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Two-dimensional creeping motion of a two immiscible viscous heat-conducting fluids on the interface
for which the surface tension depends linearly on the temperature is investigated. On solid walls the
temperature has extreme values and this agrees well with the velocity field of the Hiemenz’s type. At
small Marangoni numbers an exact solution of arising inverse boundary value problem is found. The

estimation of degree of influence of the interfacial internal energy on the stationary flow is given.
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1. Statement and transformation of the problem

The system of the two-dimensional stationary motions of viscous heat-conducting fluids in
the absence of mass forces has the form

1
Uity + Ugtyy + b= V(Uigg + Utyy); (1.1)
1
UU2e + U2U2y + ;py = V(U2m + U2yy)§ (1-2)
Uiy + U2y = 0; (13)
w10, + U20y = X(Gzz + oyy)a (14)
)

where uq (z,y), us(z,y) are the components of the velocity vector, p(z,y) is the pressure, 6(z,y
is the temperature, p > 0, v > 0, x > 0 are the density, the kinematic viscosity, the thermal
diffusivity, respectively. The values of p, v, x are represented by constants.

Suppose, that u; = uy (z,y), w2 =v(y), p=0p(x,y), 0 =0(x,y)issolution of the system
(1.1)—(1.4). Substitution of this solution in equations (1.1)—(1.3) leads to relations

up = w(y)r +g(y), w+v, =0,

_fa? (1.5)

1
wt+va+w2:f+way, ;p:d(y) 9

dy = Vyy —VVy, Vgy +wg =0
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with an arbitrary constant f.
Equation (1.4) for the temperature is rewritten as

(wz + §)8z + v0y = X(Ozz + Oyy)-
Among its solutions there are quadratic one relatively of the variable x
0 = a(y)z® + m(y)z + b(y). (1.6)

Below, for simplicity, we assume that g(y) = 0 and m(y) = 0. The latter means that the
temperature field has an extremum at the point # = 0, more precisely, at a(y,t) < 0 it has a
maximum and at a(y,t) > 0 it has a minimum. Let us apply the solution (1.5), (1.6) to describe
the two-layer motion of the viscous heat-conducting fluids in the flat layer with solid walls y = 0,
y = h and common interface I' y = I(z), see Fig. 1.

‘y

liquid 2
y=i r o=c"-a(8-60%
/-_'
b
liquid1 X

Fig. 1. Schematic diagram of liquid flows in a horizontal layer with interface

Let us introduce index j = 1,2, fixing the fluid. Then in the domain 0 < y < I(z) the
functions wy (y), v1(y) satisfy the equations

viwiy + wf =Wy + f1, w1 +v1y =0. (1.7)
Upon that
1 x?
;pl = dl (y) — f12 s dly = Vlvlyy — ’l)l’l)ly. (18)
1

Similarly, in the domain I(z) <y < h yields

VoWoy + w% = VWayy + f2, W2 + 2y = 0; (1.9)
1 x?
;pz = d2(y) - sz s d2y = V2U2yy — V2V2y. (1-10)
2

Besides, in the same domains of definition (j = 1,2) the unknowns a;, b; satisfy the equations
2wjaj + VjQjy = Xjjyys (1.11)

vibjy = Xjbjyy + 2X50;- (1.12)

On the interface y = I(z) the following conditions are imposed [1]:
wi(l(x)) = wa(l(x)),  v1(l(x)) = va(l(2)); (1.13)
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zwy (I(2))l, = v1(I(2)); (1.14)
a(I(x)) = a2(I(2)), kg% — kl% = eaiws; (1.15)
bl(l(.’li)) = bg(l(l‘)), kg% — ]{11% = 3eb1w1. (116)

Here k1, ko are the constant coefficients of heat conductivity and normal to curve y = I(z) is the
vector n = (1 +12)~Y2(=1,,1).

The order of the relation of the right side of equality (1.15) (or (1.16)) to the first term
of its left-hand side is estimated by the parameter E = @20*/usks (uik; should be put for
the second case), where 0* is characteristic temperature on the interface. These parameters for
ordinary liquids at room temperature are small [2]. So, in the experiments for the air—ethanol
system at 0* = 15°C we have E ~ 5-107% Therefore, the right-hand side in (1.15) and
(1.16) is often omitted and it is said about the equalities of the heat flux across the interface.
However, for liquids with low viscosity these terms must be taken into account. Calculations [3]
carried out for the bubbles motion in various liquids show that values E = O(1) are reached at
sufficiently high temperatures. This means that the viscosity rapidly decreases with increasing
temperature. Besides, the same fact occurs for some cryogenic liquids, for example, for liquid
CO5. The maximum values of E near the critical points are reached. So for the water £ ~ 0.02
at 0 =303.15 K; E ~ 0.6 at € = 573.15 K; E ~ 0.7 at § = 623.15 K (critical point for water
Op = 647.30 K). In the present work the influence of the right-hand side of (1.15) on flow
dynamics will be taken into account in the framework of the creeping flow model.

Dynamic condition on the interface has the following form [1]

(p1 — p2)n + 2[u2D(uz) — p1 D(wy)n = 20 Kn + V0,  p; = pjv;, (1.17)

where (1) is the surface tension coefficients, K is the average curvature of the interfaces,
Vi1 =V —n(n- V) is the the surface gradient, D(u) is the velocity—strain tensor. Further, we
suppose that (see Fig. 1)

0'(91) = O'O — 33(91 — 00), (1.18)

oY > 0, s > 0 are the constants, #° is the temperature in the some point of the interface.
Projecting (1.17) on the tangential directions 7 = (1 +12)~/2(1,1,) and using dependence
(1.18) we obtain
[w2D(u2) — p1D(wy)n - 7 = —&eVq16; - 7 (1.19)

at y = l(z), u; = (zw;(y),v;(y)). In our case

T
wj 9 Wiy

D)= . (1.20)
b) Wiy Vjy

Now we rewrite condition (1.19) taking into account representation (1.6) and (1.20) for the
temperature at m = 0

T
Lalna(v2y = w2) = pa(vry —wi)] + 5 (1 = 12) (2way — pwny) =
= 7%(017« + lTﬂly) = 7%[2@11‘ —+ lx(a1y$2 —+ bly)] (121)
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Projection (1.17) on the normal n with use of formulae for the pressure from (1.5) results in
the equality

[p2f2 — p1fi]a?

prdy — pads + 5 + 2[p2D(uz) — p1D(up)jn-n =
= [UO — ae(a1x2 + bl)](l-q-lml;:)ii/? . (1.22)
Boundary conditions on the solid walls are the following
w1(0) =0, v1(0)=0, ws(h)=0, wvy(h)=0; (1.23)
a1(0) = a1, az(h) = az; (1.24)
b1(0) = b1g, ba(h) = bag (1.25)

with specified constants ajo, bjo, j = 1, 2.

Conditions (1.24), (1.25) correspond to the temperature on solid walls is given. Another con-
dition can be specified, for example, the top wall is thermally insulated: asy(h) = 0, bay(h) = 0.

Note the following features of the problem. It is strongly nonlinear and inverse, since constants
f; are unknowns also. It is easy to understand this, if we exclude v;(y) from the second equations
in (1.7), (1.9). Then the problem reduces to the conjugate problem for functions w;(y), a;(y) and
[(z). The problem for functions b;(y,t) separates at the known functions v;(y,t) and a;(y,1t).
The functions d;(y, t) can be restored by quadratures from (1.8), (1.10) up to time functions. The
second boundary condition in (1.13) and the last condition in (1.23) are helpful for determining
of the constants f;, j =1,2.

In real situations, for many liquid media the value ¢ is very large. Therefore, the relation
(1.21) gives Iy = 0, i. e. I(x) = axz + 1 and at 6° — oo the interface can be straight only.
Further, we assume that it is parallel to the solid walls y = 0, y = h, therefore o = 0, [ = const.
The solution of the problem is found in the following form

(€0) 2, ( (1) 2,,(2)

_ 2) _
Wi = ew, +5wj +..., Vj = EV; +svj + ...,

a;=ca” +e2P 4. by=ebl) 4P 1l fi=ef P
where ¢ is the formally small parameter. Substituting these expressions into the corresponding

equations and boundary conditions and passing to the limit at ¢ — 0, we obtain for wiV,

J o3
agl), bg-l), f;l) the linear problem. The boundary conditions (1.15), (1.16) will be homogeneous
for the problem, i.e. the effect of interfacial energy on the motion is absent.
In the first approximation the problem has the form
1)
o __Ji’

W, 0 _
=" W Ty =0

(1.26)
1 _ 1 _ (1)
jyy = 0, bjyy - 72aj
with boundary conditions

w0y =0, oM©0)=0, wm)=0, v(h)=0,

aV(0) = ar, aSP(h) = az, B(0) =byo, B (h) = bao,
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koaly) (1) = kialh) (1), kaby) (1) = kb1 (D), a$V (1) = 8P (1),

1 1 1 1 1 1
b0 =600, O =" ) =0, () =wi" ),
paw$y) (1) = pwy) (1) = —2ai” ().

The second approximation leads to inhomogeneous equations within the domains of definition

(1.27)

(O<y<latj=landl<y<hatj=2)

@ K2 10w % @ @)
_ J _
Wiyy = =7 + Us [vj Wiy + (wj ) } »owy toy =0,
j J (1.28)
2 _ 1 1 (1, 1) (1) @ _ 5@, 1 @,
Y =, (ij a; - +v;lag, ) b bjyy =205+ oY bj.

In boundary conditions (1.27) the following changes takes place (upper index “1” should be

changed by index “2”)
b (0) =0, b (h) =0,

af?(0) =0, a’(h)=0, b
k2al) (1) = kaall) (1) = wal (wi” (1), (1.29)

kabs? (1) — kb (1) = b (DwiP (1)

2. Solution of boundary value problems of the first and

second approximation

Problem (1.26), (1.27) has solution w§-1)(y), ag-l)(y)7 fj(l):
wo(1 — ) Ah(3y*/1? — 2yy/h)

wi (y) = ,
2ypaly + p(1 = )]
1y, @yAh(3y?/h? —2(2+7)y/h + 1+ 27)
wy ' (y) = ’
2(1 = y)paly + (1 = )]
(1) (a20 —a10) ¥y
S G L 2.1
W)= R b T 21
Wy L Y 1
as " (y) TR =) [k‘(azo Glo)h + kaio + (1 — k)ao | ,
FO - 3aev(l—7)A W _ 3ayA
' Yhpoly +p(1—=7)] " 72 (1= hpao[y + p(1 = 7))’
where k = ki /ky, v =v1 /1o, vy =1/h <1, = p1/ 2,
(a20 — a10)vy
= 2.2
v+ k(1 —7) (22)
Velocities v;l)(y) are found by integrating wj(-l)(y):
WD (y) = - EL = AN (y?’ _ wﬁ)

! 2ypaly +p(L = )] \B3 b2 )7

(2.3)
sl -eo(f o)
vy (y)=— =7 =2+ 5 - +(14+2v)( = - .
R A Gy | AV ey =7
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Functions b§-1)(y) are obtained also:

2 3
Wy o2 Yy (a20 —aw)  y°
by (y) = —2h [alo%2 + 60+ k(1= hg] + Cy + bo,
(2.4)
(1) _ 2h2 k(ago — alo) £ B LQ
by (y) = P p— { 5 i [kaio + (1 — k)azo] o2 (+ D1+ Do,
where k = ky /ka,
_ bo . h §
hly+k(1=7)] 30y + k(1 =)
X {2 [kz +y(k—1) <3k(1 — )2 - 72)] aio + [kj —v(k—-1) <472 — 6y + 3)] ago},
2l(k — 1)[7@20 + k(l — ’Y)alo]
D, =kC — 2.5
20%(k — 1)

Dy =1(1-k)C + {ly +3k(1 = y)]aio + 2vaz}.

3y + k(1 —9)]

To calculate the second approximation, which is the solution of problem (1.28), (1.29), we

introduce the notation ) )
1) (1 1
Fily) = — [UJ( hwy) + (Ué )) } )

o
! (2.6)
1

Hyly) = (2w§1)a§1) n U§1>a§1y>> :
J

It is clear that F;(y) are polynomials of the fourth degree by y, a H;(y) are polynomials of the
third degree. Further calculations in comparison with the finding first approximation are rather

long and therefore only main stages will be describes below.

Integration of equations for w(-z), ag-

; ? from the system (1.28) leads to representations

f]@)y2

2Vj

2
w; (y) = mjy +mj -

+/@—zmx@w,
: (2.7)

Yy
é”@%:@y+n?+/@—zﬂﬁ@ﬁh
l

with constants m;, m?, n]l,

Taking into account the sticking to the walls y =0 (j = 1) u y = h (j = 2) the functions
v]@ (y) are found from the equations of mass conservation in layers:

n?, j =1,2. The constants f;z) are also unknown.

Y h
== [uP@dz P = [uf)a (28)
0 Y
The following integral equalities are valid
l h
/wf)(z) dz =0, /wgz)(z) dz =0, (2.9)
0 1
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since v§2) 1) =0, v(z)(l) 0 on the interface. Thus, there are ten boundary conditions to
determine ten constants m n], ), 1,7 =1,2: (2.9) and
w?(0) =0, wé”(h) =0, a?(0)=0, a’(h) =0,
wi? (1) = wi? (1), a§2><w = ag” (1), (2.10)
pawsy) (1) — pwy) (1) = —2a® (1), kaaly) (1) — kral}) (1) = eeal) (i (1),

Substitution of representations (2.7) in conditions (2.9), (2.10) allows one to find the above-
mentioned constants uniquely

0
keDy — (h—1)D
mf:/zFl(z)dz, n%z/zHl(Z)dz, nl =271 ( )Ds
!

kohly + k(1 —7)]’

l h
= [ zH1(2)dz — -z 2)dz :’7(1_7)382Ah[7a20+k(1_'V)alo]
Dl‘g/ H(z)d l/(’”‘ R T S gy vy g e

h
k1D + 1Dy k1Dy 41D,
o , n2:—/h—szdz——7
2T mhiy kA=) 2 l( () dz = R T )
1 peDs—(h—=1)D
ml— )
pahly + p(l = )]
(1= l /
f12) T) 2(2)+/2F1(z)dz—/(h—z)F2(Z)dZv
0 l
Dy = —2a(ntl +n2) + lpofS? — 1p1 £,
h
1 w1 D3 + 1Dy TS / 1Dz + 1Dy
ml o omi=— P~ [(h=2)Fy(2)de — 12524 (211
27 pohly + p(l = 7)) 2T 21 2 l (h = 2)F5(2) paly + p(l—7)] 211)
1%
= 2 {0 Dty + - 312K}, v= 2,
) = X {3p'yzK1 + v+ 4p(l = )] K2}, P:%7
A =4y(1 =)y + (1 =)
12 (nil+n2) 12 1 [
Ky = 12020 - Dl m)  12nfy+ el - // — 2)Fy(2) dz dy+
) hi2
0 I
6 2u(1 / 6 h
4+ l/1[’7+ M _ /zF1 d +£ (h_Z)FQ(z)dZ’
0 l

I
12zy(nil +nf)  6uvy / 6r2[2y + p(1 — )]
Ky = F: dz —
? p2h h? 2Fi(z)dz (1 —7)h? .

0

/ 12 (1 o

X /(h—z)Fg(z) dz + VQ([,y—i_thg_ // — 2)Fy(z) dz dy.
1 [
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So, the values n; (i,j = 1,2), m? are calculated from the first approximation and the input

data. Then f;l), j = 1,2 are found; with their help we determine the constants D3, D4, and

hence, m}, mi, m3. Functions wt? (y), a(-Q)(y) are given by formula (2.7), and v§2) are given by

J j
equalities (2.8). It should be noted that the functions w§1), v](.l) are proportional to e, and w@),

J
vj@ to ae?.

3. Analysis of the influence of internal energy on
the example of liquids layers of equal thickness

Suppose for simplicity that v = {/h = 1/2 and upper wall y = h is under the influence of a
constant temperature, i. e. asg = 0. We introduce the notation of the Marangoni number in a
convenient form for computation (aig # 0)

M — aea10h3 k= ﬁ o &
xipz(k +1)(p+1)° Ry P

In this case, the characteristic temperature is 8* = a;oh?. Then, in the dimensionless form,
the formulas of the first approximation (2.1), (2.3) (recall that bgl) from (2.4) does not affect
convection) are

(3.1)

(1) 2
w h
Wl(l)(é-) — 1 (y) _ _M(3£2 _ 5)7
X1
(1)
AP =W g 2
aio k+1
(1)( n X (3.2)
(1) v Yy 3 2
vy = W e Z 22,
O = 10 (€-3¢)
(1) 4
FH = 2h = 6PM
X1
at 0 <& =y/h<1/2, P, =11 /x1 is Prandtl number of the first liquid;
(1) 2
w h
Wi = 0 e - 56 +2),
AW () = 0y (y) _ 2k(1-¢)
2 a1o E+1
(1)( " - X (3.3)
ey 2 Wh _ s _Bea ge L
v ==t _ai(e@ - S a3,
1
F2(1) _ 2( Iy _ 6P,M

2
X1 X
at 1/2 <& =y/h <1, P, = v5/x2 is the Prandtl number of the second liquid, and x = x1/x2 is
the ratio of thermal diffusivity coeflicients.

To calculate the second approximation, we give the form of the functions F};, H;. The integrals

of these functions are included in the representations for w§2), v§2) and all the constants. Denoting
for brevity

%aloh
B = ,
pa(k+1)(p+1)

(3.4)
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we get

2 2
Fie =2 (5 o4 5>,

- (3.5)
_ aio =43 _
Hi(€) = TS [ 563 4 (3k+ )5 (k+1)§}
at 0< € <1/2; 2
B = 2 (3&41053+25527§+3>,
Vo 2 2 (3 6)
_ 2kayoB 5 27 7 '
H2(€)><2(1<:+1)<5€ +5f 125+2)

at 1/2 < £ < 1. Taking into account the first part of the formulas (2.11) and functions Hj(§),
Hy (&) from (3.5), (3.6) we find

1 aloM 3]€X—2k+1 27a101\/[(2k—1)
”14(k+1)2h< or TRMo) = ey
k&loM 3]{1X—2]€+1
1
= — M, .
e 4(k+1)2h< 24 °) (37)
n2_ ]{ialoM _ 16 3]€X—2k‘+1_M
2764k +1) Y k+1 24 °)
with dimensionless constant -
My = AL )
0= %k (3.8)
Therefore
(2)
@y @ (y) M (1] 1 3kx —2k+1 1
A0 = a0 k4114 [k+1 24 TRMo ) =g )ot
k+1 2k + 3 1 1
4 3 Jes 1 )54+255}, 0<E<3,
D) kM 7 1 (39
AP ey = G2 W) BV o, 1 4¢3 _ 9, 1
2 == ==X 32+ Te £+£ 1858+

1 3ky — 2k + 1
+
4k +1) 24

Similarly, is calculated W(2)(£) The final form of the functions A;(&) = A(l)(f) + Ag-z) (&) and
W,(6) = We) + W(E) are

+kMo)(§1>], Lcect

2 M 1
Al(g)zl_kfl+k+1{32(k:+1)[ (3kx = 2’”1)_1}5*
k k k
4 ;1)53—(2 :3)§4+§§5}+4Uf+1)2M15’ 0<§<%, (3.10)
k EM
na@=r -9+ o (- e pere-Te1e)+
3ky — 2k + 1 k 1
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M1: 3@2a10h2 _ E
poko(p+1)(k+1)  (p+1)(k+1)’
w1 (y)h? , 1, M/1,4 1. 1., 1
=T _ —CF e R <e<s,
Wie) = B — <3¢+ 6 - S RE g+ 5o (1567 - 156+ 5560 ) 0<€<5
w h? 1
Wale) = 2L — 52 4 5¢ 24 F(1— ) 4 mae - 1)+
WM(1 ¢ 1. 25, 7. 3., 9\ 1
el et L 22 2 - <E<
+P1 (10f 28 TS TS Tt Ta) g sesh
(3.11)
M 1 5,u v 3k(u + 1)P1 3kM;
R (S - o 1)) — L
! (u+1)P1<70+224+1120 ihr1) XD ) -y
1 M 5 803 vM
Fe=op, W=D Foma = G = qiaap s me = g P = oem s
Wwh | Wh |
v1(Y V2(Y
Vi(6) = = — [ Wi(e)de, Vale) = =— [ Wa(€)de.
() =28 0/ L e il G

1/2

In the formulas the terms including M; show the contribution of influence of interfacial in-
ternal energy on the functions A;(§) and profiles of the longitudinal velocities. We emphasize
important feature of the formation of Marangoni finite stresses through increments of the inter-
facial internal energy [1]. It does not require the inflow of energy into the system from outside
in a thermal or chemical form. Such stresses can also be formed in the isothermal state of the
interface.

The profiles of the functions W;(¢) and the vertical velocities V;(&) are shown in Fig. 2,
3. Under the influence of the parameter, the velocity profiles deform, but this deformation is
not significant: m?X |V;(&,M,M;) — V;(§,M,0)| ~ 0,1. Of course, this smallness is due to the

smallness of the Marangoni number. It is of interest to study the general nonlinear problem even
for the isothermal case of the interphase boundary.

0.15

0.05 mk ,{m

£ ™

un

£.0.05
3
—M=M,;=0 9
-0.15 s =7
o M=0.1, M{=0.5 o | @
0.23; 0.25 0.5 0.75 1
g

Fig. 2. Profiles of the functions W} (&) at a19 > 0 for model liquids
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0.02

—M-M;-0

0.01] , M=0.1, M,=0.5

)
S
-0.01
0402, 0.5 0.75 1
3

Fig. 3. Profiles of the vertical velocities V;(¢) at a1 > 0
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O BiIMgHUN BHYTpeHHeﬁ HEPI'UM I'paHMIbI pa3Jdejia
Ha TepMOKalIMJIJIAPpHOEe TedeHue

Buktop K. Auapeen

HUsyuaemcea deymeproe noasywee dguoicerue 06Yr HECMEWUSUOWUTCA BAZKUL MENAONPOBOIHBIT HCUO-
Kocmel, Ha 2paruye Pa3dena KoOmopovir NOSEPIHOCTINHOE HAMAHCEHUE NUHETHO 3ABUCUN, OM TEMNEPATNY-
poi. Ha meepdur cmenkax memnepamypa umeem sKCMpemasbHble 3HAYEHUA, YN0 TOPOULO CORAACYEMCH,
¢ noaem crxopocmeti muna Xumenya. Ilpu marvix wucaaxr Maparzonu HatideHo MouHOE PEWEHUE 603-
HuKaoUelt 06pammoli kpaesol 3a0ayu U 0aHa OUEHKE CMENEHU BAUAHUS GHYMPEHHET IHEPLUY 2PAHULDL

paade/m HA CTMAUYUOHAPHOE MEYEHUE.

Karoueswie caosa: epanuya pazdesa, mepmokanUuiAAPHOCb, 6HYMPEHHAS IHEPLUA eDAHUUDL paddena, 06-

PAMHAA 36004a.
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