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Abstract — The model is based on the criteria of cost-

effectiveness and information uncertainty. The created model has 

fundamental difference from the current classical economic-

mathematical models. As constraints it is proposed to use the 

mathematical expressions of the information entropy 

determination of two states of the system: operable and non-

operable. These expressions are the constraints imposed in the 

task that creates an optimal radial network with redundancy. 

Expressions are constructed as all the elements reserving the 

each other are similar, i.e. they have the same performance. The 

given example shows how to calculate the information entropy, 

where a constraint is a problem solution, as well as the possibility 

of both applications of probabilities and numerical values for the 

information entropy determination is proved.  

Keywords — optimization, information uncertainty, information 

entropy, structural system reliability, network redundancy 

I.  INTRODUCTION 

In practice of distribution network designing in order to 

increase the reliability level, we use the redundant of similar 

elements. At the same time, the redundancy account requires to 

increase cash flow that constrains the desire to achieve a high 

degree of object reliability. Therefore, it is necessary to 

distribute cash optimally while preserving the required network 

reliability [1]. 

Touching upon the problem how to find an optimal number 

of the redundancy elements, we are talking about two criteria: 

cost-efficiency and reliability [2]. The importance of these 

criteria is actually indisputable. However, the cost-efficiency 

account in the optimization problem is poorly formalized [3]. 

For example, the structural reliability is expressed through 

probabilistic feature of a network or through standard 

requirements where the account in optimization models is 

complicated. It is possible to overcome these difficulties, but 

according to some assumptions. The authors have published 

the list of papers [4-7], where the evaluation of the structural 

reliability of the technical system is possible through the 

calculation of information entropy [8, 9]. Therefore, we are 

going to search the solution based on constructed optimization 

problem of the mathematical model, where cost-efficiency and 

information uncertainty criteria must be complied, which 

reflect a degree of distribution network reliability. 

II. THE CLASSICAL PROBLEM OF REDUNDANCY  

We assume that the original structure of the designed 
network has a radial form without redundancy. Each element i 
of the model is characterized by indicators: construction costs 
Ci; the availability coefficient or probability of operable state 
(non-failure operation) pi; the unavailability coefficient or 
probability of non-operable state (failure) qi.  

To determine indicators the failure statistics or normative 
values are used [10]. The probability of operable state is 

Trrmrp /)/(   and non-operable state is .1 pq   

Where r – the mean time to recovery; т = 1/ – time between 
failures; m + r = T – mean time between failures; l – parameter 
failure rate. 

In reliability theory [11] the following tasks of optimal 

redundancy have been formulated: 

1. Direct task: to find the 
*

x vector that is the solution 

           })(:)(min{
0

CxCxp   or })(:)(min{
0

CxCxq  ,      (1) 

where p(х) and q(х) – minimized probabilities; С(х) – 

reserve costs; С0 – given resource constraints. 

2. The inverse task: to find the 
*

x vector that is the solution 

      })(:)(min{
0

pxpxC   
or })(:)(min{

0
qxqxC  . (2) 

In (1) and (2) tasks the reliability criterion of the scheme is 

expressed through the state probabilities of the elements that 

allow us to apply methods of the information entropy 



determination [12]. They are based on the K. Shannon 

principle of “the choice of a variety of alternatives” [13]. 

III. MODEL OF PARALLEL REDUNDANT NETWORK  

The classical determination of the Shannon information 

[14] implies the existence of statistical group: time (an 

element has been in a particular state); frequency of 

occurrence of certain events, etc. [15]. These indicators of 

structural reliability allow us to calculate the probability of 

finding the element i in two opposite states: the probability of 

operable pi and non-operable – qi = 1 - pi states. As we 

consider only two states, we can determine the information 

(statistical) entropy by Shannon for a single element i 

according to the expression: 

     ),loglog( 22 iiiii qqppH 
 
if pi + qi = 1.

 

(3) 

Here the determination logarithm of value Hi in bits has a 

base 2, which indicates two opposite states: operable state 

(non-failure operation) and non-operable state (failure). 

If we consider the radial network as a set of elements 

excluding the connections between them (in case of 

independent functioning of the elements) then it is easily 

possible to determine the total entropy (the amount of 

information uncertainty) of all the elements: 
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where )( ipH  and )( iqH  – the entropy of the operable 

and non-operable states of the network elements, N – number 

of the elements in the network structure. 

The entropy maximum HΣ=N according to (4) is 

achievable when all pi = qi = 0,5 are equal. For the network the 

value HΣ, obtained according to (4) will remain invariable, as 

in this case situations are not associated with the arrival or 

disposal of information according to the given network. For 

example, if any element was not included in the network or 

not excluded from the network. Then for a real network with 

elements connections the obtained values for the information 

entropy of the operable H(P) and non-operable H(Q) states of 

the elements must consider the probable joint state of elements 

according to [16, 17].  

The solution of problems (1) and (2) comes to the 

construction of a parallel network structure where joint 

elements form redundancy groups (Fig. 1). 

 

 

  

Figure 1 - Parallel network structure 

 

According to [18], the expression of total entropy 

determination for serial-parallel structures based on the 

entropy differentiation into components for two states 

operable (non-failure operation) and non-operable (failure) 

and m elements in a redundant group j can be written as: 

– for non-operable state of group elements: 
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– for operable state of group elements: 
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According to (5) and (6) k – an ordinal number of the 

element in a group j, m – amount of redundant elements in the 

group. 

IV. THE MATHEMATICAL MODEL OF REDUNDANCY RADIAL 

NETWORK 

Further, we are going to present an optimization problem 

(2) with the measure of information uncertainty where 

)}()(:)(min{
0

PHPHxC   or )}()(:)(min{
0

QHQHxC   

where )(
0

PH  and )(
0

QH  – boundary (critical) entropy 

value, that sometimes can fail a required number of redundant 

elements. Let's put forward a condition: all redundant 

elements in a group have identical values of indicators, i.e. p1 

= p2 = … = pk = … = pm and q1 = q2 = … = qk = … = qm. Let's 

indicate the size of j through хj a redundancy group (it is a total 

number of parallel connected of the similar redundancy 

elements). Then the entropy of non-operable state of the group 

is: 

.log)()( 2
1

qxqqHxqQH
xx

j 
  (7) 

According to (7) and further the j symbol at x and q is not 

specified in order to avoid the bulkiness formulas. And 
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according to (6) and (7), the entropy of the operable state of 

the group is: 

)log(

)logloglog()(
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Keeping to the constraint condition on with a number of 

information entropy and using (8) let’s write the constraint 

equations: 

- for )(
0

PH : )(log
0

2 PHqqH
x

 ; (9) 

- for )(
0

QH : )(log
0

2 QHqq
x

 . (10) 

Then the optimization problem can be written as: 
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where ,,...,2,1,0 njx j   n – a number of groups in the 

radial network. 

The system of constraints (12) can be converted to: 
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where – 
jj qa 2log  the coefficient of a nonlinear 

equation. 

When solving the (11) – (12) system it is necessary to 

determine the boundary value of entropy – )(
0

jQH . And its 

role and importance should be clear to the designer. To 

calculate the )(
0

jQH value in (12) or (13), it is possible to 

represent it as a percentage ratio with the total entropy of an 

element of a redundancy group j: 

100
)(

)(
0
% 

j

j
j

H

QH
QH , (14) 

The obtained value allows to determine 

)(100)(
0
%

0
% jj QHPH  . 

Further, on the example we are going to show how to 

determine )(
0

jQH . 

Let's assume:  

a) the redundancy is absent (x=1), p=0,99 is (for high 

reliable components) and q=1,0-0,99=0,01 then according to 

(14) – %23,82)(
0
% jQH , %77,17)(

0
% jPH ;  

b) the redundancy consists of 2 elements (x=2) and p=0,99 

– %82,0)(
0
% jQH ;  

c) the redundancy consists of 3 elements (x=3) and p=0,99 

– %01,0)(
0
% jQH . Having a boundary value in percentage 

according to (14) it is possible to determine the boundary 

value of entropy in bits, that is necessary for its substitution in 

the constraint system of the optimization problem.  

The obtained values (in different options of redundancy) 

don't reflect the real ratio of the boundary values of the 

entropy with the given probability values. The matter is that 

for the actual network with the highest reliable elements, the 

information entropy of its non-failure operation is 

)()(
0
%

0
% jj QHPH  . However, for variant a) this condition 

isn't fulfilled. In order that this condition has been met, it is 

possible to replace probabilities in the logarithm with the 

values greater than 1,0. 

V. THE AVERAGE TIME OF STATES 

Let's consider the application as parameters, according to 

[19], the average time of operable Mpi and non-operable Mqi 

states of an element i and using these values we can find the 

probabilities pi=Mpi/T and qi=Mqi/T, where T=Mpi + Mqi is a 

number of hours in a year. The value of information entropy 

of an element will be determined by the expression: 

qiipiii MqMpH 22 loglog  ; 

qi
x

j MqQH 2log)(  ; by pi+qi=1.

 

(15) 

The problem solution of (11) – (12) allows to use Mpi and 

Mqi, thus to determine )(
0
% jQH . Let's calculate the given 

entropy in the previous example (variant a) after having set 

Т=10000 hours: redundancy is absent (x=1); mean time 

between failures (MTBF) – Mpi=9900 hours (corresponding to 



p=0,99); mean time to restoration (MTTR) – Mqi=100 hours 

(q=0,01). Then, according to (14) and (15) – 066,0)( jQH , 

207,13iH , %05,0)(
0
% jQH , %5,99)(

0
% jPH . The 

obtained values confirm the adequacy of the boundary 

evaluation with the redundancy conditions. 

To calculate the )(
0

jQH  value it is sufficient to set the 

expected number of non-operable hours Mqj of group state and 

to determine it with the help of (14) and (15). For example, the 

average time of an element emergency outage or the energy 

consumer Mq must not be less than 175 hours per year. Then 

mean time between failures (MTBF) (based on 10,000 hours 

of the system operation) is Mp= 9825 hours. According to the 

probability: p = 0.9825; q= 0.0175. The critical value of 

information entropy for a group of elements: 

.161.13175log0175.09825log9825,0

loglog)()(

22

22



 qpqp MqMpMHMHH

%991.0100
161.13

13.0
100
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.0099.0
161.13
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 Thus, the boundary 

value of information entropy (based on the above conditions is 

Mq= 175 hours) for the group of elements j we 

take: .01.0)(
0

jQH  

The problem solution of (11) – (13) is possible with the 

application of classical methods of nonlinear programming 

[20]. 

VI. CONCLUSION 

The task construction of the optimal structure of the radial 

distribution networks with redundant elements assumes the 

creation of economic and mathematical model meeting at least 

two criteria. The first is well-known economic one; the second 

is the information uncertainty that reflects the level of the 

network structural reliability. And it is the last criterion that is 

taken as a constraint to search the problem solutions. The 

constructed constraints as nonlinear equations of the 

information entropy determination form a feasible region of the 

problem. In fact, a feasible region is a set of all possible 

solutions where an obtained number of redundancy elements 

will carry the information that the network operation reliability 

meets the requirements imposed by designers and operators. 
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