1D cuts through multidimensional potential energy surfaces by tunable X-rays
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The concept of the potential energy surface (PES) and directional reaction coordinates is the
backbone of our description of chemical reaction mechanisms. Although the eigenenergies of the
nuclear Hamiltonian uniquely link a PES to its spectrum, this information is in general experi-
mentally inaccessible in large polyatomic systems. This is due to (near) degenerate ro-vibrational
levels across the parameter space of all degrees of freedom, which effectively forms a pseudospectrum
given by the centers of gravity of groups of close lying vibrational levels. We show here that reso-
nant inelastic X-ray scattering (RIXS) constitutes an ideal probe for revealing one-dimensional cuts
through the ground state PES of molecular systems, even far away from the equilibrium geometry,
where the independent-mode picture is broken. We strictly link the center-of-gravity of close-lying
vibrational peaks in RIXS to a pseudospectrum which is shown to coincide with the eigenvalues of
an effective 1D Hamiltonian along the propagation coordinate of the core-excited wave packet. This
novel concept, combined with directional and site selectivity of the core-excited states, allows us to
experimentally extract cuts through the ground state PES along three complementary directions

for the showcase HoO molecule.

I. INTRODUCTION

Multidimensional potential energy surfaces (PES), dy-
namic pathways and reaction coordinates are powerful
conceptual tools for molecular science and chemistry.
Experimental reconstruction of multidimensional PES —
spanning from equilibrium to strong geometric distortion
— of coupled degrees of freedom poses a challenge. Ide-
ally, knowledge and interpretation of the full experimen-
tal vibrational spectrum are needed to solve this inverse
problem [1-5]. It is almost impossible to extract such in-
formation from experimental spectra of large polyatomic
systems. However, knowledge of the full multidimen-
sional PES is redundant in many situations. Indeed, the
majority of practical applications requires knowledge of
the PES along directional reaction pathways like in imag-
ing of folding energy landscapes by single-molecule force
spectroscopy|6, 7] instead of the full PES landscape along
all degrees of freedom of the investigated system.

We present sub-natural line width resonant inelastic X-
ray scattering [8-11] (RIXS) as an experimental approach
that delivers this directional reconstruction method of
the ground state potential energy surface. The strong
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site- and state-sensitivity of RIXS uniquely enables prob-
ing the electronic ground state PES in different direc-
tions using resonant X-ray scattering through selected
intermediate core-excited electronic states. The role of
these intermediate states is crucial for the potential re-
construction because it defines the selective propagation
of nuclear wave packet in state and site specific direc-
tions. Indeed, the core-excited state wave packets prop-
agate along the coordinates defined by the orientation of
valleys of the selected core-excited state PES. The pro-
jections of these directional wave packets onto vibrational
states of the electronic final state, in the emission step
of the RIXS process, give access to the final state PES
along the selected pathway in a wide range of geometry
distortions (Fig. 1).

Quite often, vibrational states are clustered into groups
of close-lying vibrational levels (typically unresolved in
current RIXS spectra)[12-15]. In principle, the fine
structure of each group can be resolved using RIXS of
super-high resolution. However, we face here a non-
intuitive situation where the knowledge of such fine-
structure of overlaping vibrational states is redundant
and even constitutes an obstacle in our reconstruction
technique. Instead, we need only much simpler informa-
tion, namely the centers of gravity of each group, which
form a pseudospectrum, that is unique for each propa-
gation direction of the wave packet on the core-excited
PES. We have found that this pseudospectrum allows
to extract one-dimensional cuts of the electronic ground



state potential along the propagation direction of the nu-
clear wave packet in the selected core-excited state.

II. RESONANT INELASTIC X-RAY
SCATTERING OF WATER MOLECULES

To exemplify the PES reconstruction, we study the
electronically elastic RIXS process in water molecules
which ends up in the electronic ground state. The O
1s X-ray absorption spectrum of gas phase water exhibits
three well separated absorption resonances [11, 16] which
correspond to excitations of the O 1s electron into the
unoccupied molecular levels 4a1, 2by and 2b;. The theo-
retical simulations of the core-excited state wave packet
propagation in Fig.1 show that the nuclear wave packet
moves along different state-specific reaction coordinates
on the different core-excited states within the lifetime of
the O 1s core hole. The wave packets, confined within
the PES valleys, are localized along the OH bonds of the
dissociative |O1s™!4al) state, between the OH bonds for
the |O1s~12b) potential and exclusively along the bend-
ing coordinate for the |[O1s~12b}) state [11]. Upon decay,
these directional wave packets are projected onto the vi-
brational levels of the ground state, thus enabling recon-
struction of different cuts through the PES (Fig. 1).

Here, we consider the RIXS spectra of HoO for pho-
ton energies tuned in resonance with the |O1s~'4al) ,
|O1s712b%) and |O1s712b1) transitions. The wave pack-
ets U presented in Fig. 1 were used in references [11, 17]
to compute the RIXS spectra at each absorption re-
sonance and lead to good agreement with experiment.
The exclusive presence of stretching excitations in the
|O1s~14a}) spectrum, dominance of stretching excita-
tions with presence of a single bending overtone in the
|01s~12b3) spectrum and the exclusive existence of bend-
ing excitations in the |O1s712b1) spectrum reflect the
coupling of the characteristic confinement of the core-
excited state wave packets to the experimentally detected
ground state vibrational modes [17, 18].

I1II. EXPERIMENT

The RIXS end-station of the ADRESS beam line [19]
at the Swiss Light Source was utilised to acquire the
experimental spectra with a resolution of 75meV. The
H50 (g) sample, generated by evacuation from a ~10ml
liquid sample reservoir at a temperature of 60°C, was
transferred through previously evacuated and heated
steel capillaries to the interaction region under perma-
nent evacuation. In this way a constant flow and thus
continuous sample replacement was achieved. At the
point of interaction with the synchrotron X-ray beam,
the sample was separated from the UHV-experimental
chamber by a 150 nm thin silicon nitride membrane. The
surface of the membrane was positioned under an angle
of 45° with respect to the incoming X-ray beam allow-

ing for a transmission of both the incident as well as the
emitted photons in a 90° scattering geometry.

The energy calibration of the ADRESS beam line was
determined according to the absorption maximum at the
m*-resonance of Oy gas at 530.519e¢V to be in agree-
ment in agreement with the data presented by Saitoh
et al. [20] who reported 530.521 £+ 0.01 eV. Disagree-
ments about this absolute energy exist in literature as
pointed out by Prince et al. [21]. The nominal ener-
gies according to the beamline calibration for the spec-
tra recorded at the different resonances are 533.509 eV for
|01s~14al) , 535.289eV for |O1s~12b) and 536.699 eV
for |O1s712b1) . From the comparison between the in-
cident energy dependent experimental spectra and sim-
ulated spectra considering the detuning dependent core
excited state dynamics we estimate the detuning from
the different resonances to be 0.05eV for |Ols™'4al) |
-0.025¢eV for [O1s712b1) and 0.2eV for |O1s—12b}) [17].

IV. ELECTRONIC STRUCTURE METHODS
AND RIXS THEORY

To compute the potential energy surfaces of the ground
and core-excited states we employed the MOLCAS 8.0
package [22] using the scalar relativistic restricted-active-
space self-consistent field (RASSCF) method [23] fol-
lowed by second-order perturbation theory (RASPT2)
method [24]. The atomic orbitals were described by an
ANO-RCC [25] basis set in combination with a (2s2pld)
Rydberg basis similarly to ref. [26]. The normal vi-
brational modes of the ground state were obtained at
the CASPT2(8,9) level. An active space with 10 elec-
trons consisting of 11 orbitals in RAS2 and RAS3 was
used in the RASPT2 calculations (in Cs symmetry) of
the potential energy surfaces. To reach both ground
and core-excited states separate RASSCF calculations
were performed with double or single occupation of Ols
(which is frozen from the Hartree-Fock calculation) in
the RAS3 subspace. RASSCF state-averaging and multi-
state RASPT2 were carried out for |Ols™'4a}) and
|O1s~1203).

We compute the RIXS cross section assuming that the
stretching and bending are uncoupled (so-called 2D+1D
model [11, 17] using a time-dependent representation

ope(ww) = D {0lmy){my|m)(m|mc)(mc|0)

oo

xRe / dte'= —emt<Dte (1) (1)
0

as the function of the energy loss w — w’. Here W’ is
the frequency of the scattered photon, €© and e, are
the total zero-point energy and the bending vibrational
energy of the ground state. To find the autocorrelation



function
Cmtm, (t) = (@ (0)| e "2 W, ), (2)
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0

where Q = w — weo + €@ is the detuning of the incoming
photon frequency from the frequency w.q of the vertical
transition 0 — ¢. Here A = E.(Ry) — E(‘,(Réc))7 Ry and

R(()c) are the coordinates of the potential minima of the
ground and core-excited 3D potentials.

V. 1D CUT OF THE PES AND THE
PSEUDOSPECTRUM

Let us illustrate, based on the detected RIXS transi-
tions, how the confined core-excited state wave packets
can be used to reconstruct one-dimensional cuts through
the ground state PES. To give insight into the physics,
it is enough to consider only the coupled stretching dy-
namics. The 2D Hamiltonian of the coupled stretching
motion of the ground electronic state in its general form
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Here p; are the reduced masses for motion along the gen-
eral coordinate Q;. The kinetic energy operator is not di-
agonal due to the mass polarization term o .It is known
that the eigenvalues €, ,, of the ground state 2D Hamil-
tonian hg form groups[15, 17, 18] according to the group
number

hy =

+V(Q1,Q2). (3)

n=mny+mny, n=0,12---. (4)

Each n-th group consist of n + 1 close lying vibrational
sublevels as illustrated in Fig.2. Such clustering of the
vibrational states into groups occurs in many molecules
containing H-X bonds (e.g. HaX H3X H,X)[11, 15]. In
our measurements the fine structure of each n-th group is
not resolved and each n-th peak is instead characterized
by its center of gravity

G%g: Z P7§71L7)12 enl n2»
ni+n2=n
P(n) _ ‘<\Il|wn1n2>‘2
i > K¥lnn,)l?

ni+nz=n

(5)

which is sensitive to the direction of localization of the
nuclear wave packet ¥ in the core-excited state, as seen

in Fig. 2. Indeed, the probability P,(L?%z is defined by the
square of the scattering amplitude [8, 17, 18]

Fn1n2 - _Z<wn1n2 ‘\I/>a (6)

v /eZ(w_wCOJreOOﬂF)%(t)dta (t) = e g,
0

which is the projection of ¥ onto the vibrational eigen-
functions ®p,n, of the ground state. Here, w.y is the
energy of the vertical transition 0 — ¢, A(®) and T' = 0.08
eV are the 2D Hamiltonian and the lifetime broadening
of the core-excited state, respectively.

Fig.1a depicts the localization of the nuclear wave
packet W in each core-excited state along the reaction
path @1 which is directed into a valley of the correspond-
ing PES. For the |Ols~14a}l) dissociative state, the co-
ordinate @, is oriented along one OH bond (@ = Ry or
R3) and for the bound |O1s~12b3) state, it is located be-
tween the OH bonds (i.e. along the symmetric stretching
coordinate 1 = Q). The wave packet ¥ evolving along
@1 is narrow in the direction @2 orthogonal to Q1. We
describe the strong confinement of ¥ in the Q5 direction
by the sharp function A(Q2) (normalized to one) using
the following factorization

U(Q1,Q2) = 0(Q1)A(Q2 — Q2¢), (7)

where A(Q2 — Q2.) has its maximum at Q2 = Q2e.

To connect the projection of this narrow wave packet
(7) onto the ground state PES with the potential
V(Q1,Q2) along the confinement coordinate Q1 we
study the relation between the center of gravity €& (5)
and the n-th group to the eigen value €, of the 1D Hamil-
tonian hy along Q4

hlwn(Ql) = enPn (Ql)v
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hl = <A|h2|A> = 2[[1,1 8@% + V(QlaQZe) + C. (8)
The following approximation V(Q1,Q2) = V(Q1, Q2) +
K(Q2 — Q2¢)? /2 is valid because (Q2 — Q2¢) is small. The
constant offset C = (A|x(Q2 — Q20)%/2 + T(Q2)|A) of
the 1D Hamiltonian h; is not important because we de-
fine the potential with respect to the bottom of the well.
Clearly, the spectrum of the 1D Hamiltonian €, depends
on the state sensitive propagation direction of the wave
packet ¢(Q1) in full agreement with experiment and sim-
ulations. Let us write the normalized wave packet ¢(Q1)
in terms of eigenfunctions ¢, (Q1)

|6) = [0n) ($nld) + Y [tom) (eml),
m(#n)

<\I/|'¢’n1n2> = <¢A|wn1nz> = <¢|wn><wnA|wn1nz>

3 () Ay (9)
m(#n)

One should notice that the overlap between |, A) and
|thnyn, ) Which belong to different groups is negligibile due
to the small spacing de,,n, between the levels inside of
the same group (n; + ny = n) in comparison with the
spacing €, — €,, between the levels from different groups
(n # m)[11, 17] (see Appendix)

<wmA|¢n1n2> ~ 07 ny+ne=n 7é m. (10)



This together with the identity (¥.,|1,) = 0 allows to
write eq. (5) as follows

P(n) — | <¢HA|’(/)”1712 > |2
2 (UnAnn ) (Vs [P A)

ni+n2=n
= [(¥nAlnina) I (11)

Thus egs.(5) and (11) bring about a central result of our
article

€=

E= > (UnARning)enns (Vning [Un )

ni+nz2=n

It is striking that the center of gravity of the n-th RIXS
peak is nothing else than the eigenvalue €, of a 1D Hamil-
tonian hy = (Alhg|A) along the Q1 coordinate. Hence,
the set of centers of gravity of the peaks constitutes a
pseudospectrum from which we can reconstruct a 1D po-
tential along @7 of the multidimensional PES, either by
employing an analytical model or a model-free numeri-
cal procedure. The pseudospectra, related to the selected
cuts, are shown in Fig. 2 for the theoretical RIXS spectra
computed at the |[O1s™!4a}) and |O1s712b3) resonances.
Fig. 2 shows the sensitivity of the pseudospectrum on the
direction of the 1D cut.

VI. EXPERIMENTALLY RECONSTRUCTED
POTENTIALS

Now, we are in position to validade the our concept by
extracting the potential cuts from the experimental RIXS
spectra of HoO (Fig.3). To reconstruct the 1D cuts we
have fitted the experimental pseudospectrum €, to the
the spectrum

2
= —1—1 — Wek 1/—&—1 (13)
€y We | V 9 ele 2

of the Morse potential [27]

Var(Q — Qo) =D (1 - e—O‘(Q—Qe))Z (14)

by varying the parameters w, and wex.. Here the disso-
ciation energy D = w?/(4wew.) and a = /2w, relate
to the fitted parameters.

We start the PES reconstructions, from experimental
RIXS data, by studying the scattering through the dis-
sociative |O1s~'4a}) core-excited state. The molecule
undergoes an ultrafast dissociation along the OH bonds
(along Ry and Ra, see Fig.1) which occurs during the O
1s core-hole lifetime of 1/2I' = 4.1 fs. This gives rise
to a long stretching vibrational progression, which al-
lows to reconstruct the 1D potential in the direction of
the OH bond @7 = R; in wide range of R;. The RIXS
spectrum at the |O1s~'4a}) resonance (see Fig.3a) ex-
hibits exclusively stretching excitations. Naturally, this

progression is not contaminated by the vibrations of the
fragment of dissociation OH, as the signal of this species
forms the so-called atomic-peak [8, 28], which is well sep-
arated from the main progression in RIXS. The fit of
the pseudospectrum e, = €% from the vibrationally re-
solved RIXS spectrum by the eigenstates of the Morse
potential V(@ — Q.) with R, = 1.81 a.u. provides
us the vibrational frequency w. = (475.4 £ 1.1) meV
and the anharmonicity constant wexz, = (9.99 + 0.14)
meV. Together with the value of the reduced mass p; =
mumo/(mu + mo) = 0.94 a.m.u. this yields the follow-
ing parameters of the Morse potential & = 1.122 + 0.008
a.u., D = 5.66 £ 0.09 eV. In spite of our experimental
data not providing €, in the vicinity of the dissociation
limit, the obtained dissociation energy is rather close to
the single O-H bond dissociation energy of ~ 5.6 eV in
gas phase water molecule [29]. The reconstructed poten-
tial is compared to the calculated 1D potential along the
OH bond in Fig. 3a. Both potentials are almost identical
in the range where vibrational excitations are detected.

Let us tune the photon energy in resonance with the
|O1s712b1) core-excited state, where the wave packet ¥
is confined within the narrow potential well (Fig.1) be-
tween the bonds. Contrary to the previous case we are
able now to get a cut of the ground state PES along
symmetric bond elongations Q1 = Qs (see Fig.1). The
stretching pseudospectrum €, = €® extracted from the
|O1s712b3) RIXS spectrum fitted by the eigenstates of
the Morse potential Vj; gives the following values of
the vibrational frequency w, = (457.65 4+ 0.70)meV and
the anharmonicity constant wez. = (4.76 £ 0.13)meV.
Taking the reduced mass for the symmetric stretching
bond elongation ps = 1.044a.m.u. into account we get
a=0.82+£0.02 a.u., D =11.0£0.3 €V as parameters of
the Morse potential Vj;. The deviation of the obtained
value of D from the thermochemical dissociation energy
of 9.5eV [31] is caused by the fact that the vibrational
progression is not long enough, for the studied state, to
accurately predict the dissociation limit. Comparing the
reconstructed potential to the ab initio cut along Qg in
Fig. 3b it becomes obvious that there is a nearly perfect
overlap between experiment and the theoretically pre-
dicted potential in the probed range.

Lastly, we consider the scattering through the
|O1s712b}) resonance (see Fig.3c). This spectrum ex-
hibits only bending excitations because the 2D stretch-
ing potentials of the |O1s712b1) and ground states are
the same [11]. Thus, the nuclear wave packet ¥ in
the |O1s712b1) core-excited state propagates only along
the bending coordinate @, (Fig 1b). The projection of
U trapped in the valley of the bending potential onto
ground state allows to recover the 1D cut of the ground
state PES along ()p. The bending potential of HoO has
two minima (Q.1 = 0 and Q.2 = 3.891 a.u.) symmet-
ric around the angle 8 = Z(HOH)=180°, which corre-
sponds to the top of barrier at Q. = 1.632 a.u. There-
fore, we use a piece-wise defined potential function V}
formed by two non-overlapping Morse potentials Vs (Q)



and Vs (—(Q — Qe2)) (14) connected by a parabolic bar-
rier U(Q — Qe) = Umax - n(Q - QE)Q'

V(Q)a Q S -A + Qev
U(Q - Qe)a —-A + Qe S Q S A + Qey(15)
V(_(Q - 2Q€))7 Q > A+ Qe-

The morse potentials and U(Q — Q.) are matched at
the points Q. + A, where A is a fitting parameter. The
parameters we = (201 + 2)meV, weze = (1.9 £ 0.4)meV
and A > Q. were determined by a fit to the spectrum
of the potential V; to the experimental data with the
mass of the bending mode p = pp = 1.083a.m.u. The
reconstructed potential along the bending coordinate Q)
is compared to the ab initio simulation in Fig.3c. The
limited number of vibrational states in the experimental
spectrum does not allow to define precisely the height
Umax of the barrier U(Q —@Q.). However, the least square
method employed yields a confidence interval of 1.09eV<
Umax < 1.70€V (see Fig.3c) for the linearity barrier. This
confidence interval is consistent with the ab initio values
given by our RASPT?2 calculations (Upax = 1.42 €V) and
the Coupled Cluster value from reference [30] (Upax =
1.37 V).

Vb (@) =

VII. CONCLUSIONS

A rigorous calculation of multidimensional potential
energy surfaces is a formidable computational task, espe-
cially far away from equilibrium where accurate, but com-
putationally costly, multiconfigurational techniques are
required. Hence, there is a vital need to reconstruct the
potentials directly from the experiment. In this study we
validated a novel method to experimentally extract one-
dimensional cuts through the multidimensional ground
state PES of molecular systems using vibrationally re-
solved RIXS spectra of the water molecule. We utilized
the diverse nature of three different O 1s core-excited
PES to prepare highly directional nuclear wave packets
which were projected onto the ground state in the RIXS
process. The physical reason for the reduction of dimen-
sionality, and for the related selection of the directions
of the one dimensional cut, is the high confinement of
the wave packet along the valleys of the PES oriented
differently for each core-excited state. The quantum-
mechanical justification for the extractions of the selected
one dimensional potential cuts was given by relating the
pseudospectrum, defined as the centers of gravity of clus-
tered vibrational peaks measured in RIXS spectra, to the
eigenstates of the one dimensional Hamiltonian along the
direction of propagation of the core-excited wave packet.

Core-excited states of different elemental sites (C,0,N,
etc.) have distinct PESs. These manifolds of intermedi-
ate state PES topologies significantly enlarge the num-
ber of the directions for 1D cuts of PES which are ac-
cessible through RIXS. As shown by many experimen-
tal studies of polyatomic systems [5, 13, 32, 33], only a
few vibrational modes related to the core-excited atom

are active. This state- and site-specific selection of only
few excitation-center-related vibrational modes, together
with direct access to high vibrational states in a single
shot, makes RIXS a powerful method yielding access to
cuts through PESs in molecules over highly distorted ge-
ometries, which complements other vibrational probes.
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Appendix: Proof of Eq. 10

Let us show that

<wmA|wn1n2> ~ 07 m 7é n="n1+ny (Al)
taking into account that the spacing de,,n, between lev-
els €,,n, within the n = n; +ny manifold is much smaller
than the spacing d¢,, between the eigen values ¢, of the

1D hamiltonian A4

66"1712 < |€m - €n|a n 7é m. (AQ)
Here
hol¥nyng) = €nyng [Ynins)s
hlwm = €mw'rn- (AS)

Let us expand the wave packet [¢,,(Q1)A(Q2)) in the se-
ries over full set of eigen functions |ty n,) of strict hamil-
tonian hy = hy + 0h

|¢m(Q1)A(Q2)> = Z Cn1n2|wn1n2>v

ning

|¢m(Q1)A(Q2)> = |1/)m(Q1)>|A(Q2)>-

To find the expansion coefficients ¢y, let us use the
identity he|mA) = (h1 + 0h)|1mA), eq.(A.3) and the

(A4)



expansion (A.4)

(h1 + 0h)|[pmA)= (em + 0h)[)mA)
= (em —+ 5h) Z Ck1k2‘¢k1k2>

ki1ko

= ho Z Ck1k2|wk1k2>

k1ka

= Z Chky ko €k ko |wk1k2>v

kikao

(A.5)

where 0h = hy — hj is the deviation of strict hamiltonian
from h;. Multiplying this equation (from left) by (5, n, ]|
we get the following eigenvalue problem

(€m_5n1n2)cn1n2+Z<'¢n1n2|5h|¢k1k2>ck1k2 =0. (AG)

k1ko

This equation results in the following expression for the
expansion coefficients

(m)
_ /4n1n2
Cn1n2 - )
€m — 6n1 no

ASZ?Q = - Z<¢n1n2\5h|¢k1k2>ck1kz~
kikso

Let us write down these coefficients for two distinct cases

m
AT,
Cnlnz = ) 711 +_712 ?é n17
m T 6711712
A(m)
mimo
Crymg = —————, mi+ma=m. (AS)
€m — emlmg
Now one can write the ratio of our interest
(m)
Cnlnz _ Anlnz <em - em,1m2>
lemg Axg)mz €m — Enlng
(m)
Anyng <5em1mz > (A.9)
— — . .
Al \em — €

(m)

Apparently, the sum Ay 7, (see eq.(A.7)) has the same
order of magnitude for different pairs (nins)

Alm) g(m)

ning mimsa”°

(A.10)

Thus we get the final result taking into account the prop-
erty (A.2) of our spectrum

Cnlng 66ﬂ1ﬂn2

< 1.

(A.11)

cm1m2 €Em — €n

This means that the main contribution in the expansion
(A.4) of |4, A) gives the eigen function of the m th group

[YNEDY
mi4+mbh=m
>

mi+mh=m

(Yning [VmA) = 0,

Coyy ! /| / />
7n1nb #%nlﬂb

ny + ng # m. (A.12)
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FIG. 1. Localized nuclear wave packets and 1D projections. Squared core-excited state nuclear wave packets |\I/|2 of gas phase
water versus (a) OH bond lengths R; and R» and (b) bending normal coordinate Q. W exhibits a strong localization along the
bonds and between the bonds for the |Ols_14a%) and |O1s'2b3) core-excited states, respectively, and is altered exclusively
along @ for the |015712b%> excited state. The core-excited state potential energy surfaces Vo drive directional wave packet
transformations. The projection (n,n,|¥) of the core-excited wave packet onto the ground state allows to reconstruct one
dimensional cuts of the ground state potential Vizs along distinct directions.
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FIG. 2. From eigenstates of a multidimensional Hamiltonian to a one-dimensional pseudospectrum.

(a) White curves show the crossings of the stretching isoenergetic surfaces €n,n, with the ground state PES V(R1, R2) = €nyny-
Circlesi al;)ng the coordinates R; (green) and Qs (blue) are the centers of gravity €2? of the n-th group of the |O1s™'4ai) and
|O1s™"2bs) .

The curves show the theoretical RIXS profile computed at the (a) |O1s™'4ai) and (b) |O1s™*2b3) resonances. The bars above
show the pseudospectra e, = €5 which can be extracted along different coordinates from the |O1s™*4at) (b) and |O1s712b3) (c)
RIXS due to different Franck-Condon factors (shown by black vertical lines). They allow for the reconstruction of the potential
along the OH bonds R; and along the symmetric stretching direction Q5.
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FIG. 3. Reconstruction of the 1D cut of the PES along the Ri, Qs (between the OH bonds) and @, coordinate from the
experimental |O1s™4a1) , |O1s712b3) and |O1s~12b1) RIXS spectra due to strong wave packet confinement.

(left) The centers of gravity of each vibrational peak form the pseudospectrum (colored horizontal lines) of the ground-state
1D potential along the coordinates R1, Qs and @ selected by the nuclear wave packets highly confined in the valleys of the
core-excited states. The fit of the pseudospectrum to the Morse potential Vs [27] defines its parameters we = (475.4+1.1) meV
and weze = (9.99 & 0.14) meV for |Ols™'4a}) and w. = (457.65 & 0.70) meV and wez. = (4.76 & 0.13) meV for [O1s'203) .
The fit of the bending potential eigenstates yields we = (201 +2) meV and weze = (1.9£0.4) meV for the model V4 [? ]. Used
effective masses are given in the text.

(right) The reconstructed potentials (colored) are in a good agreement with the ab initio potentials (black) in the energy range
of available vibrational states.



