YIK 539.3(075.8)
Solution of the Beltrami Equations for the Infinite Hollow
Cylinder under the Axisymmetric Deformation

Peter I. Anferov*

Institute of Mathematics and Computer Science
Siberian Federal University,
Svobodny, 79, Krasnoyarsk, 660041

Russia

Christina Y. Aturgasheva'

JSC Academician M.F. Reshetnev Information Satellite Systems
Lenin Street, 52, Zheleznogorsk, Krasnoyarsk region, 662972

Russia

In this paper, axisymmetric stresses of an infinitely long hollow circular cylinder are found from the strain
compatibility equations that are reduced to a system of Bessel-type ordinary differential equations by the
Fourier transform. The constants of integration of the expressions for the Fourier transforms of stresses
are determined by the Fourier-transformed equilibrium equations and boundary conditions. Numerical

results are given for the particular case of cylinder’s load.
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In this paper we proposed a solution difficult stresses problem: to calculate the stress state of
infinite hollow cylinder under various loads on the lateral surfaces. The urgency of this problem
is determined by the fact that the construction of a cylindrical form is widely used in aircraft
industry, mineral resource industry, oil and gas industry, heat and power engineering and building
industry.

Solutions to many problems encountered in the practice of the stress state of hollow cylinders
obtained by stress functions are given in [1]. Stress functions satisfy the certain differential
equations, which are obtained from the equilibrium equations of forces, the strain compatibility
equations and Hooke’s law. More often used Love’s biharmonic stresses function for solving
axisymmetric problems of the elasticity theory [2, 3]. With the mentioned function a solution of
elasticity theory for an infinite hollow cylinder under the action of an axisymmetric load on the
part of the lateral surface was obtained in [4].

In this paper, axisymmetric stress state of infinite hollow cylinder is determined immedi-
ately from the solution of the boundary value problem for the system of the Beltrami strain
compatibility equations without stress functions.
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1. Formulation of the problem

Let the infinite elastic cylinder (a < r < b, |2| < 00) is loaded on the lateral surface part by
the surface force having components F.(z), F.(z) that don’t depend on the angular coordinate
Fig. 1.
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Fig. 1. Scheme of the cylinder loading

The stress tensor components at axisymmetric deformation oji, j,k = r,0, 2 are described
by the Beltrami equations [1]:
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A comma at a subscript indicates the partial differentiation over the coordinates specified
after the comma.

The harmonic function o is related to the diagonal components of the stress tensor and the
Poisson’s ratio p by the equation

201+ p)o = opr + 09 + 022 (5)

This function is impossible to find by solving the Dirichlet problem for Laplace’s equation by
the known methods, because its value can’t be set on the boundary of the cylinder.

The system of equations (1)—(4) is the system of eighth order. The order of the original
system is artificially increased in its derivation [1]. As a result, possible solutions of the system
(1)—(4) generate a class of functions greater than possible solutions of the problem of the elasticity
theory [6]. Therefore, we require that the functions ojx, j,k = r, 6,2, that detected from the
Beltrami equations, have to identically satisfy the equilibrium equations:

TOrrrr + (Urr - 0—09) + TOrz,2 = 07 (6)

T0sz2 + T0rzy + 0py = 0. (7)
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Boundary conditions for (1)—(4):

orz(a,2) = opr(a,z) =0, (8)
orr(b, 2) = Fr(2), (9)
orz(b, 2) = F.(2). (10)

The stress functions are represented as the Fourier integrals in complex form

ojk(r, 2) gjk(r,w)exp(iwz)dw, j,k=r6,z. (11)
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Here and below overline denotes the exponential Fourier transform of function:

gk (r,w) ojir, z) exp(—iwz)dz, jk=r0,z. (12)

vl

2. The calculation of the Fourier transform of the stresses

1
Multiplying all terms of equations (1)— (4) and (6), (7) by Fexp(—iwz) and integrating
T

with respect to z from —oo to +00, we derive the following system of the ODE:
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We turn to the new independent variable p = wr in equations (13)—(16), (17), (18):

G+ P70y = Grr = 292G — To9) = —20", 19
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Hereinafter the primes indicate differentiation on p.
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The boundary conditions for equations (19)—(22) follow from the Fourier-transformed equa-
tions (8)—(10):

Grz(wa) = pp(wa) =0, (25)
Frr(wb) = Fr(w), (26)
7z (wh) = F,(w). (27)

Values of .., Ggp are obtained from the known solution of Lame’s problem [8,9] at w = 0.
We introduce some new unknown functions in order to integrate equations (19) and (20):

s1(p) = o1 (p) + 00(p), (28)

SQ(p) = 5'7-7-([)) - 699(p)7 (29)
from which &, and Gy are expressed by formulas:

_ 1

orr = 5[s1(p) + s2(p)]; (30)

_ 1

a00 = 5s1(p) = s2(p)]. (31)

Adding and subtracting equations (19), (20) term by term, and considering expressions (28),
(29) and (22), we determine:

s +p7ts) —s1 =27, (32)
sy +p sy — (L+4p™%)sy = —2(6 —2p"'5"). (33)

The general solution of (22) is
a(p) = Alo(p) + BEo(p), (34)

where A, B are any constants, Iy(p), Ko(p) are the modified Bessel functions of zero order.
Using the differentiation formulas, the recurrence relations for the Bessel functions [7] and
equation (34), we find

'(p) = AL (p) — BK:(p), (35)

p~ta'(p) = —Alz(p) BKs(p) +3(p). (36)

Substituting formulas (34), (36), (35) in the right side of equations (19), (20), (21) we rewrite:
s{ 4+ p~tsy — 51 = —2(Alo(p) + BKo(p)), (37)

sy +p sy — (1+4p~%)sy = —2(Al(p) + BEKs(p)), (38)

Gy +p o, — (L4 p)ar. = —2i(AL(p) — BK1(p))- (39)

Equations (37)—(39) are the special cases of the heterogeneous modified Bessel equation of
n-order

y' +p % — (1 +n*p Yy =2MI, + NK,), n=0,1,2. (40)
Its particular solutions are given by

y1(p) = p[MIn—1(p) = NKn-1(p)], (41)
y2(p) = p[MIn1(p) — NKny1(p)]- (42)
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Giving values of the corresponding numbers in the right parts of equations (37)—(39) to
constants n, M u N of equations (40)—(42), we can write their general solutions

s1(p) = A1lo(p) + B1Ko(p) + p[=AlLL(p) + BK1(p)], (43)
s2(p) = Aala(p) + B2aKa(p) + p[=AlL(p) + BK1(p)], (44)
0r2(p) = A3l (p) + B3 K1(p) — ip[Alo(p) + BKo(p)], (45)

where Ay, By, k = 1,2, 3 are any constants.
We express 7., from the Fourier-transformed formula (5) taking into account (28):

022 = 2(1+ p)a(p) — s1(p)- (46)

Represent .., Ggg, 7., in equations (23), (24) by formulas (30), (31), (46) and derive two
equations, which functions &, s1, s2, 7., have to satisfy identically

psy + psy + 283 + 2ipG,., = 0, (47)
ip[2(1 + 1) — s1] + oy, + Gy = 0. (48)
Identities (47), (48) allow establishing communication between constants in formulas
(43)—(45).
For the linear combination of the modified Bessel functions
yn(p) = MIn(p) + NKn(p), (49)
zn(p) = p[RIn(p) + SKn(p)] (50)
the following equations |7]| are correct
Y (P) + 1yn(p) = p[MIn1(p) = NKn_1(p)]; (51)
pzn(p) + (n = 1)zn(p) = p*[RIn-1(p) — SKn1(p)]- (52)

We substitute s1(p), s2(p), d,2(p), o(p) in formulas (47), (48) for equations (43), (44), (45)
and (34). Using expressions (49)—(52), after transformations, we obtain two identities:

(A1 + Ay —2A + 2iA3)1(p) + (—B1 — Ba + 2B + 2iB3)K1(p) = 0, (53)
(2nA — Ay —iA3)Io(p) + (2uB — By +iB3)Ko(p) = 0.

In recording (54) we take into account that I_1(p) = I1(p), K_1(p) = K1(p).

The expressions in parentheses in formulas (53), (54) have to equal zero, because I, (p),
K, (p) are the linear independent functions by definition. This requirement will be satisfied if
the constants are related by the following equations:

A2 = A1 — 2(2[1, — 1)147 B2 = B1 - 2(2/.1, - 1)B, (55)
A3 = Z(Al - 2/,LA), Bg = ’L(2/,LB - Bl) (56)

We replace Ag, Ba,As, Bs in equalities (44), (45) by formulas (55), (56), respectively, and,
considering expressions (30), (31), we can write for &;y:

20, = A1C1(p) + B1C2(p) — AC3(p) + BCu(p), (57)
or. = i(A1li(p) — BiKi(p) + ACs(p) + BCs(p)), (58)
2099 = A1[lo(p) — I2(p)] + B1[Ko(p) — K2(p)] + 2(2u — 1) ALz (p) + 2(2p — 1) BK2(p).  (59)
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Subjecting &, 7., to the boundary conditions (25)—(27), obtain a system of algebraic equa-
tions for calculating the constants A, B, Ay, Bi:

A1C (bw) + B1Ca(bw) — ACs (bw) + BCy(bw) = 2F, (w),
AL (bw) — B1 K1 (bw) + AC5(bw) + BCs(bw) = —iF.(w),
ArCh (aw) + BrCa(aw) — ACs(aw) + BCy(aw) = 0,
AT (aw) — BuK (aw) + ACs(aw) + BCs(aw) = 0,

where

Ci(p) = Io(p) + I2(p), Ca(p) = Ko(p) + K2(p),
Cs(p) = 2pL1(p) +2(2n — 1)12(p), Culp) = 2pK1(p) — 2(2p — 1) K2(p),
Cs(p) = —2ul1(p) — plo(p), Cs = 2uK1(p) — pKo(p).

Solving the system of equations (60)—(63), we determine the constants in formulas (34), (43),
(57)-(59) expressing the Fourier transform of the stresses. The inverse Fourier transforms (11)
are carried out numerically.

The coefficients B, By, B, Bs have to set equal to zero in formulas (34), (43)—(45) for 7,
S1, S2, 0, and eliminate boundary conditions (8) and (25) to apply the above dependencies for
calculating the stresses in a solid cylinder.

3. An example of the numerical simulation

In this paper, we calculate the stresses of the hollow cylinder 0,5b < r < b which the outer
surface is subjected to the radial load F.(z) distributing by the following law:
9 (T2
—Po COS (—) , 12| < h, po = const
F.(2) = 2h 12
0, |z| > h.

In this case
_ pom? sin(wh)

F.(w)= .
@) V2 (w2h? — 72w
The calculation of the values of the modified Bessel functions and solution of linear system

(60)— (63) are performed by making use of the math library IMSL that is included in the version
FPS.4 of the Fortran. Inverse Fourier transform is numerically carried by quadrature rules based

on the interpolation of the third order.

The results of the calculations of the stresses in the cylinder are given on Figs. 2-5, taking
h =b, a = b/2 and Poisson’s ratio u = 0, 3.

Fig. 2 shows that the radial stress z is compressive for all. Calculations indicate that the

z z
angular stress ggg is compressive at 7 < 1,5 and tensile at 7 > 1,5 (Fig. 3). Axial stress o,

r z

changes the sign at the point = 0,8 (Fig. 4), and besides it is tensile at 0 < 7 < 0,4 and
z

compressive at 0,4 < — < oo. The shear stress is less in absolute value than other stress and

has extremes, if % = 0,75 for all values of % and changes sign at % =1, as shown in Fig. 5.
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Fig. 3. The distribution of the angular stress
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Pemenue ypaBuennit beabrpamn s 6€CKOHEYHOTO MOJIOTO
MWJIMHIPA MPUA OCeCuMMeTpuYHOol Jedopmanuu

ITéTrp . Audépon

WNucturyT Mmarematnkn u GyHIAMEHTATIBHON HHOOPMATHKHI
Cubupckuii esiepasbHblii yHUBEPCUTET

Csobomnsrit, 79, Kpacuosipck, 660041

Poccus

Kpuctuna FO. ArypramieBa
AO «UudopManmoHHbIe CIIyTHUKOBBIE CUCTEMbI» uMenu akajgeMuka M.D. Pemeruésas
Jlenuna, 52, r. 2Kenesnoropck Kpacuosipckoro kpast, 662972

Poccus

B pabome natidensv, 0CECUMMEMPUUHBLE HANMPANCEHUA 6 OECKOHEUHOM YNPY20M UUAUHOPE U3 YpasHe-
Hul coemecmmnocmu degpopmayudl, kKomopuie npeobpazosanuem Dypve ceedernt k cucmeme 00bIKHOBEHHBIT
Jugpeperyuarvhor ypasrnenut muna Becceas. Koncmanmo, unmezpuposaHusa, 6T00AWUE 6 Sblpadce-
nusa 0as mpanchopmanm Pypve nanpasicenud, onpedeasromesa u3 npeobpasosannoixr no Pypve ypas-
HEHUT PABHOBECUA U 2PDAHUNHBIT YCA08Ul. JIAf HacmHo20 CAYHAA HAZPYIHCEHUA UUAUHOPA NPUBEIEHDL
DE3YALMAMBL YUCAEHHBLT DPACHEMOE HANPAINCEHUT.

Karoueswie caosa: beckoneuwnvill YuAUHIP, 0CECUMMEMPUNHAA 0ePOPMAUUA, YPAGHEHUSA COBMECTIVHOCTIY
degpopmayuti Beavmpamu, ypashenus pasrosecus, npeobpasosarue Dypoe.



