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We analyze the spectrum and eigenstates of a quantum particle in a bipartite two-dimensional
tight-binding network with short range hopping under the action of a dc bias. We find that the
energy spectrum consists of a periodic repetition of one-dimensional energy band multiplets, with
one member in multiplet being strictly flat. At variance to the case of compact localization of
eigenstates, this flat band supports exponential localization at best. We also show that the band
multiplet is characterized by the topological winding number (Zak phase), which changes abruptly
if we vary the dc field strength. These changes are induced by and reflect the number of gap closings
between the flat and dispersive bands.
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Recently much attention has been paid to flat bands
in one-, two- and three-dimensional lattices with short
range hoppings and non-trivial geometry [1]. Flat bands
with finite range hoppings exist due to destructive inter-
ference leading to a macroscopic number of degenerate
compact localized eigenstates (CLS) which have strictly
zero amplitudes outside a finite region of the lattice [2].
Flat band networks have been proposed in one, two, and
three dimensions and various flat band generators were
identified [3–6]. Experimental observations of flat bands
and CLS are reported in photonic waveguide networks [7–
14], exciton-polariton condensates [15–17], and ultracold
atomic condensates [18, 19]. Because the tight binding
network problem corresponds to an eigenvalue problem
EΨl = −

∑
m tlmΨm, flat bands and CLS are obtained

through a proper usage of the protecting symmetries and
fine-tuning of the network parameters. For example, for
the dice lattice shown in Fig. 1(a) and tlm = 1 the CLS
consists of an empty C site which is surrounded by six ex-
cited A and B sites with alternating amplitudes ±1/

√
6.

In the present letter we report on a new family of flat
bands which are found to exist in the biased bipartite
lattices and which are not supported by CLS, despite of
the short range hopping. As an illustrative example we
shall consider the dice lattice in the presence of a dc field
oriented in the y direction. The cases of other orienta-
tions of the field F and other lattice geometries will be
discussed in the concluding paragraph of the paper.

It is instructive to consider first the formal limit
|F| = F → ∞. In this limit the particle energy is
given by a Wannier-Stark ladder of triplets (−

√
2t +

ndF, ndF,
√

2t + ndF ) where t is the hopping matrix el-
ement and d =

√
3/2 is the Stark lattice period, i.e., the

distance between rows of sites with the same Stark en-
ergy (here we set the fundamental lattice period to unity)
and n is the integer counting of the ladder steps. Fur-
thermore, the particle is confined to uncoupled trimers
A−C −B (shown with black circles in Fig. 1(a)). How-
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FIG. 1: (a) The dice lattice with the elementary cell consist-
ing of three sites denoted by A, B, and C. The red and green
circles represent the amplitudes +1/

√
6 and −1/

√
6 respec-

tively of the compact localized states. (b) Bloch bands of the
dice lattice with flat band at E = 0.

ever, for a finite F the particle can tunnel to neighbor-
ing raws. Recovering of tunneling together with transla-
tional symmetry allows to search for the particle eigen-
states as Bloch waves in the direction orthogonal to F
[20, 21]. (This statement implicitly assumes ‘rational’
orientations of the field, where F is parallel to a line con-
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FIG. 2: (a) Wannier-Stark band ladder of the biased dice
lattice with F along the y axis, F = 4. Thick lines highlight
the irreducible triplet of three Wannier-Stark bands. (b-d)
Irreducible triplets for (b) F = 2, (c) F = 1/0.62, and (d)
F = 1.

necting any two sites of the lattice [21].) The energy spec-

trum then consists of a ladder of one-dimensional bands
– the Wannier-Stark bands. For the considered example
these bands are shown in Fig. 2(a) for F = 4. It is seen
in Fig. 2 that every third band is flat. In what follows we
explain the presence of flat Wannier-Stark bands in the
energy spectrum and obtain localized states associated
with these bands.

The stationary Schrödinger equation for the biased
dice lattice reads

EΨ(Rj) = (F ·Rj)Ψ(Rj)− t
∑
m

Ψ(Rj + rm) , (1)

where Rj are the lattice site positions and |rm| = 1. The
sum over rm connects three neighboring sites for A or
B sites and six neighboring sites for C sites (see Fig.1).
Keeping in mind that F is parallel to the y axis, we use
the substitution Ψ(Rj) ∼ exp(iκRxj )ψ(Ryj ) where κ is the
transverse quasimomentum. That reduces the original
eigenvalue problem (1) to a one-dimensional eigenvalue
problem with infinitely many bands:

EψAp = dFpψAp − tψCp e−i2ϑ − t(ψCp+1 + ψCp−1)eiϑ ,

EψCp = dFpψCp − tψAp ei2ϑ − tψBp e−i2ϑ − t(ψAp+1 + ψAp−1)e−iϑ − t(ψBp+1 + ψBp−1)eiϑ , (2)

EψBp = dFpψBp − tψCp ei2ϑ − t(ψCp+1 + ψCp−1)e−iϑ ,

where ϑ = aκ and a = 1/2 is the distance between
columns of sites. The system (2) is a three-leg ladder in a
static field aligned with the ladder legs, see Fig. 3. This is
a general result which holds for any rational orientation
of the dc field and any ν-band lattice in two dimensions:
in the Bloch representation for the wave vector orthogo-
nal to the dc field, each Bloch wave number yields a dual
one-dimensional ν-leg ladder in the direction of the dc
field. The precise network topology of the dual ladder is
depending on the field orientation, see Fig.3.

The eigenvalue problem (2) for the dual system can
be analyzed using the method of generating functions
[22, 23]. We introduce the Fourier series expansion of
three periodic functions in θ:

Y A,B,C(θ) = (2π)−1/2
∞∑

p=−∞
ψA,B,Cp exp(ipθ) , (3)

and arrange them into a column vector function Y =
[Y A, Y C , Y B ]T . Then the system of linear algebraic
equations (2) is generated from the following differential
equation set:

idF
dY
dθ

= G(θ;ϑ)Y , (4)
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FIG. 3: The dual ladder system for the dice lattice: (a) tilted
in the y direction, and (b) in the x direction.

where

G(θ;ϑ) = −

 E f 0
f∗ E f
0 f∗ E

 (5)

and f(θ;ϑ) = exp(−i2ϑ) + 2t cos(θ) exp(iϑ). Consider



3

now the unitary map Y(2π) = U(ϑ,E)Y(0) generated
by (4). We are searching for an initial vector Y(0) and
energy E which satisfy periodicity Y(2π) = Y(0). This
can be achieved by first setting E = 0, and computing
the eigenvalues λj and eigenvectors Yj of U(ϑ, 0) with
j = 1, 2, 3. Together with the gauge invariance of (4) it
follows that periodicity is obtained for initial conditions
Y(0) = Yj and energies

E(j)
n (ϑ) = dFn+ i

dF

2π
lnλj(ϑ) , −∞ < n <∞ . (6)

We note that for E = 0 the matrix G can be presented
in the form G = Ω · S where S is the spin-one operator
and Ωz = 0. Thus the unitary operator U(ϑ,E = 0) can
be viewed as a sequence of infinitesimal rotations around
a θ-dependent axis Ω. Since the sequence of rotations
reduces to a single rotation around some axis Ω̄, we find
U = exp(iΩ̄ · S) with Ω̄z = 0. It follows from the last
equation that

Y1,2 =

 ± 1
2e
iχ

1√
2

± 1
2e
−iχ

 , Y3 =

 1√
2
eiχ

0
− 1√

2
e−iχ

 , (7)

where the phase χ = χ(ϑ;F ) is a function of ϑ and
F . The first two eigenvectors in Eq. (7) correspond to
complex-conjugated eigenvalues λ∗2(ϑ) = λ1(ϑ) which de-
termine the dispersive Wannier-Stark bands according to
Eq. (6). The third eigenvector corresponds to λ3 = 1
which determines the flat Wannier-Stark bands.

The dispersive bands are sensitive to variations of F .
At the same time the bands have a topological invariant
Z – the winding number of the relative phases of the
eigenvector components:

Z =
1

2πi

∫ 2π/3

0

e−iχ
d

dϑ
eiχdϑ , Z = 0,±1, . . . , (8)

which is closely related to the notion of Zak’s phase [24–
26]. The winding number ceases to be well defined when-
ever a degeneracy λj(ϑ) takes place. Thus, if we vary F ,
the quantity (8) may change its value only at particular
values of F where the dispersive bands develop a coni-
cal intersection. This is illustrated in Fig. 4, where the
upper panel shows the quantity (8) as the function of
1/F and the lower panel one dispersive band as the func-
tion of both inverse field magnitude and transverse quasi-
momentum. In Fig. 4 the lower (dark blue) and upper
(bright yellow) limits of the used color mapping corre-
spond to the energy dF (n− 1) and dFn, respectively. In
this representation conical intersections appear as bright
dots, positions of which are seen to correlate with jumps
of the winding number Z for the phase χ = χ(ϑ;F ) in
Eq. (7).

Let us now discuss the particle eigenstates associated
with flat bands. Using the vector Y3 in Eq. (7) as the

(a)

(b)

FIG. 4: (a) Winding number of the phase χ as the function
of the inverse field magnitude. (b) The dispersive band as the
function of 1/F and ϑ. The limits of the color mapping are
set to E = dF (n−1), dark blue, and E = dFn, bright yellow.
In this representation conical intersections of the dispersive
bands with the parent flat band appear as bright spots.

initial condition and evolving it according to Eq. (4) we
obtain vector components as the function of two cyclic
variables θ and ϑ. Next, taking the Fourier transform
of the obtained functions over the variable θ we obtain
site populations of the dual ladder system for a given
value of the parameter ϑ. Analogously, taking the two-
dimensional Fourier transform over the both cyclic vari-
ables we obtain site populations of the original 2D lattice,
see inset of Fig. 5. It is interesting to compare the ob-
tained localized state with CLS for F = 0. As it was
already mentioned, the latter is given by an empty C
site surrounded by six A and B sites with alternating
amplitudes ±1/

√
6. It is seen in Fig. 5 that the center

of gravity of the localized state in the tilted dice lat-
tice is also an empty C site. However, the state itself
is not compact. The results depicted in Fig. 5, which
shows integrated probabilities P (x) =

∫
|Ψ(R)|2dy and

P (y) =
∫
|Ψ(R)|2dx in the logarithmic scale, indicate

that the state is exponentially localized in the direction
orthogonal to F and super-exponentially in the direction
parallel to F.

In conclusion, we showed that biased dice lattice has
flat Wannier-Stark bands which are supported by non-
compact localized states. Formally, the existence of flat
bands follows from the algebraic structure of the Floquet
matrix U . However, one can also develop a ‘physical
intuition’ which tells that flat Wannier-Stark appear as
soon as there are two alternative paths which recover the
tunneling in the orthogonal to F direction. For example,
in the considered field orientation the tunneling between
B and A sites is recovered through two C sites, which
are detuned from A and B sites by the Stark energy
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FIG. 5: Integrated probabilities (a) P (x) and (b) P (y) in the
logarithmic scale for F = 4. Inset: The localized state in the
tilted dice lattice for F = 4. Occupation amplitudes Ψ(Rj)
of the lattice sites are shown as a color map with dark blue
corresponding to −1 and bright yellow to +1.

±
√

3/2F . Similarly, for field orientation parallel to the x
axis the tunneling between C sites is recovered through
A and B sites, which are detuned by the energy ±F/2.
Clearly, the presence of two alternative paths requires
the original 2D lattice to be a bipartite lattice with ma-
jority and minority sublattices. We checked this conjec-
ture for the Lieb lattice for two different field orientations
Fx/Fy = 0 and Fx/Fy = 1. (For these orientations the
dual ladder system appears to be the biased stub and dia-
mond chains, respectively.) In both cases flat bands were
found. Finally, we mention that non-compact localized
states of the biased lattice do not converge to the com-
pact localized states of the unbiased lattice as F tends
to zero but rather to a Bloch-like superposition of the
compact localized states. The details of the limit F → 0
will be discussed elsewhere.
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