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Abstract The characteristics of convective regimes in1

a two-layer system have been investigated in the frame-2

work of the Boussinesq approximation of the Navier –3

Stokes equations. An exact invariant solution of the4

convection equations is used to describe a joint sta-5

tionary flow of an evaporating liquid and a gas-vapor6

mixture in a horizontal channel. Thermodiffusion ef-7

fects in the gas-vapor phase are additionally taken into8

account in the governing equations and interface con-9

ditions. The influence of gravity and thickness of the10

liquid layer on the hydrodynamical, thermal and con-11

centration characteristics of the regimes has been in-12

vestigated. Flows of the pure thermocapillary, mixed13

and Poiseuille’s types are specified for different values14

of the problem parameters. The linear stability of the15

evaporative convection regimes has been studied. The16

types and properties of the arising perturbations have17

been investigated and the critical characteristics of the18

stability have been obtained. Disturbances can lead to19

the formation of deformed convective cells, vortex and20

thermocapillary structures. The change of the instabil-21

ity types and threshold thermal loads occurs with the22

increasing thickness of the liquid layer and gravity ac-23

tion.24
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1 Introduction27

Convective flows with evaporation/condensation in dif-28

ferent systems have been the subject of a detailed in-29

vestigation in the past few decades (for a review, see30

Berg et al. 1966, Hoke and Chen 1992, Molenkamp31

1998, Kabov et al. 2015). The traditional application32

fields for the flows of evaporating liquids are chemical33

engineering and materials science (Mancini and Maza34

2004, Nie and Kumacheva 2008, Scheid et al. 2012)35

and thermophysics (Bar-Cohen and Wang 2012, Kan-36

dlikar et al. 2013, Kabov et al. 2015). The interest to37

the study of heat and mass transfer processes is due38

to the rapid development of biotechnologies and chem-39

ical industry, and tremendous advances in mini- and40

microscale cooling technologies and thermostabilization41

methods in high-performance electronic systems (such42

as micro heat exchanger in power packages, life-support43

setups of orbital platforms, etc.) as well as due to the44

preparation of experiments on the International Space45

Station in the framework of the scientific project “Con-46

vection and Interfacial Mass Exchange” (CIMEX) of47

the European Space Agency.48

A thorough analysis of the influence of different fac-49

tors on the flow structure is necessary to improve the50

existing fluidic technologies or to develop another ap-51

proach, radically different from the conventional prac-52

tice using evaporating liquids and gas-vapor mixtures as53

working fluids. The investigation of the characteristics54

and features of evaporative convection was performed55

both experimentally (Colinet et al. 2003, Mancini and56

Maza 2004, Iorio et al. 2007, Reutov et al. 2007, Kimball57

et al. 2012, Lyulin and Kabov 2014, Shi et al. 2017) and58

theoretically in the framework of different approaches.59

At present, there is no general universal mathematical60

theory to describe the dynamics of the two-layer system61
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with phase transition. Most of the theoretical and nu-1

merical investigations are performed in the framework2

of the mathematical models based on the fundamen-3

tal laws of the classical continuum mechanics and ther-4

modynamics. One of the most generally employed ap-5

proaches to describe evaporative convection is founded6

on using the Navier – Stokes equations and their ap-7

proximations, in particular, the Oberbeck – Boussinesq8

one. Upon that, an additional difficulty in the problem9

is the formulation of the boundary conditions taking10

into account the evaporation/condensation at the inter-11

face in order to correctly close the evaporative convec-12

tion problem. The conditions are derived on the basis13

of some hypotheses with respect to the interface and14

the occurring physical processes, which guarantee the15

fulfillment of the conservation laws (Prosperetti 1979,16

Margerit et al. 2003, Das and Ward 2007, Frezzotti17

2011, Kuznetsov 2011, Goncharova 2012, Goncharova18

et al. 2013). With the help of the long-wave approxi-19

mation of the basic system of equations the convective20

flows accompanied by the mass transfer through the21

interface were studied analytically and numerically in22

(Oron et al. 1997, Shklyaev and Fried 2007, Kuznetsov23

and Andreev 2013, Kabova et al. 2014, Goncharova24

and Rezanova 2015). Analogous problems in the com-25

plete statement were considered in (Iorio et al. 2009,26

Kuznetsov 2011, Goncharova 2012, Goncharova et al.27

2013, Bekezhanova and Goncharova 2016). Numerical28

simulation of two-phase dynamics of thermocapillary29

flows and of phase transition processes in a channel was30

realized on basis the Navier – Stokes and energy equa-31

tions in (Saenz et al. 2013, 2014, Li et al. 2018) .32

One way to examine in detail the influence of dif-33

ferent thermal, mechanical and physical-chemical fac-34

tors on the character and intensity of two-layer flows is35

modeling the heat and mass transfer processes on the36

basis of exact solutions of the convection equations. It37

is a very useful tool allowing one to qualitatively spec-38

ify the main physical mechanisms defining the struc-39

ture of the basic flow and to investigate the degrees40

and nature of the influence of particular physical fac-41

tors and their mutual combinations. The Navier –Stokes42

and Oberbeck – Boussinesq equations possess rich group43

properties, in as much as they were formulated based on44

the postulates, which imply the natural symmetry prop-45

erties of space-time and of a fluid moving in the space46

(Pukhnachev 2006). The group properties allow one to47

construct exact solutions of the equations. These par-48

ticular solutions being of the group origin, are of partic-49

ular value, since they conserve the symmetry properties50

provided by the derivation of the basic equations. The51

group nature of the solution ensures its physical plau-52

sibility and realizability (Andreev et al. 1998, 2003).53

The flows with evaporation/condensation are char-54

acterized by the presence of the temperature gradi-55

ent, which arises due to the decrease of the average56

kinetic energy of a liquid volume. For the first time57

the exact solution describing the convective flows be-58

ing under the action of the arbitrary oriented temper-59

ature gradient was obtained in (Ostroumov 1952). An60

analogous solution of the Oberbeck – Boussinesq equa-61

tions for the flow in a horizontal layer with the ap-62

plied longitudinal temperature gradient was again de-63

rived in (Birikh 1966). Later, the Ostroumov – Birikh64

solution was generalized for describing convection in65

a plane two-layer system with the mass transfer through66

the interface for the cases “liquid – liquid” (Shliomis67

and Yakushin 1972) and “liquid – vapor-gas mixture”68

(Goncharova and Rezanova 2014). In the latter work,69

vapor was supposed to be a passive admixture, and70

vapor diffusion in the gas was described by the dif-71

fusion equation, and additionally, the thermocapillar-72

ity of the interface was taken into account. A three-73

dimensional analogue of the Ostroumov – Birikh solu-74

tion for the evaporative convection problem was con-75

structed in (Goncharova and Kabov 2016). These gener-76

alizations of the Ostroumov – Birikh solution addition-77

ally admit considering the thermal diffusion effects (the78

Soret and Dufour effects) in the gas phase. The group79

nature of the Ostroumov – Birikh type solutions was80

proved in (Pukhnachev 2000). The examples of other81

exact solutions describing the dynamics of evaporating82

liquids can be found in (Kuznetsov 2011, Kuznetsov83

and Andreev 2013).84

The Ostroumov – Birikh type solutions allow one to85

analyze the influence of various factors on the character-86

istics of the evaporative convection regimes, including87

the stability properties, as well as to evaluate the char-88

acter and degree of the influence of the boundary condi-89

tion type for the temperature and vapor concentration90

functions. The structure of joint flows of the evapo-91

rating liquid and gas-vapor mixture depending on the92

gravity intensity, values of the gas flow rate and applied93

longitudinal temperature gradient on the channel walls94

was investigated (Goncharova et al. 2013, Goncharova95

and Rezanova 2014). The influence of the thermal dif-96

fusion effects on the evaporation intensity was studied97

and the theoretical results were compared with the ex-98

perimental data (Goncharova et al. 2015). The analy-99

sis and classification of the two-layer flows, which can100

be described by the Ostroumov – Birikh solution ana-101

logues, depending on the boundary condition type for102

the vapor concentration function, flow topology, struc-103

ture of the temperature field and inclusion/exception104

of the Soret effect, were presented in (Bekezhanova and105

Goncharova 2016).106
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Evaporation cools the liquid surface, it leads to the1

formation of potentially unstable fluid stratification.2

Thereby, the surface tension changes as well. It can re-3

sult in the appearance of instabilities of different na-4

ture. The analysis of possible mechanisms of instability5

and finding the conditions and effective ranges of the6

problem parameters ensuring the stability of the basic7

state of the two-layer system, are necessary both be-8

fore realizing experiments and during the preliminary9

stages of the development of special equipment using10

evaporating liquids as a working medium. The main11

part of the investigations at this point concerns the12

stability problems for thin liquid film flows (Klentz-13

man and Ajaev 2009, Liu and Kabov 2012) or equi-14

librium state (Burelbach et al. 1988, Oron 2000, Col-15

inet et al. 2001, Margerit et al. 2003, Merkt and Beste-16

horn 2003, Ozen and Narayanan 2004, Haut and Col-17

inet 2005, Sultan et al. 2005, Shklyaev and Fried 2007,18

Narendranath et al. 2014). The stability of joint flows19

of a volatile liquid and co-current gas flux in a horizon-20

tal channel described by the Ostroumov – Birikh type21

solutions, was investigated in (Bekezhanova and Gon-22

charova 2016, Rodionova and Rezanova 2016, Rezanova23

and Shefer 2016, Bekezhanova et al. 2017). In (Rodi-24

onova and Rezanova 2016) the linearized equations for25

the amplitudes of the normal disturbances of the ba-26

sic solution, long-wave asymptotics of the eigenvalues27

and eigenfunctions were obtained and the stability with28

regard to long-wave normal perturbations was proved.29

The spectrum of the characteristic perturbations of the30

velocity, temperature and vapor concentration was cal-31

culated (Rezanova and Shefer 2016, Bekezhanova et al.32

2017). The dependence of the type and structure of33

the perturbations on the system geometry, disturbance34

wave-length and intensity of external actions (the tem-35

perature gradient on the channel walls and flow rate of36

the working media) was studied for the case of the equal37

thermal load applied on the boundaries of the flow do-38

main. It was found that the perturbations could lead to39

the formation of a vortex, thermocapillary and hybrid40

structures corresponding to different mechanisms of the41

instability. In the case of different thermal loads on the42

channel walls the influence of the intensity and charac-43

ter of the thermal load (heating/cooling), gas flow rate44

and amplitude of the initial perturbations on the type45

of the arising instabilities was studied in (Bekezhanova46

and Goncharova 2016). The stability of the basic flow is47

ensured only under quite small thermal gradients and48

gas flow rates. The instability can appear due to the49

generation of monotonic and oscillatory regimes. The50

first one is characterized by the formation of the vor-51

tex and thermocapillary structures. In the other regime52

“pulsatory” vortices can arise.53

The character and structure of the two-layer flow54

and evaporation/condensation effects are defined by the55

combined effect of the following basic factors: (i) tem-56

perature regime, (ii) geometry of the system (in partic-57

ular, thicknesses of the liquid and gas layers), (iii) in-58

tensity of the gravity action, (iv) medium flow rates59

and (v) thermophysical properties of the media. Each60

of them makes a particular contribution. In the present61

work we focus on the factors (ii) and (iii) to better62

understand the character of the gravity effect and to63

estimate the change of critical characteristics of the sta-64

bility depending on the gravity action and thickness of65

the liquid layer. The pattern of the evaporative convec-66

tion regimes in gravitational fields of various intensity67

in the systems with different depth of the fluid layer68

is investigated based on the generalization of the Os-69

troumov – Birikh solution, taking into account thermal70

diffusion effects in the gas – vapor layer. The stability71

of the regimes is studied in the framework of the linear72

theory. The dependence of the evaporative mass flow73

rate, critical characteristics of the linear stability and74

of the typical forms of the arising perturbations on the75

gravity intensity are studied. The mechanisms leading76

to changing the flow structure are specified.77

2 Mathematical model78

2.1 General equations and governing parameters79

Let a volatile liquid and gas-vapor mixture fill the plane80

infinite horizontal channel with solid impermeable walls81

(the general scheme is given in Fig. 1). The vertical82

coordinate y is taken to be directed opposite to the83

uniform gravity acceleration g = (0,−g). The thick-84

nesses of the liquid and gas phase are h1 and h2, respec-85

tively. The interface Γ is the thermocapillary bound-86

ary y = 0. The tangential forces act along Γ and the87

surface tension σ linearly depends on the temperature88

σ = σ0 − æ(T − T0); σ0, T0 are the characteristic val-89

ues of the surface tension and liquid temperature, re-90

spectively, æ > 0 is the temperature coefficient of the91

surface tension.92

We consider small temperature variations across the93

liquid and gas phases so that the Boussinesq approxi-94

mation of the Navier – Stokes equations is valid to de-95

scribe the stationary motion of each medium. Vapor is96

assumed to be a passive impurity and the vapor diffu-97

sion in the gas is described by the diffusion equation.98

The Dufour and Soret effects (the effects of diffusive99

thermal conductivity and thermodiffusion) in the gas100
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Fig. 1 Configuration of the system

phase are additionally taken into account. Then, the1

governing equations are2

(v · ∇)v = −1
ρ
∇p′ + ν∆v− g(βT + γC), (2.1)3

div v = 0, (2.2)4

v · ∇T = χ(∆T + δ∆C), (2.3)5

v · ∇C = D(∆C + α∆T ), (2.4)6

where the marked terms and (2.4) are considered to7

model the flows in the upper layer. The following nota-8

tions are introduced: v = (u, v) is the velocity vector,9

p′ is the modified pressure (the deviation of pressure10

p from the hydrostatic one p′ = p− ρ g · x, x = (x, y)),11

T is the temperature, C is the vapor concentration, ρ is12

the density (the reference value of the density), ν is13

the kinematic viscosity coefficient, β is the coefficient14

of thermal expansion, γ is the concentration density15

coefficient, χ is the coefficient of heat diffusivity, D is16

the coefficient of vapor diffusion, the coefficients δ and17

α characterize the Dufour and Soret effects in the gas-18

vapor layer, respectively.19

2.2 Form of the exact solution20

The governing system (2.1) – (2.4) admits the Ostroumov –21

Birikh type solution (Shliomis and Yakushin 1972)22

uj = uj(y), vj = 0, p′j = p′j(x, y),

Tj = (aj
1 + aj

2y)x + ϑj(y), C = (b1 + b2y)x + φ(y).
(2.5)23

Here and elsewhere we use subscripts (or superscripts)24

j = 1 or j = 2 to identify the medium characteris-25

tics in the liquid or gas-vapor layer, respectively. Af-26

ter substituting relations (2.5) into the basic equations27

it follows that the longitudinal component of the ve-28

locity u(y) is the fourth degree polynomial, the terms29

ϑj(y) and φ(y) in the representations of the temper-30

ature and concentration functions are the seventh de-31

gree polynomials, the modified pressure p′j has the form32

p′j = ψj(y)x + ϕ(y). The function ψj(y) is quadratic,33

ϕ(y) is the eighth degree polynomial. The exact expres-34

sions for all the unknown functions and coefficients are35

determined by the boundary conditions (see Sect. 2.3)36

and the calculation algorithm is presented in the Ap-37

pendix.38

2.3 Boundary conditions39

On the exterior boundaries y = −h1, y = h2 the no-40

slip condition is valid and the linear distributions of the41

temperature with regard to the longitudinal coordinate42

are imposed43

u1|y=−h1 = 0, u2|y=h2 = 0. (2.6)44

T1 | y=−h1 = A1x + ϑ−, T2 | y=h2 = A2x + ϑ+. (2.7)45

For the vapor concentration the condition of zero vapor46

flux is set47

(∂C

∂y
+ α

∂T

∂y

)∣∣∣∣
y=h2

= 0. (2.8)48

It should be noted that the consideration of the Soret49

effect in the latter relation is justified in the limited50

range of values of the problem parameters. The tem-51

perature effect can be neglected in (2.8) under certain52

conditions with an error not exceeding 1-2%. On the53

one hand, condition (2.8) is used legitimately at the54

minor temperature and concentration gradients (Lan-55

dau and Lifshitz 1987). On the other hand, any con-56

siderable temperature deviation in the system and de-57

viation in the vapor concentration in the upper layer58

(more than 0.5%) are observed through these values59

of the longitudinal temperature gradients A1 and A2,60

which can be considered to be moderate ones, which61

makes a sufficient contribution to the formation of the62

thermal regime and concentration field. Thus, the ques-63

tion of taking into consideration the Soret effect in the64

boundary condition (2.8) requires additional analysis in65

each particular case.66

It is assumed that the interface Γ remains a non-67

deformed and flat surface. Then, the equation y = 068

defines Γ when constructing solution (2.5). In the strict69

sense, the problem at hand becomes a model one in the70

framework of the assumption about the plane interface.71

But this assumption allows one to completely take into72

account the dynamic condition. Considering the phys-73

ical factors of the interface non-deformability results74

in another boundary condition statement (Zeytounian75

1998, Nepomnyashchy et al. 2002).76
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At the interface the continuity of the velocity and1

temperature is required2

u1

∣∣
y=0

= u2

∣∣
y=0

, T1

∣∣
y=0

= T2

∣∣
y=0

. (2.9)3

The relation a1
1 = a2

1 = A is valid due to the condition4

of temperature continuity on Γ and the temperature5

distribution on the interface takes the form6

Tj = (A + aj
2y)x + ϑj(y), j = 1, 2. (2.10)7

Note that solution (2.5) admits both the case of an8

equal thermal load on the channel wall, when A1 =9

A2 = A and ϑ+ = ϑ−, and the case A1 6= A2, when the10

longitudinal temperature gradient A on Γ is carried out11

over the values of A1 and A2 (see the Appendix, formula12

(A.5)).13

In view of the type of exact solution (2.5) and the14

suggestion on the interface configuration, the kinematic15

condition is identically satisfied and the normal and16

tangential components of the dynamic condition have17

the following form18

p1 = p2, ρ1ν1
du1

dy
= ρ2ν2

du2

dy
− æ

∂T

∂x
. (2.11)19

The first equation in (2.11) is the result of the following
relation

−Re(p1 − p2) + 2
(

dv1

dy
− ρ̄ν̄

dv2

dy

)
=

1
Ca

2Hσ. (2.11′)

The last equality is the projection of the stress vector20

on the unit normal vector to the interface (Pukhnachev21

1972, Andreev et al. 2012) written here in the dimen-22

sionless form. Here, 2H is the curvature of the ther-23

mocapillary interface Γ , Ca is the capillary number24

(Ca = ρ1ν1u∗/σ0, u∗ is the characteristic velocity), Re25

is the Reynolds number (Re = u∗l/ν1, l is the character-26

istic length), ν̄ = ν2/ν1, ρ̄ = ρ2/ρ1. This first equation27

in (2.11) can be considered as a first order approxima-28

tion of equation (2.11′) relative to the small capillary29

numbers Ca. Equation (2.11′) can be used to calculate30

the real position of the interface more precisely.31

Most problems with the interface are characterized32

by the small values of the capillary number (in the stud-33

ied case Ca ∼ 10−5). The procedure of expansion in34

powers of Ca was presented in the review (Pukhnachov35

1989). Thus, in the first approximation the interface is36

the interface of capillary equilibrium.37

The energy balance condition on the interface takes38

into consideration the diffusive mass flux due to evap-39

oration and has the following form40

κ1
∂T1

∂y
− κ2

∂T2

∂y
− δκ2

∂C

∂y

∣∣∣∣
y=0

= −LM. (2.12)41

Here, κj is the thermal conductivity coefficient, L is the
latent heat of evaporation, M is the mass flow rate of

evaporation defined in the exact mass balance equation
(Bekezhanova and Goncharova 2016)

M = −Dρ2

(
∂C

∂y
+ α

∂T

∂y

)∣∣∣∣
y=0

.

This value is only specified for the determination of42

the relationship between the thermal and mass balance43

conditions at the interface. The positive values of M44

correspond to evaporation, while the negative ones to45

condensation. Besides, M is an additional quantitative46

characteristic for comparing the analytical and experi-47

mental results. In constructing the solution we realize48

exactly the case with the constant evaporation mass49

flow rate M . The interest to this situation has been50

due to the comparison of the quantitative flow char-51

acteristics obtained in the experiments (Goncharova et52

al. 2015), where the experimental data are presented as53

trendlines.54

The saturated vapor concentration can be found55

with the help of the relation56

C
∣∣
y=0

= C∗
[
1 + ε

(
T2

∣∣
y=0

− T0

)]
. (2.13)57

Here, ε = Lµ/(R∗T 2
0 ), µ is the molar mass of the evap-58

orating liquid, R∗ is the universal gas constant, C∗ is59

the saturated vapor concentration at T2 = T0.60

To close the problem statement the mass flow rate61

of the gas is set62

R =

h2∫

0

ρ2u2 (y) dy. (2.14)63

The comprehensive substantiation of using equa-64

tions (2.1) – (2.4), taking into account the thermal diffu-65

sion effects in describing the joint flow of a volatile liq-66

uid and gas-vapor mixture, conditions (2.12) and (2.13)67

was provided in (Bekezhanova and Goncharova 2016).68

2.4 Nondimensionalization way and dimensionless69

parameters70

Let us introduce non-dimensional variables and func-71

tions. We choose h2 as the characteristic length scale,72

ν2/h2 as the velocity scale, ρ2ν
2
2/h2

2 as the pressure73

scale, and ϑ+ as the temperature scale. The vapor con-74

centration function is a non-dimensional one. The units75

of the physical parameters for the coupled problem are76

specified based on the characteristic values for the va-77

por – gas mixture. The dimensionless variables take the78

following form: ξ = x/h2, η = y/h2. For each pa-79

rameter of the medium ωj the dimensionless analogue80

ω′j = ωj/ω2 is introduced. Then, the index j = 1 cor-81

responds to the domain −h ≤ η ≤ 0, h = h1/h2, and82

j = 2 is related to the region 0 ≤ η ≤ 1.83
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Table 1 Physical parameters

Parameter HFE-7100 Nitrogen

ρ, kg/m3 1.5 · 103 1.2
ν, m2/s 0.38 · 10−6 0.15 · 10−4

β, K−1 1.8 · 10−3 3.67 · 10−3

κ, W/(m·K) 0.07 0.02717
χ, m2/s 0.4 · 10−7 0.3 · 10−4

T0, K 293.15 293.15
æ, N/(m·K) 1.14 · 10−4

L, (W·s)/kg 1.11 · 105

µ, kg/mol 0.25
D, m2/s 0.7 · 10−5

γ −0.5
C∗ 0.45
δ, K 10−5

α, K−1 5 · 10−3

In this way the problem under study is characterized
by the following dimensionless parameters and similar-
ity criteria:

Gr =
gβ2ϑ

+h3
2

ν2
2

, Pr =
ν2

χ2
, Ga =

gh3
2

ν2
2

,

Le =
D

χ2
, Q =

Ah2

ϑ+
.

Here, Gr, Pr, Ga, Le are the Grashof, Prandtl, Galileo,1

Lewis numbers, Q is the thermal load parameter.2

3 Influence of the problem parameters on the3

basic flow structure4

All the investigations are performed for the liquid – gas5

system like HFE-7100 – nitrogen. The HFE-7100 fluid6

is a segregated HydroFluoroEther, a dielectric used as7

a coolant in thermostabilization and liquid cooling sys-8

tems due to the combination of such properties as volatil-9

ity and low surface tension. The parameters character-10

izing the physico-chemical properties of the substances11

are given in Table 1. Taking into account the nondi-12

mensionalization method chosen, the Prandtl and Lewis13

numbers are constant: Pr = 0.5, Le = 0.23. Thickness14

of the upper (gas-vapor) layer h2 = 5 mm, gas flow15

rate R = 9.6 · 10−6 kg/(m· s) and values ϑ+ = ϑ− =16

293.15 K are fixed for all the cases under study. The17

value g = g0 = 9.81 m/s2 corresponds to the conditions18

of normal gravity; for this case Gr = Gr0 = 5863.44,19

Ga = Ga0 = 5450.20

3.1 Gravity effect21

We present the distributions of the basic characteristics22

of the two-layer flow (longitudinal velocity u, temper-23

ature T and vapor concentration C) in the horizontal24

layer and profiles of the evaporation mass flow rate M ,25

which are appropriate to different values of the grav-26

ity acceleration g. The variations of g correspond to27

the changes in the Grashof and Galileo numbers. The28

distributions are defined by solution (2.5).29

The hydrodynamic, thermal and vapor concentra-30

tion fields in the two-layer system with h1 = 3 mm,31

A1 = A2 = 3 K/m in microgravity, terrestrial condi-32

tions and hypergravity are shown in Fig. 2. In the cases33

studied the thermal load parameter Q = 5.12 · 10−5,34

Gr = Gr0 · 10−2, Ga = Ga0 · 10−2 (Fig. 2(a) – (c)),35

Gr = Gr0, Ga = Ga0 (Fig. 2(d) – (f)), Gr = 10Gr0,36

Ga = 10Ga0 (Fig. 2(g) – (i)). In weak and normal grav-37

itational fields the typical regime for two-layer flows38

with a quite small liquid layer thickness is a thermo-39

capillary one. It is characterized by the formation of40

the reverse flow due to the Marangoni effect causing the41

liquid motion from the hot pole to the cold one. A ther-42

mocline with the maximum temperature is originated43

near the interface. The heat loss due to evaporation is44

insignificant and compensated by the supply of warm45

mass provided by the Marangoni effect. The stable tem-46

perature stratification is formed in the liquid phase. In47

microgravity a pure thermocapillary flow arises in the48

lower layer, when the fluid moves from the domain with49

high temperature to the cold region across the entire50

height of the liquid (Fig. 2(a) – (c)). The basic mecha-51

nism generating the flow is a thermocapillary one. Un-52

der normal gravity the flow retains predominantly the53

thermocapillary character, but within the liquid layer54

the counter current zones appear (Fig. 2(d) – (f)). Ac-55

cording to the Napolitano’s classification of the flow56

types (Napolitano 1980, Bekezhanova and Goncharova57

2016), these patterns are the flows of the mixed type.58

Two or more rival mechanisms induce the flow. With59

the increasing gravity action the essential alteration of60

the velocity and temperature fields occurs. The gravi-61

tational effects suppress the impact of the Marangoni62

forces and the Poiseuille type flow is formed in the sys-63

tem. The interface cooling due to evaporation becomes64

significant and the unstable temperature stratification65

occurs in the liquid layer (Fig. 2(g) – (i)).66

Under microgravity the unstable temperature strat-67

ification in the upper layer is formed and the influence68

of the convective mechanism in the gas phase is en-69

hanced, the “hot” vapor comes up to the upper bound-70

ary and the near-wall concentration increases (Fig. 2(c)).71

With the increasing gravity it is more difficult for mole-72

cules to overcome interparticle attractive forces and to73

pass into the gaseous state. Therefore, the vapor con-74

centration in the gas drops. Furthermore, under hyper-75

gravity in the upper layer the stable temperature strat-76
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Table 2 Working ranges of changing A and Q for different
values of h1

h1, mm A, K Q

2 [1.64; 7.02] [2.8 · 10−5; 11.97 · 10−5]
3 [0.28; 7.83] [4.7 · 10−6; 13.36 · 10−5]
4 [−0.92; 8.55] [−1.58 · 10−5; 14.59 · 10−5]
5 [−1.99; 9.19] [−3.39 · 10−5; 15.68 · 10−5]
6 [−2.94; 9.77] [−5.02 · 10−5; 16.66 · 10−5]

ification occurs, and the maximum vapor concentration1

is reached near the interface (Fig. 2(i)).2

The dependence of the evaporation mass flow rate3

M on the temperature gradient A in the gravitational4

fields of different intensity is given in Fig. 3(a). The pro-5

files 1, 2, 3 are obtained for the system with h1 = 3 mm6

and different thermal load applied on the solid walls.7

The value of the longitudinal temperature gradient A8

on the interface is computed using the formula (A.5)9

with A1 = 5 K/m and A2 varying from −20 to 20 K/m.10

The working ranges of changing A and Q correspond-11

ing to these changes of A2 are specified in Table 2.12

The interface temperature rises and the number of liq-13

uid molecules, whose the kinetic energy is higher than14

the average energy, increases due to the thermal mo-15

tion. Therefore, with the increasing A the mass of the16

evaporating liquid increases. Such a character of the17

dependence of M on the thermal load is completely18

justified by the experimental data (Lyulin and Kabov19

2013). There exists such a critical thermal load which20

alters the qualitative behavior of M to the contrary one.21

If A < Acr, then gravity impedes evaporation (at the22

fixed A the values of M in hypergravity is smaller, than23

they are in the terrestrial conditions and microgravity,24

compare the curves 1 and 2, 2 and 3 in Fig. 3(a)), if25

A > Acr, then, gravity contributes to the growth of the26

evaporation mass flow rate (Acr ≈ 5 K/m, and, hence,27

Qcr ≈ 8.5 · 10−5) for the system with h1 = 3 mm).28

The effect can be explained by the variations in the va-29

por concentration. The values of C decrease with the30

increasing gravity (compare Fig. 2(c), (f), (e)). It is31

known, that the lower is the vapor concentration in the32

gas flux, the faster is evaporation (Voropai and Shlepov33

1980). With the growing thermal load the difference in34

the values of C becomes essential, therefore, at quite35

large A the evaporation mass flow rate M under the hy-36

pergravity conditions is higher than under microgravity.37

Thus, if A < Acr the thermal effects play a significant38

role (the higher the temperature, the faster is evapo-39

ration) and the kinetic mechanism is a leading one. If40

A > Acr,then, in hypergravity the concentration drops41

and, therefore, the evaporation mass flow rate increases42

due to the diffusive mechanism.43

3.2 Impact of the liquid layer thickness44

Figure 4 presents possible distributions of the velocity45

and temperature under the microgravity conditions at46

g = g0 · 10−1 (Gr = Gr0 · 10−1, Ga = Ga0 · 10−1) and47

A1 = A2 = A = 3 K/m with various thicknesses of48

the liquid layer. In weak gravitational fields the basic49

flow is the thermocapillary one in the entire range of50

the liquid layer thickness values under consideration.51

The reverse flows induced by the Marangoni effect are52

formed in the bottom layer and a thermocline with the53

maximum temperature appears near the interface. The54

investigations of the flow features on the basis of exact55

solution (2.5) allows one to conclude that at the fixed56

positive thermal load given by A1 = A2, further growth57

of h1 always leads to the change of the flow type from58

the thermocapillary to the mixed one. This is due to the59

diminution of the Marangoni forces with the increase of60

the liquid thickness. In the case of equal thermal load61

the influence of the thermocapillary effect with small g62

is essential to form the patterns of the reverse flows even63

with small positive Aj (the thermal effects in the system64

were investigated in (Rezanova and Shefer 2017)). The65

increase of the gas flow rate allows one to control the66

flow as well, at fixed h1 and A there exists a value of R67

such that the flow pattern is of the mixed or Poiseuille’s68

type (Bekezhanova and Goncharova 2016).69

It should be noted, that the solution under study70

does not adequately describe evaporative convection71

in the system being under the hypergravity conditions72

with quite a large liquid layer thickness. For the working73

media used HFE-7100 – nitrogen solution (2.5) predicts74

nonphysical (infeasible) values of the vapor concentra-75

tion function and non-typical temperature drop in the76

channel for h1 = 4, 5, 6 mm. The result confirms the77

conclusion concerning the boundaries of applicability78

of the Birikh type solution obtained by Shliomis and79

Yakushin (1972).80

The variations of h1 lead to the changes in the val-81

ues of A, and, hence, of Q, in the case if A1 6= A282

(see formula (A.5)). The variations of the evaporation83

mass flow rate M with the changing h1 and A are pre-84

sented in Fig. 3(b) for microgravity and in Fig. 3(c) for85

the terrestrial conditions. As earlier, the profiles M(A)86

are obtained for the system subjected to different ther-87

mal loads applied to the solid walls. The value of the88

longitudinal temperature gradient A on the interface is89

computed using the formula (A.5) with A1 = 5 K/m90

and A2 varying from −20 to 20 K/m. Corresponding91

ranges of changing A and Q for different thicknesses of92

the liquid layer h1 are presented in Table 2.93

The qualitative changes of the mass transfer pro-94

cesses are observed with the increasing height of the95
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2 Distributions of the longitudinal velocity u(y) (a,d,g), temperature T (x, y) (b,e,h) and vapor concentration C(x, y)
(c,f,i) in the system with h1 = 3 mm, A1 = A2 = 3 K/m in microgravity (g = g0 · 10−2 (a – c)), terrestrial conditions (g = g0,
(d – f)), and hypergravity (g = 10g0, (g – i))

liquid layer. At h1 = 2 mm and h2 = 4 mm in the1

temperature range only evaporation (M > 0) occurs2

(curves 1 and 2 in Fig. 3(b), (c)), but at h1 = 6 mm the3

negative temperature gradients originate on Γ and va-4

por condensation (M < 0) begins (curve 3 in Fig. 3(b),5

(c)). Thus, under the same conditions (thermal load6

and gravity action) applied to the systems with various7

thicknesses of the liquid layer the mass of the evapo-8

rating liquid is different. With the increasing height h19

the evaporation mass flow rate M drops considerably.10

Such a character of the dependence of M on the liquid11

thickness is confirmed by the experimental data (Lyulin12

and Kabov 2013). In the experiments it was found that13

at the fixed thermal load there existed the local maxi-14

mum of M reached at some values of h1. One can see15

that for the system with h1 = 2 mm the local maxi-16

mum is achieved at A = 3.8 K/m (Q = 6.48 · 10−5) in17

microgravity (Gr = Gr0 · 10−2) and at A = 3.93 K/m18

(Q = 6.7 · 10−5) under the terrestrial conditions (Gr =19

Gr0). Under these circumstances (at the given values20

of A, g and h1) vapor becomes saturated and evapora-21

tion ceases. With the increasing thermal load the local22

maximum is achieved at larger values of h1 (Lyulin and23

Kabov 2013). If the liquid layer decreases in thickness,24

then its volumetric energy decreases, but the surface25

energy, which is axiomatically identified with the sur-26

face tension coefficient σ(T ), becomes the main driving27

factor. It leads to the molecules within the superficial28

thin layer being more strongly attracted to each other29

and the surface tension forces being more intensive. The30

forces work positively to transfer the molecules from the31

volume phase to the surface one, therefore, the thin liq-32

uid layer evaporates easier than the layer with larger33

thickness. Thus, the functions M(A) obtained on the34

basis of exact solution (2.5) are physically plausible.35
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(a) (b) (c)

Fig. 3 Evaporation mass flow rate M(A): (a) — h1 = 3 mm, 1 — g = g0 · 10−2, 2 — g = g0, 3 — g = 10g0; (b) —
g = g0 · 10−2, 1 — h1 = 2 mm, 2 — h1 = 4 mm, 3 — h1 = 6 mm; (c) — g = g0, 1 — h1 = 2 mm, 2 — h1 = 4 mm, 3 —
h1 = 6 mm

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4 Distributions of the longitudinal velocity u(y) (a,d,g), temperature T (x, y) (b,e,h) and vapor concentration C(x, y)
(c,f,i) in the system with A1 = A2 = 3 K/m under microgravity (g = g0 · 10−1) at h1 = 2 mm (a – c), h1 = 4 mm (d – f),
h1 = 6 mm (g – i)
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3.3 Maps of the basic flow types1

We present diagrams of regimes in the parameter space2

(Q, Gr) for the geometrical configurations with h1 = 23

and 3 mm in Fig. 5, and for h1 = 4, 5 and 6 mm in4

Fig. 6. Zones 1, 2, 3 correspond to the Poiseuille type5

flow, to the mixed type flow and to the pure thermocap-6

illary flow, respectively. Ranges of Q variations in the7

figures are chosen in accordance with Table 2. Work-8

ing range of Gr in Fig. 6 does not include values of9

the Grashof number corresponding to the hypergravity10

conditions (Sec. 3.2).11

Typical feature for systems with thin liquid layer12

under study is the formation of the pure thermocap-13

illary flows in the whole range of the thermal load in14

the microgravity conditions (Fig. 5(a)). With increas-15

ing h1 the Marangoni effect wanes, and the pure ther-16

mocapillary flow is observed under quite large positive17

thermal load (Fig. 6). Thus, zones 3 correspond to the18

domains of Q and Gr values, in which the thermocap-19

illary mechanism dominates. Regions of formation of20

the mixed type flows (zones 2 ) satisfy the conditions21

of coexistence of convective and thermocapillary mech-22

anisms. Predominance of the gravitational effects ap-23

pears in zones 1 and it is mainly evident under hyper-24

gravity (Fig. 5), in the case of negative or weak positive25

thermal load or in the system with h1 = 4 and 5 mm26

(Fig. 6).27

Here we also specify ranges of non-dimensional pa-28

rameters at which the constructed stationary exact so-29

lution adequately describes real flows in the system30

“HFE-7100 – nitrogen” with mass transfer across the31

interface and predicts feasible values of the vapor con-32

centration, velocity and temperature of both media: for33

h1 = 2, 3 mm Gr ∈ [58.63; 58634.4], for h1 = 4, 5, 6 mm34

Gr ∈ [58.63; 5863.44] and Ma ∈ [−105.5; 105.5] for all35

the thicknesses of the liquid layer under consideration.36

4 Statement of the stability problem37

Let U′
j(ξ, τ) = (U ′

j(ξ, τ), V ′
j (ξ, τ)), P ′(ξ, τ), Θ′(ξ, τ),38

S′(ξ, τ) be the small plane non-stationary perturba-39

tions of solution (2.5), ξ = (ξ, η), τ = ν2t/h2
2 is the non-40

dimensional time. We suppose that these functions are41

proportional to exp [i (αxξ − λτ)] and define the nor-42

mal wave. The parameter λ = λr + iλi is the com-43

plex decrement describing the evolution of perturba-44

tions with time, αx is the dimensionless wave number45

along the axis ξ. The assumption that the perturba-46

tions are normal imposes the restrictions to the values47

of the longitudinal temperature gradients A1 and A2. It48

is necessary to require that A1 = A2, whereby the case49

b2 = 0 is realized (for the details, refer to (Bekezhanova50

and Goncharova 2016)). The linearization of equations51

(2.1) – (2.4) near the stationary solution (2.5) results52

in a system of equations for the amplitudes of small53

disturbances. The system in the dimensionless form is54

written as follows (the primes for the non-dimensional55

parameters and functions will be omitted henceforth):56

−h < η < 0 : −iλU1 + iαxu1U1 + u′1V1 =

= − iαx

ρ
P1 + ν

(
U ′′

1 − α2
xU1

)
,

−iλV1 + iαxu1V1 =

= − 1
ρ

P ′1 + ν
(
V ′′

1 − α2
xV1

)
+ βGrΘ1,

iαxU1 + V ′
1 = 0,

−iλΘ1 + iαxu1Θ1 + U1T1ξ + V1T1η =

=
χ

Pr
(
Θ′′1 − α2

xΘ1

)
,

(4.1)57

0 < η < 1 : −iλU2 + iαxu2U2 + u′2V2 =

= −iαxP2 + U ′′
2 − α2

xU2,

−iλV2 + iαxu2V2 =

= −P ′2 + V ′′
2 − α2

xV2 + GrΘ2 + γGaS,

iαxU2 + V ′
2 = 0,

−iλΘ2 + iαxu2Θ2 + U2T2ξ + V2T2η =

=
1
Pr

[
Θ′′

2 − α2
xΘ2 +

δ

ϑ+

(
C ′′ − α2

xC
)]

,

−iλS + iαxu2S + U2Cξ + V2Cη =

=
Le
Pr

(S′′ − α2
xS + αϑ+(Θ′′ − α2

xΘ)).

(4.2)58

The following conditions for the perturbation am-59

plitudes are imposed on the solid walls and interface:60

η = −h : U1 = V1 = Θ1 = 0,

η = 1 : U2 = V2 = Θ2 = S′ = 0.
(4.3)61

η = 0 : U1 = U2, V1 = V2 = 0, Θ1 = Θ2,

U ′
2 − νρU ′

1 + iαx(V2 − V1) =
Ma
Q

iαxΘ,

P1 − P2 = 2 (νρV ′
1 − V ′

2) ,

kΘ′
1 −Θ′2 −

δ

ϑ+
S′ =

DLρ2

k2ϑ+
(S′ + αϑ+Θ′).

(4.4)62

Here, Θ is the common temperature value of both media63

on Γ (Θ = Θj , j = 1, 2), Ma = æAh2
2/(ν2

2ρ2) is the64

Marangoni number.65

Now, in (4.1) – (4.4) the prime denotes differentia-66

tion concerning the variable η. In deriving the condi-67

tions on Γ one assumes that the interface remains non-68

deformed, i. e. the perturbations of the desired func-69

tions do not lead to the interface perturbations. Prob-70

lem (4.1) – (4.4) is the spectral one for the decrement λ,71
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(a) (b)

Fig. 5 Maps of the basic flow types depending on the values of Q and Gr for systems with h1 = 2 mm (a) and h1 = 3 mm
(b). Solid line separates zones of the Poiseuille type flows (zone 1 ) and the mixed type flows (zone 2 ), dashed line separates
zones of the mixed type flows and the pure thermocapillary flows (zone 3 )

(a) (b) (c)

Fig. 6 Maps of the basic flow types depending on the values of Q and Gr for systems with h1 = 4 mm (a), h1 = 5 mm (b),
h1 = 6 mm (c). Solid line separates zones of the Poiseuille type flows and the mixed type flows, dashed line separates zones of
the mixed type flows and the pure thermocapillary flows

the perturbation amplitudes are the unknown functions1

and define the characteristic perturbations of the nor-2

mal wave type. If λi > 0, the disturbances will grow and3

solution (2.5) will be unstable as related to the normal4

mode. If λi = 0 and λr 6= 0, neutral oscillations leading5

to the formation of oscillating structures will arise in6

the system.7

To obtain the solution of the spectral problem, the8

orthogonalization method (Godunov 1961) was mod-9

ified for solving the problem in the domain with the10

interface.11

5 Maps of instability12

5.1 Critical characteristics of the linear stability13

The main problem is determining the critical thermal14

loads applied to the external rigid boundaries of the15

channel and specifying the type of the most dangerous16

perturbations leading to the stability loss depending17

on the intensity of the gravity action and liquid layer18

thickness.19

In Figure 7 the neutral curves A(αx) are presented20

for the systems with various values of the liquid layer21

h1 depending on the intensity of the gravity action.22

The values of A lying on the curves define the criti-23

cal thermal load, at which the two-layer flow loses the24

stability. The instability domains are denoted by Um,25

m = 1, 2, 3, the subscript m corresponds to the curve26

number, and all the regions lie to the right of the curves.27

It can be seen that for all the configurations under28

study there exists a thermal load at which the basic29

flow loses the stability. It should be noted that the con-30

vective flows with evaporation are unstable regarding31

the shortwave perturbations with any values of A. In32

the systems of the two-layer fluids without evapora-33

tion the convective flows induced by the joint action34

of the longitudinal temperature gradients and pressure35

gradient can be stable concerning the shortwave distur-36

bances in some range of thermal loads (Bekezhanova37

2011, 2012). Thus, the mass transfer due to evapora-38

tion/condensation has a destabilizing effect.39

In weak gravitational field, as described above, the40

stable temperature stratification is formed owing to the41

thermocapillary effect not only in the system with small42

h1 (see Fig. 4). This effect stabilizes the flow in the43
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(a) (b) (c) (d)

Fig. 7 Neutral curves A(αx): (a) — h1 = 2 mm, 1 — g = g0 · 10−1 m/s2; 2 — g = g0 m/s2; 3 — g = 2g0 m/s2; (b) —
h1 = 3 mm, 1 — g = g0 · 10−1 m/s2; 2 — g = g0 m/s2; 3 — g = 2g0 m/s2; (c) — g = g0 · 10−1, 1 — h1 = 4 mm; 2 —
h1 = 5 mm; 3 — h1 = 6 mm; (d) — g = g0, 1 — h1 = 4 mm; 2 — h1 = 5 mm; 3 — h1 = 6 mm

configurations under study. With the increasing grav-1

ity action the Marangoni effect abates and the instabil-2

ity domain expands (compare the regions U1, U2 and3

U3 in Fig. 7(a), (b)). The same pattern of changes of4

the flow characteristics occurs with the growth of the5

liquid layer thickness, the stabilizing influence of the6

thermocapillary effect weakens and the instability zone7

is also enlarged (compare the regions U1, U2 and U3 in8

Fig. 7(c), (d)).9

5.2 Selection of modes and typical forms of the most10

dangerous perturbations11

With the varying g and h1 values we observe the change12

of the most dangerous disturbance type. Furthermore,13

the perturbation pattern can depend on the sign of A.14

In fact, the positive values of the longitudinal temper-15

ature gradient correspond to heating walls in the di-16

rection of the basic flow, and the negative values are17

related to cooling walls. The type of the basic flow and18

structure of the temperature field can be changed de-19

pending on the character of the thermal load (Bekezha-20

nova and Goncharova 2016, Bekezhanova et al. 2017).21

Therefore, the mechanisms of instability can signifi-22

cantly differ in these two cases. Let us denote the insta-23

bility domains corresponding to the positive and nega-24

tive values of A by U+ and U−, respectively.25

In Fig. 8 possible forms of the characteristic pertur-26

bations arising in the systems under consideration are27

presented. The following types of the disturbances are28

specified: (I ) purely thermocapillary structures with29

the chessboard pattern of thermal spots (Fig. 8(a)),30

(II ) thermocapillary structures (Fig. 8(b)), (III ) mixed31

type structures with interfacial thermal cores32

(Fig. 8(c)), (IV ) deformed mixed type structures with33

the chessboard pattern of thermal spots (Fig. 8(d)),34

(V ) mixed type structures with interior located ther-35

mal cores (Fig. 8(e)), (VI ) deformed near-surface vor-36

tex structures (Fig. 8(f)), (VII ) twin vortex structures37

(Fig. 8(g)), (VIII ) convective cells (Fig. 8(h)),38

(IX ) mixed type structures with double thermal spots39

(Fig. 8(i)).40

The formation of each type of the structures is de-41

fined by different mechanisms or their interaction with42

the basic flow. Patterns I arise in the systems with the43

stable temperature stratification in the liquid layer or44

with the thermocline in the liquid. In the latter case45

the upper part of the liquid layer (over the thermo-46

cline) is steadily stratified, and the bottom part (under47

the thermocline) is gravitationally unstable. The basic48

mechanism is the thermocapillary effect resulting in the49

near-surface motion and formation of the near-surface50

vortices. Let us specify the ranges and values of defin-51

ing non-dimensional parameters, where this instability52

mode occurs. It should be noted, that the range of the53

Marangoni number variations changes with wave num-54

ber αx. In the system with h1 = 2 mm at Gr = Gr0 ·55

10−1 under αx = 15 the Marangoni number variation56

range is Ma ∈ [−12.42; 17.98], if αx = 16, then Ma ∈57

[−16.47; 22.08]. With further increase in αx the insta-58

bility domain is widen (see Fig. 7(a), domain U1). Un-59

der αx = 20 structures I will appear if the Marangoni60

number varies in range Ma ∈ [−27.86; 33.76]. In the61

systems with h1 = 5 mm and h1 = 6 mm the insta-62

bility mode occurs at Gr = Gr0, Ma ∈ [−20.81; 0] and63

Ma ∈ [−13.7; 10.7], respectively, for all the values of αx64

under consideration.65

Structures II can appear in the systems with the66

thin liquid layer both in the case of weak unstable67

stratification and in the steadily stratified state. In the68

first case the weak convective motion is suppressed by69

the Marangoni effect, but the convective mechanism70

can encourage the motion throughout the height of the71

liquid layer. Upon that, the cores of the arising vor-72
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8 Typical patterns of the characteristic perturbations A(αx): (a) — purely thermocapillary structures I ; (b) — ther-
mocapillary structures II ; (c) — mixed type structures III ; (d) — deformed mixed type structures IV ; (e) — mixed type
structures V ; (f) — deformed near-surface vortex structures VI ; (g) — twin vortex structures VII ; (h) — convective cells VIII ;
(i) — mixed type structures IX

tices are slightly shifted from the interface. Taking into1

account the primary influence of the thermocapillary2

effect, structures II are the patterns of the thermo-3

capillary type. This instability mode arises in the sys-4

tems with h1 = 2 mm at Gr = Gr0 and Gr = 2Gr0,5

the Marangoni number variation range also depends6

on wave number. In the terrestrial conditions Ma ∈7

[2.7; 4.08] under αx = 8, Ma ∈ [−4.11; 10.76] under8

αx = 9, Ma ∈ [−7.32; 13.85] under αx = 10. In the hy-9

pergravity conditions Ma ∈ [−3.92; 12.4] under αx = 7,10

Ma ∈ [−6.71; 15.04] under αx = 8, Ma ∈ [−9.15; 17.32]11

under αx = 9. Further increase in αx leads to change of12

instability type both under normal and above-normal13

gravity. In the system with h1 = 3 mm patterns II will14
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appear at Gr = Gr0 · 10−1, if Ma ∈ [−0.65; 6.85] un-1

der αx = 8, Ma ∈ [−4.05; 9.94] under αx = 9, and at2

Gr = 2Gr0, if Ma ∈ [−1.14; 0] under αx = 2, Ma ∈3

[−8.48; 0] under αx = 5. Further increase in αx also4

results in change of instability mode regardless of the5

gravity intensity.6

The formation of large scale patterns III is induced7

by the combined action of the thermocapillary and con-8

vective mechanisms in the systems with the weakly un-9

steady stratified liquid. The first of them leads to the10

motion near the interface and this motion is intensi-11

fied by the convective mechanism. The arising vortex12

structures have cores which are remote from the in-13

terface within the liquid layer. The predominant in-14

fluence of the Marangoni effect is retained under the15

formation of the patterns. The structures are not ob-16

served in the system with quite a large liquid layer17

thickness. Instability mode III occurs in the systems18

with h1 = 3 mm at Gr = Gr0, the Marangoni num-19

ber variation range is widened with the increase of αx.20

When wave number changes from 3 to 6, the Marangoni21

number variation range will enlarge from [3.11; 7.12]22

to [−3.45; 12.8] (see Fig. 7(b), domain U2). With in-23

creasing αx other type of instability will appear. In the24

system with h1 = 4 mm patterns III will be formed25

at Gr = Gr0 · 10−1 and Gr = Gr0, upon that in mi-26

crogravity conditions Ma ∈ [0.94; 6.43] under αx = 5,27

Ma ∈ [−1.19; 8.0] under αx = 6. In normal gravity these28

structure will be observed, if αx is changed from 1 to29

3 and corresponding ranges of Ma are [1.03; 1.4] and30

[−1.05; 0] (see Fig. 7(d), domain U1). At larger αx other31

type of instability appears.32

Deformed structures IV appear in the system with33

the cold thermocline within the liquid layer. Upon that,34

the basic flow is the mixed type flow (the reverse mo-35

tion is observed near the interface). The patterns are36

characterized by the marked chessboard pattern of the37

thermal cells in the liquid layer. The upper rows of the38

thermal spots are similar to patterns I and the lower39

line of the cells is formed due to the convective mech-40

anism, which is a dominant one. Patterns IV appear41

only in the terrestrial conditions or under hypergravity42

in the systems with h1 = 4 or h1 = 3 mm, respectively.43

In the first case Gr = Gr0, wave number is changed44

from 1 to 5 and appropriate ranges of the Marangoni45

number variations are [0; 24.76] and [0; 36.66]. In the46

system with h1 = 3 mm this instability type occurs at47

Gr = 2Gr0, upon that Ma ∈ [0; 43.01] under αx = 2,48

Ma ∈ [0; 51.62] under αx = 3.49

Mixed type structures V are formed in the systems50

with the thermocline within the liquid and with quite a51

large liquid layer thickness. Here, the cold thermocline52

is located near the interface and the lower unsteady53

stratified zone occupies a large part of the liquid layer.54

The basic mechanism of the formation of patterns V is55

the convective one. In the system with h1 = 5 mm the56

instability mode will be realized at Gr = Gr0 · 10−1, if57

Ma < 7.37 under αx = 3 and Ma < 8.14 under αx = 4.58

At larger αx other type of instability appears.59

Deformed near-surface vortex structures VI arise60

in the systems with quite a large liquid layer thick-61

ness and hot thermocline within the liquid layer. This62

temperature distribution is formed under a consider-63

able thermal load; here, the hot thermocline is very64

close to the interface. Thus, the thin near-surface layer65

with the unstable temperature stratification emerges66

and the convective motion occurs in this stripe. Due67

to the significant positive thermal load the intensive re-68

verse flow occurs in the liquid layer. Patterns VI are69

deformed due to the interaction with the basic flow.70

The instability mode arises in the systems with h1 = 571

and h1 = 6 mm only at Gr = Gr0 · 10−1. For the first72

configuration the structures are formed under αx = 1573

and Ma = 134.81. If h1 = 6 mm we can observe these74

patterns under αx = 11 and Ma = 122.21. We empha-75

size that at larger Ma for each liquid layer thickness76

the exact solution predicts infeasible values of the va-77

por concentration function. Thus, instability domains78

U2 and U3 situated above curves 2 and 3 in Fig. 7,79

where this instability mode can be realized, just are80

theoretical “solutions” of the problem stability under81

study.82

Twin vortex structures VII are originated by the83

convective mechanism in the systems with the unsteady84

stratified liquid. The distribution of this type are ob-85

served only under hypergravity or in the terrestrial con-86

ditions and only for the flows of the Poiseuille’s type.87

The thermal cells are deformed by the basic flow, they88

are elongated in the direction of the main motion. There-89

fore, two rows of the vortex structures appear due to90

the interaction distributions with the basic flow. The91

upper and lower vortices have the opposite circulation.92

The instability mode appears in the system with h1 = 593

at Gr = Gr0 and Ma > 0 in the whole range of wave94

numbers under study.95

Typical convective cells VIII are formed in the un-96

steady stratified liquid. The form of disturbances is ob-97

served in the system with h1 = 6 mm, when the thermo-98

capillary effect is entirely suppressed by gravity and the99

interface temperature is cooled due to evaporation. The100

basic driving mechanism is the convective one for pat-101

terns VIII to appear. The structures are formed under102

the weak positive thermal load, i. e. at quite small pos-103

itive longitudinal temperature gradients A. Only long104

wave perturbations with αx ≤ 1.1 lead to the appear-105

ance of the structure under Ma ≤ 6.92.106
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Table 3 Typical forms of the most dangerous perturbations

h1, mm U g0 · 10−1 g0 2g0

U+ I II, (*) II, (*)
2

U− I II, (*) II, (*)
U+ II, (*) III, (*) IV

3
U− II, (*) III, (*) II, (*)
U+ III, (*) IV —

4
U− III, (*) III, (*) —
U+ VI VII —

5
U− V, (*) I —
U+ VI I —

6
U− VIII, (**), (*) I —

We specify mixed type patterns IX, which are slightly1

similar in structure to patterns IV. Perturbations IX2

are formed under the following conditions: the thick-3

ness of the liquid layer is h1 = 6 mm, cold thermocline4

is in the liquid layer, system is in the weak gravitational5

field. They are observed in the narrow range of the wave6

number 2 ≤ αx ≤ 4 and of thermal loads. The values of7

the longitudinal temperature gradients A are such that8

the weak reverse motion arises in the thin near-surface9

zone due to the Marangoni effect, which, however, re-10

mains weak at the liquid layer thickness under consider-11

ation. Structures IX are characterized by the presence12

of the clearly defined double thermal spots with the13

cores both on the interface and within the liquid layer.14

The formation of the double thermal structures is ex-15

plained by the coexistence of thermocapillary effect and16

unstable temperature stratification in the lower part of17

the liquid layer. The Marangoni effect is weak to form18

the essential reverse flow, but sufficient for the appear-19

ance of the thermocapillary structures at the interface.20

The presence of the cold thermocline in the lower fluid21

results in the formation of the thermal patches within22

the liquid. For the system under study the instability23

mode is realized at Gr = Gr0 · 10−1 under αx = 2 with24

Ma < 9.17, under αx = 3 with Ma < 9.62, αx = 425

with Ma < 9.77 (see domain U3 below curve 3 in the26

specified range of values αx in Fig. 7).27

The analysis results for the typical forms of the ap-28

pearing instability are presented in Table 3, where the29

type of the arising perturbations and ascertained reg-30

ularities of the subsequent transition from one type to31

another with the changing wave number αx are speci-32

fied for all the considered values of the gravity acceler-33

ation and liquid layer thickness. The symbols (∗) and34

(∗∗) indicate that the transition to structures I and35

IX, respectively, occurs with the increase of the wave36

number αx. For h1 = 4, 5, 6 mm the hypergravity con-37

ditions were not considered due to the above mentioned38

restrictions concerning the conditions of applicability of39

the solution under study (Sec. 3.2).40

6 Conclusions41

The characteristics of the two-layer flows with evapora-42

tion at the thermocapillary interface in an infinite chan-43

nel with the applied boundary thermal load are investi-44

gated on the basis of the exact solution in the frame of45

the Oberbeck –Boussinesq model. In the microgravity46

condition, the basic factor defining the flow topology47

and temperature field pattern is the Marangoni effect.48

It retains the reverse flow and stable temperature strat-49

ification in the liquid layer and can lead to the thermo-50

capillary instability. With the increase of the gravity ac-51

tion and thickness layer, the action of the thermocapil-52

lary effect abates and the liquid becomes gravitationally53

unstable and stratified due to evaporation. The coex-54

istence of the thermocapillary and convective mecha-55

nisms of instability can be observed in various configu-56

rations. Here, different types of the characteristic per-57

turbations can arise in the system. The structures of58

the thermocapillary, vortex and convective types with59

different topology and localization of thermal patches60

are specified, depending on the type of the basic flow,61

liquid layer thickness and intensity of the gravity ac-62

tion. For all the configurations under study there exists63

a thermal load in which the basic flow becomes unsta-64

ble. For most of them the stability loss is accompanied65

by the formation of the shortwave perturbations of the66

thermocapillary type. Heat and mass transfer due to67

evaporation/condensation at the interface has a desta-68

bilizing effect.69

7 Appendix70

7.1 Unknown function form71

Distributions of the velocity, temperature and pressure
in the liquid layer are defined by the following formulae:

u1 =
y4

24
gβ1a

1
2

ν1
+

y3

6
gβ1A

ν1
+

y2

2
c1 + yc2 + c3,

T1 = (A+a1
2y)x+

y7

1008

{gβ1(a1
2)

2

ν1χ1

}
+

y6

144

{gβ1Aa1
2

ν1χ1

}
+

+
y5

120
1
χ1

{gβ1(A)2

ν1
+ 3a1

2c1

}
+

y4

24
1
χ1
{Ac1 + 2a1

2c2}+

+
y3

6
1
χ1
{Ac2 + a1

2c3}+
y2

2
A

χ1
c3 + y c4 + c5,

p′1 =
(y2

2
ρ1gβ1a

1
2 + yρ1gβ1A + ν1ρ1c1

)
x +

y8

8
k7+

+
y7

7
k6 +

y6

6
k5 +

y5

5
k4 +

y4

4
k3 +

y3

3
k2 +

y2

2
k1 +yk0 + c8.
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The coefficients, which do not depend on y, are the
following:

k7 =
1

1008
(gβ1a

1
2)

2 ρ1

ν1χ1
, k6 =

1
144

(gβ1)2
ρ1

ν1χ1
a1
2A,

k5 =
1

120
gρ1β1

χ1

(gβ1(A)2

ν1
+ 3a1

2c1

)
,

k4 =
1
24

gρ1β1

χ1
(Ac1 + 2a1

2c2),

k3 =
1
6

gρ1β1

χ1
(Ac2 + a1

2c3), k2 =
1
2

gρ1β1

χ1
Ac3,

k1 = gρ1β1c4, k0 = gρ1β1c5.

The distributions of the velocity, temperature, pressure
and vapor concentration in the upper layer are given by
the following expressions:

u2 =
y4

24
g

ν2
(β2a

2
2+γb2)+

y3

6
g

ν2
(β2A+γb1)+

y2

2
c1+yc2+c3,

T2 = (A + a2
2y)x +

y7

1008
B2

g

ν2
(β2a

2
2 + γb2)+

+
y6

720

[
B1

g

ν2
(β2a

2
2 + γb2) + 4B2

g

ν2
(β2A + γb1)

]
+

+
y5

120

[
B1

g

ν2
(β2A+γb1)+3B2c1

]
+

y4

24
[B1c1 +2B2c2]+

+
y3

6
[B1c2 + B2c3] +

y2

2
B1c3 + yc4 + c5,

p′2 =
[y2

2
(ρ2gβ2a

2
2 + ρ2gγb2) + y(ρ2gβ2A + ρ2gγb1)+

+ρ2ν2c1

]
x +

y8

8
k7 +

y7

7
k6 +

y6

6
k5 +

y5

5
k4+

+
y4

4
k3 +

y3

3
k2 +

y2

2
k1 + yk0 + c8,

C = (b1 + b2y)x +
y7

1008
g

ν2
(β2a

2
2 + γb2)

{b2

D
− αB2

}
+

+
y6

720
g

ν2

{[b1

D
− αB1

]
(β2a

2
2 + γb2) + 4

[b2

D
− αB2

]
×

× (β2A + γb1)
}

+
y5

120

{ g

ν2
(β2A + γb1)

[b1

D
− αB1

]
+

+3
[b2

D
−αB2

]
c1

}
+

y4

24

{[b1

D
−αB1

]
c1+2

[b2

D
−αB2

]
c2

}
+

+
y3

6

{[b1

D
− αB1

]
c2 +

[b2

D
− αB2

]
c3

}
+

+
y2

2

{b1

D
− αB1

}
c3 + yc6 + c7.

Here

k7 =
1

1008
ρ2g

2

ν2
(β2a

2
2 + γb2)

[
(β2 − αγ)B2 +

γb2

D

]
,

k6 =
1

720
ρ2g

2

ν2

{
(β2a

2
2 + γb2)

[
B1(β2 − αγ) +

γb1

D

]
+

+4(β2A + γb1)
[
B2(β2 − αγ) +

γb2

D

]}
,

k5 =
ρ2g

120

{ g

ν2
(β2A + γb1)

[
B1(β2 − αγ) +

γb1

D

]
+

+3
[
B2(β2 − αγ) +

γb2

D

]
c1

}
,

k4 =
ρ2g

24

{[
B1(β2 − αγ) +

γb1

D

]
c1+

+2
[
B2(β2 − αγ) +

γb2

D

]
c2

}
,

k3 =
ρ2g

6

{[
B1(β2 − αγ) +

γb1

D

]
c2+

+
[
B2(β2 − αγ) +

γb2

D

]
c3

}
,

k2 =
ρ2g

2

[
B1(β2 − αγ) +

γb1

D

]
c3,

k1 = ρ2gβ2c4 + ρ2gγ2c6, k0 = ρ2gβ2c5 + ρ2gγc7.

B1 =
DA− χ2δb1

Dχ2(1− αδ)
, B2 =

Da2
2 − χ2δb2

Dχ2(1− αδ)
.

7.2 Determination of integration constants1

b2x + φ′(y) + αa2
2x + αϑ′2(y) = 0

and2 {
b2 + αa2

2 = 0 ⇒ b2 = −αa2
2,

φ′(h2) + αϑ′2(h2) = 0.
(A.1)3

The conditions of velocity and temperature conti-
nuity (2.9) result in the relations

c3 = c3, c5 = c5.

Due to the linear temperature distribution on the
rigid walls (2.7) we have

ϑ1(−h1) = ϑ−, ϑ2(h2) = ϑ+

a1
2 =

A−A1

h1
, a2

2 =
A2 −A

h2
, (A.2)4

The mass balance condition leads to the following5

relations6

M = −Dρ2(c6 + αc4), b2 + αa2
2 = 0. (A.3)7

The following equations are the consequence of the8

heat transfer condition (2.12) at the interface y = 0:9

κ1a
1
2 − κ2a

2
2 − δκ2b2 = 0,

κ1c4 − κ2c4 − δκ2c6 = −λM,
(A.4)10
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The first equality defines the following relation between
a1
2 and a2

2:

a2
2 = Kaa1

2, Ka =
κ1

κ2(1− αδ)
.

Herein condition (A.1) is taken into account. Since a1
21

and a2
2 are expressed in terms of A, A1 and A2 (see2

(A.2)), then, the following correlation is valid:3

A =
A2 + h2

h1
KaA1

1 + h2
h1

Ka

. (A.5)4

The case of the equal longitudinal temperature gradi-5

ents can be realized A = A1 = A2, so that a1
2 = a2

2.6

The consequence of the Clayperon – Clausius equa-
tion in the linearized form (2.13) leads to the equalities

b1 = C∗εA, c7 = C∗ + C∗ε(c5 − T0).

From dynamic conditions (2.11) it follows that

c2 =
ρ2ν2

ρ1ν1
c2 +

σT A

ρ1ν1
, c1 =

ρ2ν2

ρ1ν1
c1.

The system of equations to determine the unknown
integration constants c1, c2, c3 results from no-slip con-
ditions (2.6) and conditions of the given gas flow rate
(2.14):

l2

2
ρ2ν2

ρ1ν1
c1−l

ρ2ν2

ρ1ν1
c2+c3 = l

σT A

ρ1ν1
− gβ1

ν1

(
l4

24
a1
2 −

l3

6
A

)
,

h2

2
c1 + hc2 + c3 =

− g

ν2

(
h4

24
(β2a

2
2 + γb2) +

h3

6
(β2A + γb1)

)
,

h3

6
c1 +

h2

2
c2 + hc3 =

Q

ρ2
− g

ν2

(
h5

120
(β2a

2
2 + γb2) +

h4

24
(β2A + γb1)

)
.

If c1, c2, c3 have been calculated, then c1, c2, c3 can7

be found.8

In view of the exact solution form and the second
equality in (A.1), we have the relationship between the
constants c4 and c6:

αc4 + c6 = F,

F = − h6

144
g

ν2

b2

D
a2
2(β2 − αγ)−

− h5

120
g

ν2

(
b1

D
a2
2(β2 − αγ) + 4

b2

D
(β2A + γb1)

)
−

− h4

24

(
g

ν2

b1

D
(β2A + γb1) + 3

b2

D
c1

)
−

− h3

6

(
b1

D
c1 + 2

b2

D
c2

)
−

− h2

2

(
b1

D
c2 +

b2

D
c3

)
− h

b1

D
c3.

The mass of the evaporating liquid is calculated9

with the help of the first from the sequences of the mass10

balance equation (A.3): M = −Dρ2F .11

The second equality from (A.4) sets the dependence
of the integration constant c4 on c4 and c6:

c4 =
κ2

κ1
c4 +

δκ2

κ1
c6 − λM

κ1
.

The constants c4, c6 and c5 are determined from the sys-
tem of equations being the result of the conditions for
the temperature on the solid channel walls ϑ1(−h1) =
ϑ−, ϑ2(h2) = ϑ+ (see (A.2)) and mass balance equation
(A.3):

−l
κ2

κ1
c4 − l

δκ2

κ1
c6 + c5 = ϑ− +

l7

1008
gβ1(a1

2)
2

ν1χ1
−

− l6

144
gβ1Aa1

2

ν1χ1
+

l5

120

(
gβ1A

2

χ1ν1
+

3a1
2

χ1
c1

)
−

l4

24

(
A

χ1
c1 +

2a1
2

χ1
c2

)
+

l3

6

(
A

χ1
c2 +

a1
2

χ1
c3

)
−

− l2

2
A

χ1
c3 − l

λM

κ1
,

hc4 + c5 = ϑ+ − h7

1008
B2

g

ν2

(
β2a

2
2 + γb2

)−

− h6

720
g

ν2

[
B1(β2a

2
2 + γb2

)
+ +4B2(β2A + γb1

)]−

− h5

120

[
B1

g

ν2
(β2A+γb1)+3B2c1

]
− h4

24
[
B1c1+2B2c2

]−

− h3

6
[
B1c2 + B2c3

]− h2

2
B1c3,

αc4 + c6 = F.

Here, the condition c5 = c5 and the second relationship12

from (A.3) are taken into account.13

A special case b2 = 0 (a2
2 = a1

2 = 0) can be realized.14

Conflict of Interest: The authors declare that15

they have no conflict of interest.16



18 V. B. Bekezhanova1,2, I. A. Shefer2

References1

1. Andreev V.K., Kaptsov O.V., Pukhnachov V.V., Rodi-2

onov A.A., Applications of group theoretical methods in3

hydrodynamics, 408. Kluwer Academic Publ., Dordrecht,4

Boston, London (1998)5

2. Andreev V.K., Bublik V.V., Bytev V.O., Symmetries6

of Nonclassical Models of Hydrodynamics, 352. Nauka,7

Novosibirsk (2003) [in Russian]8

3. Andreev V.K., Gaponenko Yu.A., Goncharova O.N.,9

Pukhnachov V.V., Mathematical models of convection10

(de Gruyter Studies in Mathematical Physics), 417. De11

Gruyter, Berlin/Boston (2012)12

4. Bar-Cohen A., Wang P. Thermal managment of on-chip13

hot spot, J. Heat Transfer, 134(5), 051017 (2012)14

5. Bekezhanova V.B. Convective instability of Marangoni –15

Poiseuille flow under a longitudinal temperature gradient,16

J. Appl. Mech. Tech. Phys., 52(1), 74–81 (2011)17

6. Bekezhanova V.B. Three-dimensional disturbances of a18

plane-parallel two-layer flow of a viscous, heat-conducting19

fluid, Fluid Dyn., 47(6), 702–708 (2012)20

7. Bekezhanova V.B., Goncharova O.N., Stability of the ex-21

act solutions describing the two-layer flows with evapora-22

tion at interface, Fluid Dynamics Research, 48(6), 06140823

(2016)24

8. Bekezhanova V.B., Goncharova O.N., Rezanova E.V., She-25

fer I.A., Stability of two-layer fluid flows with evaporation26

at the interface, Fluid Dynamics, 52(2), 189–200 (2017)27

9. Berg J.C., Acrivos A., Boudart M., Evaporative Convec-28

tion, Adv Chem Eng., 6, 61–123 (1966)29

10. Birikh R.V., Thermocapillary convection in a horizontal30

layer of liquid, J. Appl. Mech. Tech. Phys., 3, 43–45 (1966)31

11. Burelbach J.P., Banko S.G., Davis S.H. Nonlinear sta-32

bility of evaporating/condensing films, J. Fluid Mech, 195,33

463–494 (1988)34

12. Colinet P., Joannes L., Iorio C.S., Haute B., Bestehorn35

M., Lebon G., Legros J.-C., Interfacial turbulence in evapo-36

rating liquids: Theory and preliminary results of the ITEL-37

master 9 sounding rocket experiment, Advances in Space38

Research, 32(2), 119–127 (2003)39

13. Colinet P., Legros J.C., Velarde M.G., Nonlinear Dy-40

namics of Surface-Tension-Driven Instabilities, 512. Wiley-41

VCH, Berlin (2001)42

14. Das K.S., Ward C.A., Surface thermal capacity and its43

effects on the boundary conditions at fluid-fluid interfaces,44

Phys. Rev., E 75, 1–4 (2007)45

15. Frezzotti A., Boundary conditions at the vapor – liquid46

interface, Phys. Fluids, 23, 030609 (2011)47

16. Godunov S.K., On the numerical solution of boundary48

value problems for systems of ordinary linear equations,49

Uspekhi Matem. Nauk, 16(3(99)), 171–174 (1961)50

17. Goncharova O.N. Modeling of Flows Under Conditions of51

Heat and Mass Transfer at the Interface, Izvestiya of Altai52

State University Journal, 73(1/2), 12–18 (2012)53

18. Goncharova O.N., Hennenberg M., Rezanova E.V.,54

Kabov O.A., Modeling of the convective fluid flows with55

evaporation in the two-layer systems, Interfacial Phenom-56

ena and Heat Transfer, 1(4), 317–338 (2013)57

19. Goncharova O.N., Kabov O.A., Investigation of the two-58

layer fluid flows with evaporation at interface on the basis59

of the exact solutions of the 3D problems of convection,60

Journal of Physics: Conference Series, 754, 032008 (2016)61

20. Goncharova O.N., Rezanova E.V., Example of an exact62

solution of the stationary problem of two-layer flows with63

evaporation at the interface, J. Appl. Mech. Techn. Phys.,64

55(2), 247–257 (2014)65

21. Goncharova O.N., Rezanova E.V., Construction of66

a Mathematical Model of Flows in a Thin Liquid Layer on67

the Basis of the Classical Convection Equations and Gen-68

eralized Conditions on an Interface, Izvestiya of Altai State69

University Journal, 85(1/1), 70–74 (2015)70

22. Goncharova O.N., Rezanova E.V., Lyulin Yu.V., Kabov71

O.A., Modeling of two-layer liquid-gas flow with account72

for evaporation, Thermophysics and Aeromechanics, 22(5),73

631–637 (2015)74

23. Haut B., Colinet P., Surface-tension-driven instability of75

a liquid layer evaporating into an inert gas, J. Colloid and76

Interface Science, 285, 296–305 (2005)77

24. Hoke B.C., Chen J.C., Mass Transfer in Evaporating78

Falling Liquid Film Mixtures, AIChE Journal, 38(5), 781–79

787 (1992)80

25. Iorio C.S. Goncharova O.N., Kabov O.A. Study of evapo-81

rative convection in an open cavity under shear stress flow,82

Microgravity Sci. Technol., 21(1), 313–320 (2009)83

26. Iorio C.S., Kabov O.A., Legros J.-C., Thermal Pat-84

terns in evaporating liquid, Microgravity Sci Technol., XIX85

(3/4) 27–29 (2007)86

27. Kabov O.A., Kuznetsov V.V., Kabova Yu.O., Evapora-87

tion, Dynamics and Interface Deformations in Thin Liquid88

Films Sheared by Gas in a Microchannel (Chapter 2), Ency-89

clopedia of Two-Phase Heat Transfer and Flow II: Special90

Topics and Applications, Volume 1: Special Topics in Boil-91

ing in Microchannels / Micro-Evaporator Cooling Systems92

(Eds J.R. Thome and J. Kim), 57–108. World Scientific93

Publishing Company, Singapore, (2015)94

28. Kabova Yu., Kuznetsov V.V., Kabov O., Gambaryan-95

Roisman T., Stephan P., Evaporation of a thin viscous liq-96

uid film sheared by gas in a microchannel, Int. J. Heat and97

Mass Transfer, 68, 527–541 (2014)98

29. Kandlikar S.G., Colin S., Peles Y., Garimella S., Pease99

R.F., Brandner J.J., Tuckerman D.B., Heat transfer in100

microchannels – 2012 status and research needs, J. Heat101

Transfer 135(9), 091001 (2013)102

30. Kimball J.T., Hermanson J.C., Allen J.S., Experimen-103

tal investigation of convective structure evolution and heat104

transfer in quasi-steady evaporating liquid films, Phys. Flu-105

ids, 24, 052102 (2012)106

31. Klentzman J., Ajaev V.S., The effect of evaporation on107

fingering instabilities, Phys. Fluids., 21(12), 122101 (2009)108

32. Kuznetsov V.V., Heat and Mass Transfer on a Liquid –109

Vapor Interface, Fluid Dynamics, 46(5), 754-763 (2011)110

33. Kuznetsov V.V., Andreev V.K. Liquid film and gas flow111

motion in a microchannel with evaporation, Thermophysics112

and Aeromechanics, 20(1), 17–28 (2013)113

34. Landau L.D., Lifshitz E.M., Course of Theoretical114

Physics, Volume 6: Fluid Mechanics, 2nd Ed., 554. Perg-115

amon Press, Oxford (1987)116

35. Li P., Chen Z., Shi J., Numerical Study on the Effects of117

Gravity and Surface Tension on Condensation Process in118

Square Minichannel, Microgravity Sci. Technol., 30, 19-24119

(2018)120

36. Liu R., Kabov O.A., Instabilities in a horizontal liquid121

layer in co-current gas flow with an evaporating interface,122

Physical Review E-Statistical, Nonlinear, and Soft Matter123

Physics, 85(6), 066305 (2012)124

37. Lyulin Y., Kabov O., Evaporative convection in a hori-125

zontal liquid layer under shear-stress gas flow, Int. J. Heat126

Mass Transfer, 70, 599–609 (2014)127

38. Lyulin Y., Kabov O., Measurement of the evaporation128

mass flow rate in a horizontal liquid layer partly opened129

into flowing gas, Tech. Phys. Lett., 39 795–797 (2013)130

39. Mancini H., Maza D., Pattern formation without heating131

in an evaporative convection experiment, Europhys Lett.,132

66(6), 812–818 (2004)133



Influence of Gravity on the Stability of Evaporative Convection Regimes 19

40. Margerit J., Colinet. P., Lebon G., Iorio C.S., Legros J.C.,1

Interfacial nonequilibrium and Benard-Marangoni instabil-2

ity of a liquid – vapor system, Phys. Rev., E 68, 1-14 (2003)3

41. Merkt D., Bestehorn M., Benard – Marangoni convection4

in a strongly evaporating field, Physica D, 185, 196–2085

(2003)6

42. Molenkamp T., Marangoni Convection, Mass Transfer7

and Microgravity, 240. Ph.D. Dissertation, Rijksuniversiteit8

Groningen, Groningen (1998)9

43. Napolitano L.G., Plane Marangoni –Poiseuille flow two10

immiscible fluids, Acta Astronautica, 7, 461–478 (1980)11

44. Narendranath A.D. Hermanson J.C., Kolkka R.W.,12

Struthers A.A., Allen J.S., The Effect of Gravity on the13

Stability of an Evaporating Liquid Film, Microgravity Sci.14

Technol., 26(3), 189–199 (2014)15

45. Nie Z.H., Kumacheva E., Patterning Surfaces with Func-16

tional Polymers, Nature Materials, 7, 277–290 (2008)17

46. Nepomnyashchy A.A., Velarde M.G., Colinet P., In-18

terfacial phenomena and convection, 360. Chapman &19

Hall/CRC, Boca Raton (2002)20

47. Oron A. Nonlinear dynamics of irradiated thin volatile21

liquid films, Phys. Fluids, 12(1), 29 (2000)22

48. Ostroumov G.A., Free convection under the conditions23

of an internal problem, 286. Gostekhizdat Press, Moscow –24

Leningrad (1952) [in Russian]25

49. Oron A., Davis S.H., Bankoff S.C., Long-scale evolution26

of thin liquid films, Reviews of Modern Physics, 69(3), 931–27

980 (1997)28

50. Ozen O., Narayanan R., The physics of evaporative and29

convective instabilities in bilayer systems: Linear theory,30

Phys. Fluids, 16(12) 4644 (2004)31

51. Prosperetti A. Boundary conditions at a liquid – vapor32

interface, Mechanica, 14(1), 34–47 (1979)33

52. Pukhnachov V.V., A plane steady-state free boundary34

problem for the Navier – Stokes equations, J. Appl. Mech.35

Techn. Phys., 13(3), 340–351 (1972)36

53. Pukhnachov V.V., Group-theoretical nature of the37

Birikh’s solution and its generalizations, Book of Proc.38

Symmetry and differential equations, Krasnoyarsk, 180–18339

(2000) [in Russian]40

54. Pukhnachov V.V., Symmetries in the Navier – Stokes41

equations, Uspekhi mechaniki 4(1), 6–76 (2006) [in Rus-42

sian]43

55. Puknachov V.V., Thermocapillary convection under low44

gravity, Fluid Dynamics Transactions, 14, 140–204 (1989)45

56. Reutov V.P., Ezersky A.B., Rybushkina G.V., Chernov46

V.V., Convective structures in a thin layer of an evaporating47

liquid under an airflow, J. Appl. Mech. Techn. Phys., 48(4),48

469–478 (2007)49

57. Rezanova E.V., Shefer I.A. Influence of thermal load on50

the characteristics of a flow with evaporation, J. Appl. Ind.51

Math., 11(2), 274-283 (2017)52

58. Saenz P.J., Valluri P., Sefiane K., Karapetsas G., Matar53

O.K., Linear and nonlinear stability of hydrothermal waves54

in planar liquid layers driven by thermocapillarity, Phys.55

Fluids, 25(9), 094101 (2013)56

59. Saenz P.J., Valluri P., Sefiane K., Karapetsas G., Matar57

O.K., On phase change in Marangoni-driven flows and its58

effects on the hydrothermal-wave instabilities, Phys. Fluids,59

26(2), 024114 (2014)60

60. Scheid B., Margerit J., Iorio C.S., Joannes L, Heraud M.,61

Queeckers P.,Dauby P. C., Colinet P., Onset of Thermal62

Ripples at the Interface of an Evaporating Liquid under a63

Flow of Inert Gas, Experiments in Fluids, 52, 1107–111964

(2012)65

61. Shi W.-Y., Rong S.-M., Feng L., Marangoni Convection66

Instabilities Induced by Evaporation of Liquid Layer in an67

Open Rectangular Pool, Microgravity Sci. Technol., 29, 91-68

96 (2017)69

62. Shklyaev O.E., Fried E., Stability of an evaporating thin70

liquid film, J. Fluid Mech., 584, 157-183 (2007)71

63. Shliomis M.I., Yakushin V.I., Convection in a two-72

layers binary system with an evaporation, Collected papers:73

Uchenye zapiski Permskogo Gosuniversiteta, seriya Gidro-74

dinamika, 4, 129–140 (1972) [in Russian]75

64. Sultan E., Boudaoud A., Amat M.B. Evaporation of a76

thin film: diffusion of the vapour and Marangoni instabili-77

ties, J. Fluid Mech, 543, 183–202 (2005)78

65. Voropai P.I., Shlepov A.A. Enhancement of reliability79

and efficiency of reciprocating compressors, 359. Nedra,80

Moscow (1980)81

66. Zeytounian R.Kh., The Benard – Marangoni82

thermocapillary-instability problem, Usp. Phys. Nauk,83

168(3), 259-286 (1998)84


