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Abstract: This paper proposes an algorithm that assesses the angular orientation of 

a mobile robot with respect to its referential position or a map of the surrounding 

space. In the framework of the suggested method, the orientation problem converts 

to evaluating a dimensional rotation of the object that is abstracted as a polygon 

(or a closed polygonal chain). The method is based on Hough transform, which 

transforms the measurement space to a parametric space (in this case, a two-

dimensional space [, r] of straight-line parameters). The Hough transform 

preserves the angles between the straight lines during rotation, translation, and 

isotropic scaling transformations. The problem of rotation assessment then 

becomes a one-dimensional optimization problem. The suggested algorithm inherits 

the Hough method’s robustness to noise.  

Keywords: Simultaneous localization and mapping (SLAM), path planning, Hough 

transform, angular orientation, mobile robot. 

1. Introduction 

To solve its functional tasks, a mobile robot must be able to orient in its 

surrounding space; that is, the robot must construct and follow its movement paths 

[1]. This path building in a space of known (partially or fully) geometrical 

configuration is presently solved in several ways [2]. Simultaneous localization and 

mapping (SLAM) methods map the unknown surrounding space and ensure that the 

movement follows the built path [3]. SLAM presupposes that the mobile robot 

gathers data on the geometry of the surrounding space and defines the shift vector 

and rotation angle of the robot between separate time points [4]. Mathematically, 



 

 

 

this problem becomes the problem of defining the parameters of similarity 

transformations between two samples of two-dimensional geometrical 

measurements. The first sample is a measurement of the surrounding space 

geometry taken by the mobile robot’s sensors [5], and the second is a measurement 

of the space geometry in any arbitrary preceding moment of time, or the space map, 

which has been preset a priori [6]. One of the several solutions to this problem is 

presented by Iocchi et al. [7] and Großmann et al. [8]. The algorithm is based on the 

Hough transform and notably inherits its robustness to measurement noise and 

outliers. Iocchi et al. [9, 10] developed a probabilistic approach for solving the 

localization problem using the Hough transform, and Grisetti et al. [11, 12] 

explored the applicability of this algorithm to global localization. The maps built by 

multiple robots have also been merged into a single map [13]. 

However, this algorithm has several drawbacks. First, its translation invariance 

is limited to small translation values; second, defining the rotation period demands 

computations in the measurement space. This paper proposes an algorithm that 

eliminates these disadvantages. The suggested algorithm defines the angle 

orientation at any value of translation, requires no computations in the measurement 

space, and derives all necessary information from the Hough accumulator alone. 

2. Problem setting 

Similarity transformations are transformations that combine rotation, translation, 

and isotropic scaling [14]. Equation (1) transforms a point with coordinates (x, y) 

into a point with coordinates (x', y'). 
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where s is the scaling coefficient, α is the rotation angle, and (tx, ty)
T
 is the 

translation vector. 

The transformation matrix calculated by (1) decomposes into a rotation matrix, 

a translation vector, and a scaling coefficient. Owing to this decomposition, the 

problem of assessing a similarity transformation can be divided into three 

subproblems: assessment of rotation, assessment of translation, and assessment of 

scaling. 

In this paper, the relative angle orientation of the mobile robot is assessed by 

assessing the rotation angle α in the two-dimensional image of an object (a sample 

of the geometrical measurements of the surrounding space captured by sensors) 

relative to a reference image (analog sample or map). The suggested method 

imposes limitations on the types of objects suitable for transformation assessment. 

Specifically, the object must be described by a set of straight lines or segments 

(polygons in special cases). This limitation is imposed by the two-dimensional 

linear Hough transform on which the proposed method is based. Although this 

restriction narrows the application scope of the method, it admits a wide range of 

problems, primarily related to image analysis of man-made objects. The solvable 



 

 

 

problems include localization and mapping in man-made environments (navigation 

in rooms or urban environments) and the tracking of various man-made objects 

(specially marked automotive vehicles, buildings, and facilities) using aerial 

photography data. Furthermore, this limitation can be weakened or removed by 

approximating the object contours as straight lines or by generalizing the proposed 

method to curves with arbitrary parameterization [15]. 

As mentioned above, the proposed method is based on the Hough transform, 

which assesses the parameters of analytically predetermined curves using 

measurement samples. Hough patented his transform in 1962 [16] for estimating the 

parameters of straight lines from measurement samples. Several methods for 

estimating the parameters of parameterized arbitrary curves have since been 

developed [17]. In essence, the Hough transformation associates every 

measurement m of a sample M, which has coordinates (x, y) in the measurement 

space [x, y] with a curve in the straight-line parameter space [θ, ρ], as described by 

(2): 
(2)  ρ(θ) = x cos θ + y sin θ.  

This equation describes a family (an infinite set) of lines in the measurement 

space passing through a point with coordinates (x, y). However, as computer 

technology cannot handle infinite concepts, the space [θ, ρ] is discretized such that 

each point (θ, ρ) is associated with a value (θ, ρ), characterizing the number of 

points in sample M on the line with parameters (θ, ρ). The elements A(θ, ρ) are 

assembled into a matrix A, called the accumulator matrix. A is iteratively 

constructed by traversing all measurements m and plays a major role in further 

discourse. When the measurement points of the sample lie on distinct lines, the 

values of A differ significantly. The parameters of straight lines that most closely fit 

the measurements of the original sample M manifest as pronounced local maxima. 

However, the automatic selection of lines is beset by statistical challenges; 

especially, the quantification of local maxima is confounded by various noises 

derived from the source, sampling round-off, and other factors [18]. For this reason, 

direct determination of the maxima in matrix A is not a suitable strategy for 

evaluating an object’s image rotation. 

The Hough transform preserves the angles between the lines. More 

specifically, it preserves the intervals on the θ axis of the accumulator between the 

maxima corresponding to the lines of the measurement space, regardless of the 

rotation angle of an object in the measurement space. Using this feature, one can 

evaluate the rotation angle without determining multiple maxima and their 

locations.  

3. Source data 

Similarity transformations are transformations that combine rotation, translation, 

and isotropic scaling [14]. Equation (1) transforms a point with coordinates (x, y) 

into a point with coordinates (x', y'). The source data for the proposed algorithm are 

two samples of measurements of the surrounding space: a reference sample M1 and 

a study sample M2. To simplify the description without loss of generality, the 



 

 

 

samples are further regarded as binary images, i.e., two-dimensional matrices filled 

with zeros and ones: hywxyxI ,0;,0},1,0{),(:  , where w and h are the 

image width and height, respectively. Thus, the images of samples M1 and M2 are 

denoted as I1 and I2, respectively. In the subsequent reasoning, we assume identical 

sizes of the sample images; that is, w(I1) = w(I2), h(I1) = h(I2), and determine the 

rotation angle between the two synthetic (model) samples MA  and MB. Here sample 

MA imitates a space map and, MB imitates noisy measurements of this space. The 

sample images are illustrated in Fig. 1. 

        

a                                                 b 

Fig. 1. Images of model samples of measurements of the surrounding space: a) sample  MA  (map) and 

b) sample MB (measurements with noise) 

4. Concept of the method 

The proposed algorithm is based on the following concept: if a set of lines in two-

dimensional space rotates through the same angle, the angular coefficients of all 

lines in the set vary by the same value (the angle of rotation). Therefore, the 

difference between the angular coefficients of any two lines remains unchanged. 

In the corresponding space of the Hough accumulator A, the maxima 

corresponding to the lines of the image space will be located at a constant distance 

from each other along the θ axis, regardless of the rotation angle of the image. 

Meanwhile, a rotation in the image space corresponds to a translation along the θ 

axis in the accumulator space A. 

To determine the rotation angle, we should unambiguously identify the 

correspondence between the maxima A1 and A2 and then calculate their relative 

translation along the θ axis. The relative translation corresponds to the rotation 

angle α in the image space.  

However, correlating the maxima is complicated owing to various noises, 

possible incompleteness of the information, different number of measurements per 

length unit of the line, and ambiguity in choosing the pair of maxima for angle 

determination. To ensure a stable solution, the proposed algorithm builds 

distributions D(A1, θ) and D(A2, θ)of the maxima (respectively referred to as D1(θ) 

and D2(θ) for brevity) along the θ axis and then computes the rotation angle α as a 



 

 

 

translation of distribution D2(θ) relative to D1(θ) at the maximum of some 

component of a function. The comparing function is given by 

(3)  .max))(),(( 21

 DDcmp   

In the proposed algorithm, the comparing function is a correlation function. 

5. Concept of the method 

The first step of the proposed algorithm constructs the accumulator A of the Hough 

transform by the following moves:  

1. choose the size and resolution of both axes of the accumulator; 

2. fill the accumulator cells. 

Clearly, the size of the accumulator along the θ axis is |Aθ| = 2π. The resolution 

of the accumulator along the θ axis (denoted as ⟨Aθ⟩) defines the computational 

accuracy of the rotation angle, which should be as high as possible. However, for 

each (w x h)-sized image I, there is a limit ⟨Aθ⟩max, which, when exceeded, will not 

increase the accuracy. ⟨Aθ⟩max is calculated as follows: 
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where θIlim is the limiting angle of line legibility in image I. 

Below θIlim, any three points of the image cannot unambiguously belong to two 

lines because the discreteness of I might erroneously assign two points to the same 

line and the third to a different line. θIlim is determined by points along oppositely 

oriented lines in I and is calculated as follows: 
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where a = max(w, h) and b = min(w, h). 

Inserting (4) into (3), we obtain ⟨Aθ⟩max as the function of the size of I. 

From personal experience, it is recommended that the selected ⟨Aθ⟩ satisfies 

max(w, h) ≤ ⟨Aθ⟩ < ⟨Aθ⟩max. 

The size of the accumulator along the ρ(|Aρ|) axis is limited by the size (w, h) 

of the image I, which fully contains the radius vector of every line in the image. 

Therefore, the length of this axis cannot exceed the diagonal of I, calculated by 

(6)  ))()(()( 22 IhIwId    

Assuming that |Aρ| = d(I), the range of the ρ axis is ρ ∈ [0, d(I)]. 

However, when constructing the accumulator with |Aρ| = d(I) in a coordinate 

system with an arbitrary chosen origin, the whole sample can be placed only in a 

single quarter of the coordinate plane. In later steps of the proposed algorithm, this 

leads to failed distribution of the peaks in the accumulator; consequently, the 

rotation angle is incompliant with (3). To solve this problem, we describe any line 

as two coincident lines with parameters (θ, ρ) and (θ + π, –ρ). In this approach, the 

ρ axis ranges as ρ ∈ [–d(I), d(I)], and |Aρ| is calculated by 
(7)  ).(2|| IdA    



 

 

 

This approach eliminates the problem of choosing the origin of the coordinate 

system but introduces the problem of choosing the rotation direction. A solution to 

the rotation problem will be discussed later.  

        

a                                                 b 

Fig. 2. Accumulators of the sample MA (а) and sample MB (b) 

The accumulator cells are filled by sequentially computing the values of each 

cell by (8). 

(8)  

,||,0,||,0

),,())sincos(((),(

)(

0

)(

0







 



AA

jiIyxfA

Iw

i

Ih

j

ji   

where 

(9)  









.0,0

,0,1
)(

x

x
xf   

Fig. 2 shows an example of the accumulators constructed by this approach. 



 

 

 

6. Constructing an extreme case of the accumulator along the θ axis 

To construct an extreme distribution of maxima in the accumulator matrix, we 

select the maximum value of the accumulator at each value of the angle θ: 

(10)  .)(),()),,(max(),( IdIdAAD    

The distributions of the maxima calculated by (10) are displayed in Fig. 3. 

        

a                                                 b 

Fig. 3. Distributions of maxima in a) the accumulator of sample  MA and b) the accumulator of sample 

MB 

7. Calculation of the rotation angle 

As mentioned earlier, the rotation angle α is calculated as the relative translation 

between two maxima distributions, where some component of the function is 

maximized, and the comparing function is a correlation function. Thus, by 

substituting an arbitrary comparison function with the correlation function in (3), 

we can determine the rotation angle α by 

(11)  .2,0max,))(),(( 21 
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Finally, the correlation function is calculated as follows: 
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Applying the correlation function (12) to the pair of distributions derived from 

(10), we obtain a curve with clearly pronounced maxima, whose main defines the 

rotation angle α through (11) (Fig. 4).  



 

 

 

 
Fig. 4. Result of applying the correlation function to the distributions of Fig. 3 

Fig. 4 displays 10 maxima corresponding to 10 values of the rotation angle. 

Five of these maxima correspond to correct rotation angles; the remaining false 

maxima (which generally comprise half the total number of maxima) manifest from 

duplications of the straight-line descriptions and doubling of the accumulator size 

along the ρ axis (as stipulated earlier). At this stage, two solutions (α and α + π) 

achieve equal maxima of the comparing function. The correct value is determined 

by additional computations. 

8. Calculation of the rotation direction 

The rotation angle calculation yields a pair of values (α and α + π). The correct 

member of this pair cannot be determined from the maxima distribution alone. 

As evident from Fig. 2, each column A(θ) of the accumulator A contains non-

zero values within a certain range (here denoted as [l(A, θ), u(A, θ)]. To solve the 

abovementioned problem of finding the rotation direction, we construct a second 

accumulator with each point (θ, ρ) replaced by its corresponding point (θ + π, –ρ). 

Therefore, if the range of θ is [u(A, θ), l(A, θ)], the range of θ + π is [l(A, θ + π) = –

u(A,θ), u(A, θ + π) = –l(A, θ)]. This follows from the principle of construction of the 

accumulator (Fig. 5). 

The lower bound l(A, θ) of column A(θ) is selected as the minimum value of ρ, 

for which A(θ, ρ) differs from zero:  

(13)  .||,0,0),(),min(),(  AAAl   

Similarly, the upper bound u(A, θ) of column A(θ) is chosen as the maximum 

value of ρ, for which A(θ, ρ) differs from zero: 

(14)  .||,0,0),(),max(),(  AAAu   

The values in columns A(θ) and A(θ + π) are identical but oppositely ordered 

along the ρ axis (Fig. 6). 



 

 

 

 
Fig. 5. Ranges of non-zero values in the columns of the accumulator matrix for  θ = 1.25 

        

a                                                 b 

Fig. 6. Distribution of values in the columns of the accumulator matrix of Fig. 5 for a) A(θ = 1.25) and 

b) A(θ = 4.39) 



 

 

 

The range width of the non-zero values in a column is defined as the 

difference between the upper and lower bounds: 
(15)  ).,(),(),(  AlAuAw   

The middle of the range is obviously calculated by summing the lower bound 

and half of the range width: 

(16)  ).,(5.0),(),(  AwAlAm   

In general, the distribution of values in the range [l(A, θ), u(A, θ)] for any θ is 

asymmetric about the center. The asymmetry of the values in a column is computed 

as the weighted sum of non-zero values in the column. Here, the weights are 

proportional to the translation (i.e., the distance between the current value and the 

mid-range): 
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From the calculated s(A, θ) at each θ, an asymmetry map S(A) is obtained for 

the given accumulator (Fig. 7). 
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Fig. 7. Constructed asymmetry maps for accumulators of a) sample MA and b) sample  MB 

As the asymmetry is determined by the geometry of the surrounding space, the 

accumulators of the two initial samples will yield similar asymmetry maps. 

Selecting the correct rotation angle from α and α + π reduces to choosing the angle 

at which the comparing function (18) is maximized in both asymmetry maps (Fig. 

8): 
(18)  }.,{max,))(),(( 21 
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a                                                 b 

Fig. 8. Asymmetry maps shown in Fig. 7, with relative translations of a) α = 0.52 and b)  α + π = 3.66 

9. Special cases 

In certain scene configurations, the rotation angle of the mobile robot cannot be 

found by the proposed method. For instance, the correct angle among n rotation 

angles cannot be decided in symmetric scenes (where n is the order of symmetry of 

the scene) because the comparing function yields 2n maxima. In the idealized case, 

these maxima are indistinguishable and the angle will be selected at random. In 

non-ideal cases, the maxima will differ under noise in the measurements and 

distortions incurred by discretization. In this case, the selected angle is affected by 

random factors and is generally incorrect. 

When all straight lines are parallel (a special case of a symmetric scene), the 

rotation angle cannot be determined and the symmetry map loses its 

informativeness; that is, all values are zero in the ideal case. In real calculations, the 

values will specify the amounts of various noises. 

Determining the rotation angle in such configurations requires additional 

information of the surrounding environment (non-geometric parameters of objects 

in the scene, such as color) or information that is independent of the surrounding 

space (such as inertial navigation data or odometry). 

10. Conclusion 

This paper considers the angular orientation of a mobile robot in its surrounding 

environment, a topical theme in SLAM frameworks. The proposed algorithm for 

determining the angular orientation is based on a two-dimensional linear Hough 

transform and exploits its remarkable property, namely that the relative positions of 

the accumulator maxima along the θ axis are invariant to rotation. Meanwhile, the 

translation of the maxima distribution corresponds to the rotation angle. 

The source data for the algorithm are two samples of measurements of the 

surrounding space geometry, which have been received by the mobile robot’s 

sensors. Thus, the problem of determining the angular orientation becomes the 

problem of determining the rotation angle of one sample relative to the other. In the 



 

 

 

proposed algorithm, the latter problem is reduced to defining the mutual translation 

of the distributions of the maxima in the accumulators built from the input samples. 

This translation is iteratively defined by displacing one distribution relative to 

another distribution containing the maximum (minimum) of some comparing 

function (in the present case, the comparing function is a correlation function). The 

resulting translation values correspond to the rotation angle. 

The algorithm inherits the robustness of the Hough transform to measurement 

noise and outliers. Furthermore, the algorithm is tolerant to translation and isotropic 

scaling of sets. By virtue of these features, no preprocessing of the samples is 

required.  

The algorithm has several limitations; especially, the geometry of the 

surrounding space should be dominated by straight lines (because we have chosen 

the linear Hough transform) and the rotation angle cannot be computed in 

symmetric scenes. The first limitation can be overcome by Hough transforms with 

different parameterization or by approximating the geometry with straight lines. To 

resolve the second limitation, we propose the use of additional (non-geometric) 

information on the surrounding environment. 
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