUIO 2UNOMESDL O 2aPMOHUYECKUT chepa,
0CHOBAHH020 1A KOHCMPYKUUY aduabamuyeckozo npedeaa. YKa3aHHas KOHCMPYKUUA NO3BOAALM CONO-
cmasumo npoudgoavromy G-nomo Hnea—Muanica Ha e6KAUIOBOM 4-MEPHOM NPOCMPAHCMEE 2APMOHUYE-
ckoe omobpasicenue chepv. Pumana 8 npocmparcmeo nemenv epynno, G.

Karoueswie caosa: goas Anza-Muanca, npocmpancmea nemeis, aduabamuseckul npedea, 2apMOoHUMECKUE
omobpasicenu.
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