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Abstract. We report a new mechanism for the generation of membrane potential in polarizable
nanoporous membranes separating electrolytes with different concentrations. The electric field
generated by diffusion of ions with different mobilities induces a non—uniform surface charge,
which results in charge separation inside the nanopore. The corresponding Donnan potentials
appear at the pore entrance and exit leading to a dramatic enhancement of membrane potential
in comparison with an uncharged non—polarizable membrane. At high concentration contrast,
the interaction between electric field and uncompensated charge at a low concentration side
results in the development of electrokinetic vortices. The theoretical predictions are based on
the Space—Charge model, which is extended to nanopores with polarizable conductive surface for
the first time. This model is validated against full Navier—Stokes, Nernst—Planck, and Poisson
equations, which are solved in a high aspect ratio nanopore connecting two reservoirs. The
experimental measurements of membrane potential of dielectric and conductive membranes in
KCl and NaCl aqueous solutions confirm the theoretical results. The membranes are prepared
from Nafen nanofibers with 10 nm in diameter and modified by depositing a conductive carbon
layer. It is shown theoretically that the enhancement effect becomes greater with decreasing
the electrolyte concentration and pore radius. A high sensitivity of membrane potential to
the ratio of ion diffusion coefficients is demonstrated. The described phenomenon may find
applications in precise determination of ion mobilities, electrochemical and bio—sensing, as well
as design of nanofluidic and bioelectronic devices.

Keywords: membrane potential, diffusion potential, polarizable nanopore, induced charge,
Space—Charge model

1 Introduction

The phenomenon of membrane potential at zero current refers to the appearance of po-
tential difference between two electrolyte solutions with different concentrations separated by
a membrane. In charged membranes, this difference arises due to Donnan equilibrium between
diffusion and electric forces at membrane/solution interfaces (Donnan potentials), and elec-
tric field generated by diffusion of ions with different mobilities (diffusion potential) [1]. The
measurement of membrane potential is used for characterizing the ionic permselectivity of ion
exchange membranes and determining their charge density [2,3]. It also provides the basis for
potentiometric ion sensing with the help of ion selective electrodes [4]. The membrane potential
is a measure of maximum power that can be generated in reversed electrodialysis [5,6]. The
resting potential difference across biological cell membranes regulates various cellular activities,
such as proliferation and differentiation [7,8].

The simplest and widely used theoretical approach for describing the membrane potential
is the Teorell-Meyer—Sievers (TMS) model [9,10]. It assumes that the Debye screening length
is larger than the pore size, so the potential and ion concentrations in the pore cross—section
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are uniform. In addition, the osmotic water transport is neglected. For densely charged mem-
branes, the predictions of TMS model are accurate when the concentration difference across
the membrane is small [11]. The TMS model was extended to include the finite ion size and
dielectric exclusion effects in [12]. It was shown that they increase the membrane potential at a
given concentration. The appearance of a maximum in the potential response of modified gold
nanopores at high concentration contrast was successfully predicted by the two—dimensional
model based on the Nernst—Planck and Poisson equations [13]. The Space—Charge (SC) model,
which takes into account the radial variation of potential and ion concentrations as well as water
transport in cylindrical pores, was first suggested in [14]. This model was revisited recently [15]
by providing an essential simplification of working formulas. The experimental verification of
SC model was performed by comparing the predicted streaming potential, pore conductivity,
and membrane potential at zero current with the measured data [16]. The comparison between
SC and TMS model showed that the latter overestimates the value of membrane potential for
large surface charge and/or pore size exceeding the Debye length [17]. A similar conclusion
was obtained for multivalent electrolytes [19]. The variation of membrane potential with (-
potential was studied on the basis of SC model in [18]. The idea of obtaining information
about the pore network morphology from membrane potential measurements was suggested
in [20]. Using the SC model, a map relating the pore radius and volume charge density with
the membrane potential was constructed. The effect of solution pH on membrane potential was
investigated theoretically by the corresponding extension of SC model [21].

The measurement of membrane potential was used for determining the charge of com-
mercial nanofiltration membranes [22] as well as laboratory made membranes [23] on the basis
of TMS model. The permselectivity of commercial ion-exchange membranes in different elec-
trolytes was studied by measuring their potential in [24]. It was shown that the binding affinity
between counter—ions and fixed charge groups in the polymer can affect the permselectivity.
The effect of unstirred layers adjacent to the membrane on the membrane potential was inves-
tigated in [25]. The thickness of the unstirred layer obtained from the limiting current density
method was comparable with a value calculated as a parameter to reproduce the observed
membrane potential.

In recent decades, a lot of research has been focused on the design of membranes with tun-
able ion transport. The latter can be realized by combining the pore design strategy (geometry
and surface chemical modification) with external stimuli, such as transmembrane potential,
solution pH, temperature, light, etc. [26-28]. A new class of membranes containing gold nan-
otubules that span a complete thickness of a porous polymeric support was suggested in [29].
Using membrane potential measurement at zero current, it was shown that their selectivity
can be reversible switched from anion to cation by changing the potential applied to the con-
ductive membrane surface. The membrane transport experiments revealed that the fluxes of
anionic and cationic permeate species change as a function of applied potential [30,31]. The
modulation of membrane potential by the external electric field in solid—state channels was also
demonstrated in [32]. The theory of ion transport in electrochemically switchable conductive
membranes based on a number of restrictive assumptions showed only satisfactory agreement
with the experimental data [33]. It was shown in [34] that a qualitative similarity between
predicted and measured membrane potential can be obtained by assuming that the applied
voltage gives rise to a fixed charge proportional to it.

To correctly describe the ion transfer in nanopores with conductive surface, the fixed sur-
face potential should be assumed [35]. Note that the electric field generated by moving ions
near a conductive surface can induce polarization charges [36], which may in turn alter the pore
transport characteristics. The induced—charge electrokinetic phenomena are actively investi-
gated nowadays due to potential applications in microfluidic pumping and mixing [37], particle
manipulation [38], and capacitive deionization [39]. The induction of surface charge by external
electric field was employed for realizing nanopores with ion current rectification [40]. Tt was



shown theoretically in [41] that the combination of nanochannel geometry and induced—charge
effect results in cation (anion) permselectivity for forward (reversed) electric bias. Despite
a growing number of studies in the area, a systematic investigation of membrane potential
in membranes with conductive polarizable nanopores has not been performed neither theoreti-
cally nor experimentally. It is clear that the TMS and SC models with constant volume/surface
charge cannot adequately describe this configuration.

In this paper, we report a new mechanism for the generation of membrane potential in
polarizable conductive membranes via induced surface charge. The latter appears in electric
field generated by diffusion of ions with different mobilities. It is shown theoretically and exper-
imentally that this effect leads to a dramatic enhancement of diffusion potential in uncharged
polarizable membranes in comparison with their non—polarizable counterparts. Theoretical pre-
dictions on the basis of Space-Charge model extended to polarizable nanopores are supported
by the experimental measurements in dielectric and conductive membranes.

The paper is organized as follows. The mathematical models are presented in Section 2,
while the membrane preparation and characterization as well as potential measurement are
described in Section 3. Comparison between theory and experiment and discussion of the
impact of various parameters on membrane potential is presented in Section 4. The main
findings are summarized in Conclusion.

2 Theoretical

2.1 The Teorell-Meyer—Sievers model for uncharged membrane

Let us consider a porous membrane, which separates two reservoirs denoted by L (left)
and R (right). The reservoirs contain aqueous solutions of the same monovalent and symmetric
(1:1) electrolyte with concentrations C, and Cg, respectively (Cr > Cr). In what follows, the
ion concentrations will be used assuming that the activity coefficients are equal to unity.

We start with the case of uncharged membrane. The TMS theory for diffusion potential
is based on the Nernst—Planck equation, the condition of electroneutrality, and equality of ion
fluxes (i.e. zero current):

dCy DiF _ dd

=D, —F = (C,— 1
Jx A R,T A (1)
C+ — C_, (2)
Jy = J_ = const. (3)

Here Z is the space coordinate along membrane thickness, J. are the ion fluxes, C'y are the ion
concentrations, Dy are the ion diffusion coefficients, ® is the electric potential, R, is the ideal
gas constant, 1" is the temperature, and F' is the Faraday constant. The boundary conditions
imposed at the membrane entrance and exit are as follows

Z=0: Ci:CLa (I):CI)L, Z:Lpi Ci:CRa (4)

where L, is the membrane thickness, and ®;, is taken zero for simplicity.

Substituting the fluxes from (1) into (3) and taking into account (2), we can express the
potential gradient d®/dZ from the resulting equation. Integration of this equation from the
pore entrance Z = 0 to the position Z using boundary conditions (4) gives
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where D = D, /D_ is the ratio of ion diffusion coefficients. The substitution of (5) into (1)
and integration of the resulting equations with boundary conditions (4) leads to

Cr—Cy C,—Cr [ 1 1\ !
Ci=0Cp+ I : J=2J, J I <D+ + D_) (6)

Here J = J, + J_ is the total ion flux.
The membrane potential is calculated as AP = &p — &, = $(L,), so
RT D—-1. Cf
F D1 0y (@)
When D, < D_, the faster diffusing anion generates an electric field directed from reservoir
with a higher concentration (L) to that with a lower concentration (R). It speeds up the
cation and slows down the anion to make the ion fluxes equal. In this case, A®p < 0. When

D, > D_, the direction of electric field is opposite, and one has A®p > 0. When D — 0 or
D — oo, the diffusion potential A®p — ®F or A®p — P, respectively. Here

RT Cr

AP = Adp =

APy =+~ In—= 8
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is the Nernst potential of membrane, which transport only cations (plus sign) or anions (minus
sign).
In what follows, we will also need the pore—averaged potential defined by
L
P R T D-1 ID(C L / C R)
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It should be noted that the accurate treatment of diffusion potential generation requires
consideration of time-dependent problem [42]. The solution presented here is an approximation,
which is valid at times much larger than the time of diffusion over the Debye length (typically
1079 s).

2.2 The Teorell-Meyer—Sievers model for charged membrane

When a membrane is uniformly charged, the electroneutrality condition (2) is replaced by
Cy —C_+X =0, where X is the volume charge density. For a cylindrical pore of radius R,, X
can be related to the surface charge density o by X = 20/FR,. The presence of charge results
in the appearance of Donnan potentials at the pore entrance and exit [11]:

T X \/ X 2 4 4C%
A@Lzém)—¢L:}; m( i i L),
R, T X \/X 24+4C%
Adp = B — (L) = — ( VAT )
F Cr
The derivation of diffusion potential for a charged membrane is performed similarly to that
described in Section 2.1, while the details can be found in [11]. In the TMS theory, the

total membrane potential is the sum of Donnan potentials and diffusion potential: AP =
Ad; + Adi + AdDp. Thus, we arrive to the expression

AD = o b _RQT[1 <C’R X+\/X2+4CQ) Dl ( DX+\/X2+4C'2>] (10)
ETF CrL X + /X2 1 4C3 DX + /X2 + 4C?
where D = (D —1)/(D + 1).

For a highly charged membrane (formally when X — +00), the membrane potential tends
to the Nernst potential (8), where the plus (minus) sign corresponds to the case of ideal cation—
selective (anion-selective) membrane. For an uncharged membrane (X = 0), the membrane
potential (10) reduces to the diffusion potential (7).
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2.3 The Navier—Stokes / Nernst—Planck / Poisson model

When the Debye screening length is less or comparable with the pore radius, the electric
double layers do not overlap. In this case, the TMS model fails to predict the membrane
potential accurately. This model cannot also describe a membrane with conductive surface
maintained at fixed potential, or ideally polarizable membrane floating in electric field. Such
situations can be handled by considering the full Navier-Stokes, Nernst-Planck, and Poisson
equations together with a pore model representing membrane structure.

The membrane is usually modelled as an array of cylindrical pores of length L, and radius
R,. A single pore connects two reservoirs of length L, and radius R, with electrolyte con-
centrations C, and Cg (Fig. 1). The reservoirs are maintained at equal pressures. For a 1:1
electrolyte, the molar fluxes of ions are given by the extended Nernst—Planck equation:

D.F
R,T

J:t = C:tU — DiVC’i F C’iVCZD, (11)

where U is the fluid velocity. For a two—dimensional axisymmetric case, U = (U, V'), where U
is the radial velocity, and V' is the axial velocity. The components of ion fluxes in Z direction
are denoted by Ji. Then J = J, + J_ is the total ion flux, and I = J; — J_ is the ion current
in axial direction.

Let us introduce dimensionless radial and axial coordinates, velocity, pressure, ion concen-
trations, electric potential, and ion fluxes as follows:

D_
R=R,r, Z =R,z U= 7w P = CyR,T p, (12)
P
R,T D_Cy
C:t C() Cy, F y J:I: Rp +

Here Cy is the reference concentration taken in this work as Cp = 1 mM (1 mol/m?). The ion
fluxes (11) are written in dimensionless form as follows:

Jy=cyu—DVey — De Vo, j_=c_u—Vec_+c_Vop.

The z components of these fluxes are denoted by ji, so j = j. +j_ and ¢ = j, — j_ are
dimensionless total ion flux and ion current in axial direction, respectively. The dimensionless
stationary Navier—Stokes, Nernst—Planck, and Poisson equations have the form

aR(u-V)u=—-Vp+aVu— (c; —c )V, (13)
V-u=0, (14)
u-Vey = -V -D(=Vey — ey Vo), (15)
u-Veo ==V (=Ve_o +c_Vo), (16)
1
VZ(,O = —2—>\2(C+ — C,). (17)
The system includes the following dimensionless parameters:
pD_ uD_ D, 1 JeeoR,T
n YT CoR,TRY D R, 2C,F? (18)

where R is the Reynolds number based on the velocity scale defined in (12), « is the dimension-
less viscosity parameter, D is the ratio of ion diffusion coefficients, and A is the dimensionless
Debye length. In formulas (18), p is the density of ionic solution, ¢ is its relative permittivity,
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Figure 1: The geometry of the pore and reservoirs.

Table 1: The boundary conditions.

Boundary Navier-Stokes Poisson Nernst-Planck Nernst-Planck eqns.
segment equations equation equations (Slotboom variables)
Ap p=0 =0 C+x =CL cr =cyp

Agr p=20 Vo-n=0 Ccy =CR CL = cre¥R

jom=j,n Vi -n=e DV, n

By, Bg u=0 Veo-n=0 Jjim=0 Ver-n=0
C u=>0 Cl:Vyo-n =0, Jjrn=0 Ver-n=0
C2: o =

C3: [Ve-nds = g,

and gg is the vacuum permittivity. It should be noted that the flow in nanopores typically
corresponds to low Reynolds numbers, so the convective term in (13) can be neglected. However,
we have retained it for completeness.

The boundary conditions are summarized in Table 1 (see also Fig. 1). An outward unit
normal to the boundary is denoted by m. At the entrance to the left reservoir Ay, we impose
zero pressure and potential, and specify the ion concentration ¢, = C,/Cy. At the exit from the
right reservoir Ag, zero pressure and potential gradient as well as the concentration of cations
cr = Cr/Cy are set. To ensure that the ion current is zero, the equality of anion and cation
fluxes is imposed at the boundary Ag. The calculations show that the boundary condition for
anion concentration c_ = cg at Ag is automatically satisfied in this case. However, when both
concentrations cy = cg are specified at Ag, the resulting ion current becomes non—zero [43].
The no-slip and impermeability conditions are imposed at the walls By, Bg, and C'. In addition,
the reservoir walls By, and Bpr are not charged.

In this work, we consider three different boundary conditions at the pore wall: (C1)
constant surface charge density o; (C2) constant surface potential ®,; (C3) constant total
surface charge );. The corresponding dimensionless quantities are introduced by

g q)s QS
Os = — S = s ™ & M = ——
coR,T/FR, °°  R,O/F 7 c5R,IR,/F

In case C3, @, characterizes the total charge acquired by the conducting polarizable surface
due to physicochemical mechanism. The electric field applied externally or formed inside the
pore due to movement of ions causes the redistribution of surface charge. It is convenient to



introduce the dimensional @ and dimensionless @, total surface charge densities according to

Qs = _
2rR,L,’ * 2nL,/R,

o =

The floating boundary condition C3 is realized by solving the problem with constant potential
at the pore wall. The wall potential is found in order to satisfy the condition of constant total
surface charge.

In what follows, we will need the quantities averaged over the pore cross—section. In
particular, the dimensional average axial velocity is defined by

_ 2 [
V=— VRdR.

The average pressure P, ion concentrations Ci, potential ®, axial ion fluxes J,, total axial ion
flux J = J, + J_, and axial ion current I = J, — J_ are introduced in the same way. The
corresponding dimensionless quantities are v, p, ¢+, P, jy, J = j+ +j ,andi=j L= J

The membrane potential is calculated as a difference between the average potential values
at the reservoir boundaries Ag and Ay (see Fig. 1):

AP =0y — O = Op.

An alternative formulation of governing equations can be derived by introducing the Slot-
boom variables according to [44-46]

cy =eT¥e,.
Using these variables, equations (13)—(17) are rewritten as
aR(u-V)u=—-Vp+aViu— (e ¥¢, —e¥c )V,
V.-u=0,
V. (¢ (uf, — DVE,)) =0,

V- (e¢ (uE_ — VE_)) =0,
1
2)\2(

After the transformation, the boundary conditions for Navier—Stokes and Poisson equa-
tions remain the same, while the conditions for the Nernst—Planck equations are transformed
into a simpler form, which is given in the last column of Table 1. The quantity ¢g is the value
of dimensionless potential at the boundary Ag. The use of Slotboom variables has a number
of advantages in comparison with the use of primitive variables [46]. First, the equations for
ion concentrations and boundary conditions involving ion fluxes are simplified. Second, the
Slotboom formulation provides more robust convergence and a significant reduction of compu-
tational time (up to 10 times).

Numerical solution of two—dimensional governing equations is obtained with the help of
ANSYS Fluent 14.5 (Academic version). The stationary problem is solved iteratively by the
Coupled method in finite volume formulation. For floating boundary condition, an initial guess
for the surface potential is set and adjusted at each iteration step. The characteristics of
computational mesh are chosen in such a way as to ensure that further refinement does not
influence the solution quality. The following dimensions of pore and reservoirs are used: R, = 8
nm, L, = 4000 nm, R, = 100 nm, L, = 400 nm (their choice is discussed further in Section
4.1). The number of nodes in radial and axial directions is 50 and 3000 for the nanopore, and

Vip = e ¥c, —e¥c).



130 and 150 for each reservoir, respectively. The mesh has clustering in the axial direction near
the pore entrance and exit as well as in the reversed radial direction in the reservoirs. In the
pore, the mesh is radially uniform. More details on the numerical implementation can be found
in [46].

The advantage of Navier-Stokes / Nernst—Planck—Poisson (NS-NPP) model lies in the
fact that it can accurately describe the structure of electric double layer in the pore as well
as the influence of osmotic flow on ion transport for a variety of boundary conditions (fixed
surface charge / fixed surface potential / floating boundary). When the model equations are
solved in the pore and reservoirs, the change of potential, ion concentrations, and pressure at
the membrane/solution interface can be modelled in details. The results can be compared with
those obtained from other models (TMS, SC, or their extensions) and validate them in a given
range of parameters. The disadvantage of the described model is a large computational time
(a few hours for a single case) and numerical instability for large aspect ratio pores (length /
radius > 10%). Thus, this model cannot be used for determination of membrane characteristics
by fitting the experimental data to theoretical predictions (e.g. membrane potential dependence
the ratio of concentrations Cp/Cg).

2.4 The Space—Charge model

The Space-Charge (SC) model can be considered as a model with the best relation between
accuracy and computational efficiency. It is derived from Navier—Stokes, Nernst—Planck, and
Poisson equations by introducing several assumptions appropriate for large aspect ratio pores
and using jump boundary conditions at the membrane/solution interface. Until now, this
model has been used for describing pores with fixed surface charge only [14-20]. In this work,
the SC model is extended to pores with fixed potential as well as floating boundaries for the
first time. We do not repeat the model derivation, which was described earlier in details [15],
but introduce proper modifications for new types of boundary conditions and propose the
computational procedure.

The dimensionless variables for the SC model are introduced according to (12) with ex-
ceptions for axial coordinate, velocity, and ion fluxes, which are given by

D D_C)

Z:LPZ7 U:L—;u, J:t I

I (19)

p

The dimensionless potential ¢, ion concentrations cy, and pressure p are represented as

o(r,z) = ¢u(2) +0(r, 2),  cx(r,2) = cy(2) exp(FY(r, 2)), (20)
p(r, z) = py(2) + 2¢,(2) cosh(¢(r, 2)),

Here the ion concentrations satisfy the Boltzmann distribution. The function v satisfies the
Poisson equation with boundary condition of axial symmetry

10 ([ 0¢(r2)\ _ clz)
el = h 21
ror (T or a o W(r,2), (21)
oY
ko = 0. 22
2 (0,2)=0 (22)
The constant surface charge density is imposed by
=0, (23)
while for the constant surface potential one should write
¥(1,2) = o5 — ¢u(2). (24)



For a polarizable conductive pore wall, the surface potential ¢, should be determined in order
to satisfy the floating boundary condition

1 aw

o Or

It should be noted that when modelling the membrane potential in pores with constant

(—potential in [18], the boundary condition (1, z) = ¢ was used instead of (24). In this case,

the total potential ¢ at the pore wall was in fact non—constant since ¢, is zero at the pore
entrance and equals to membrane potential at the pore exit (see conditions (30) below).

The phenomenological flux—force formalism is used to relate the average volume flux o (or

average axial velocity), average ion flux j, and average ion current ¢ to the gradients of virtual

pressure p,, virtual chemical potential u, = Inc,, and virtual electric potential ¢,:

T
(% %) =L@ 30" 26)

(1,2)dz = 5. (25)

dz" dz' dz
Here L = —L£7! is the symmetric 3x3 matrix. The coefficients of matrix £ = {£;;(2)} depend
on the function v¥(r, z) and virtual concentration ¢,(z). They are given in Appendix.

The membrane potential is measured at zero current (i = 0). In this case, system (26)
becomes

dp, B —
jz =L11 0+ Lyg 7, (27)
1 de, _ -
C_y 7 = L1oV + Loy J, (28)
do, _ —
dqi = L13 U+ L23j. (29)

The corresponding boundary conditions are derived by assuming equal (zero) pressures and
constant concentrations in the reservoirs, and setting the potential at the left reservoir to zero.
By putting ¢(r, z) = 0 in (20), one arrives at
2=0: p,=—-2c, ¢, =cp, ¢,=0, (30)
z=1: Py = _2CR7 Cy = CR, ¢v = AQO
Here Ay is the dimensionless potential difference between the reservoirs (membrane potential).
Note that the use of boundary condition (24) and integral condition (25) introduces some
difficulties. The surface potential ¢, is not known in advance. The virtual potential ¢,(x) is
found by integration of system (27)—(29) with coefficients L;;(2), which in turn depend on the
solution ¢ (r, z) of problem (21), (22), (24), (25). It makes the system strongly coupled and

non-linear.
Let us express

de,
co(L1a0 + Loy j)

from Eq. (28) and substitute it into Eq. (27) and (29). Integration of resulting equations over
the pore length with the help of boundary conditions (30) gives

dz =

(31)

LT+ L
| e 2en =) =0, (32)
cr, v
- CR dc,
- 7 33
J /CL Cy(L12T + Lgo) (33)
@ Ly3T + Log
v Cv) = dy, 34
éolcv) /CL Co(L1aT + Loo) ¢ (34)



where 7 = ¥/j is the fluxes ratio. It follows from (21), (24), and (34) that one can write

Y =1(r,c,), ¢ = ¢(cy), Lij = L;j(c,), see also Appendix.
The dimensionless axial velocity is determined by the formula

7’2 —1 dp 2 " / / / ' / / / / dcv

v(r,z) = o s a(lnr/o r'cosh(y (1, 2)) dr —I—/T rlnr Cosh(w(r,z))dr> 7
2\ do,
+?(ws - 1/)(7“7 Z)) dz )

where 15 = (1, 2).

The calculation is performed as follows. For a non—polarizable dielectric pore with constant
surface charge density o, problem (21)—(23) is solved numerically for a set of successive values
Cy = Co, K = 0,...,n, where ¢,9o = ¢, ¢y = cg. Then the ratio of fluxes 7 = @/3 is
found numerically from (32), and the ion flux j is obtained from (33). The potential difference
between reservoirs Ay = ¢,(cg) is determined from (34), while the virtual variables are found
by integration of (27)-(30).

For a polarizable conductive pore with constant total surface charge density @, an initial
guess for the surface potential ¢, is set. Here problem (21), (22), (24) is solved for each c
at fixed o, and j. Note that ¢,(c,o) = ¢u(cz) = 0. The value ¢,(c,) is found iteratively
starting from ¢, (¢, x—1) and repeating the solution of (21), (22), (24) followed by application
of (34). The calculation is performed iteratively to find the fluxes ratio 7 from (32). Then
j is calculated from (33) and virtual variables are obtained by integration of (27)-(30). It
allows to find ¢(r,z) = ¥(r,c,(z)) and finally calculate the distribution of surface charge
o(z) = 0Y/0r(1,z) and the integral in the left-hand side of (25). The whole procedure is
iterated to find the surface potential y,, with which Eq. (25) is satisfied. This iteration is not
required when the surface potential is fixed externally.

The integration of Poisson equation (21) is performed by reducing it to two first—order
ODE and applying the Runge-Kutta—Merson method of 5th order starting from r = e tor =1,
where € is close to zero. Here an additional boundary condition (e, z) = 1) is required. The
value 1)y is determined by the shooting method in order to satisfy boundary condition (24) at
fixed z. The initial approximation for it can be found from analytical solution derived in [47].

3 Experimental

3.1 Membrane preparation

To validate the predictions of theoretical model experimentally, we have synthesized mem-
branes with dielectric as well as conductive nanoporous structure. In this paper, we briefly
describe their preparation and characterization. More detailed information can be found in [48].

The membrane preparation technique is schematically shown in Fig. 2. The membranes are
produced from Nafen™, which is supplied by ANF Technology in the form of blocks composed
of highly aligned y-phase alumina nanofibers with the diameter of 10-15 nm and length more
than 100 mm [49]. Nafen nanofibers are dispersed in deionized water (the weight ratio of
Nafen:water is 1:200). The suspension is agitated with a magnetic stirrer for 30 minutes followed
by 15 minutes of ultrasonic treatment (Sonics & Materials VC-505, USA). The alignment of
Nafen fibers facilitates their separation from each other and allowes preserving relatively high
aspect ratios (~100) after treatment. The obtained suspension is filtered through the rough
Teflon filter (average pore size of 0.6 yum) and dried in air. The resulting membrane is sintered
at 800 °C during 4 hours, which ensures its structural stability in aqueous solutions. Membranes
are prepared in the form of circular discs with the diameter of around 40 mm and thickness of
about 400 pm, Fig. 2 (b).
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Figure 2: Membrane preparation technique (a), top view of Nafen membrane before (b) and after (¢) deposition
of carbon by CVD method.

Figure 3: SEM images of the membrane surface before (a) and after (b) deposition of carbon. The corresponding
TEM images of nanofibers are shown in the inserts.

To form carbon layers on the membrane surface, chemical vapor deposition (CVD) is used.
The synthesis of carbon layers is conducted in the homemade CVD reactor at 900 °C (heating
rate of 20-30 /min) in propane/nitrogen mixture (1/15) with the total flow rate of 4000 ml/min
during 60 seconds. The mass gain after CVD is around 15 %. Then the sample is slowly cooled
to 150 °C in the atmosphere of nitrogen. A typical view of the obtained membrane is shown
in Fig. 2 (c). In what follows, the samples with and without deposited carbon layer will be
referred to as C—Nafen membrane and Nafen membrane, respectively.

It should be noted that the Nafen nanofibers were used for the preparation of ultrafiltra-
tion membranes with asymmetric structure in [50]. The fabrication of hybrid membranes by
incorporating silica into alumina nanofiber scaffold resulted in an excellent combination of fine
scale filtration efficiency and high permeability [51].
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3.2 Membrane characterization

The morphology of prepared membranes was characterized by the Scanning electron mi-
croscopy (SEM) using Hitachi TM-1000 and Hitachi S-5500 instruments (Japan) for prelim-
inary and detailed analysis, respectively. The SEM images in Fig. 3 show that a membrane
consist of randomly oriented alumina nanofibers with the length of 0.5-1 ym. The TEM images
obtained by the Hitachi HT-7700 instrument (Japan) confirm the formation of several carbon
layers on the nanofibers with the total thickness of around 1-2 nm (insert in Fig. 3b).

X-ray fluorescent microanalysis using combined energy dispersive X-ray spectrophotome-
ter Quantax 70 (Bruker, Germany) with silicon drift detector (SDD) showed that the carbon
distribution is uniform along the entire cross—section of C—Nafen membrane.

The carbon structure formation on Nafen membranes was also studied by Raman spec-
troscopy using Horiba Jobin Yvon 64000 triple spectrometer (France). The relative intensity
of D and G peaks in C—Nafen membrane spectrum was approximately 1.035, which indicated
the formation of disordered structures of amorphous carbon during the CVD synthesis.

The Four Probe DC method was employed for measurement of electrical resistance. The
Nafen membrane demonstrated high resistance of 2.3 MQ-m, while the C-Nafen membrane
resistance was very low (0.002 -m), which is typical for conductive carbon layers.

Thermal analysis of C-Nafen membranes was performed using Jupiter 449 (Netzsch, Ger-
many) with mass—spectrometer detector. It was determined that the membranes contains 68.9
% of alumina, 19.6 % of carbon structures including 4.5 % of oxygen and nitrogen containing
functional groups, and 11.5 % of adsorbed water.

Membrane pore and surface area characterization was done by low temperature nitro-
gen adsorption experiments using ASAP—-2420 (Micromeritics, USA). The Nafen membrane is
characterized by the porosity of 75 %, specific surface area of 146 m?/g, and maximum of pore
diameter distribution curve at 28 nm. The corresponding parameters of C—Nafen membrane
are 62 %, 107 m?/g, and 16 nm. Both types of membranes are hydrophilic.

The cyclic voltammetry in 0.1 M KCI solution confirmed that the carbon coated C—Nafen
membranes are ideally polarizable in the range of applied voltages from —0.5 V to +0.8 V. The
Potentiostat PI-50 Pro (ELINS Ltd., Russia) was used to perform the measurements.

3.3 Membrane potential measurement

The membrane potential is measured in a laboratory made electrochemical cell. It consists
of two compartments, between which the membrane is clamped with the help of connection
rods and nuts. The cell body is made of chemically inert polytetrafluoroethylene (PTFE),
which allows working with a wide range of chemicals. In each of the half—cells, reference 4.2 M
Ag/AgCl electrode is located. Electrodes are connected to the input of a potentsiostat PI-50
Pro (ELINS Ltd., Russia), which measures the electromotive force (EMF) of the cell in "broken
circuit potential measurement’ mode. The input impedance of this device is 10'2 2. To prevent
the electrical noise, the cell and electrodes are shielded in a metallic box.

The measurements were performed in KCl and NaCl aqueous solution. At first, the solution
with the fixed concentration C'y is placed in both half-cells. The system is kept at room
temperature of 25 °C during 12 hours. The measurements are performed by increasing the
electrolyte concentration in the left half-cell by consecutive addition of the concentrate (1 M or
4.2 M). For large values of C, (> 1 M), the solution is completely replaced with that of higher
concentration. After each addition or replacement, the system is allowed to equilibrate during
30 minutes. Then, the cell EMF is measured. After each series of experiments, the membrane
is placed in deionized water for 24 hours to remove the rest of electrolyte solution from the
pores.
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4 Results and discussion

4.1 Physical parameters

Let us start with the description of physical parameters used in the theoretical calculations.
For aqueous KCI solution, the diffusion coefficients are D, = 1.957 - 1072 m?/s for K™ ion and
D_ =2.032-107% m?/s for Cl~ ion. For aqueous NaCl solution, the diffusion coefficient of Na™
ion is D, = 1.330 - 1072 m?/s. The density and dynamic viscosity of ionic solutions are taken
as those of water: p =997 kg/m? and p = 0.888-1073 Pa-s. The other parameters used are as
follows: T'=298.15 K, R =8.314 J/(mol K), F = 96485 C/mol, ¢ = 78.49, &y = 8.854-107!2

For comparison between experimental data and theoretical calculations based on the
Space-Charge model, we take the pore radius as R, = 14 nm for Nafen membrane and R, =8
nm for C-Nafen membrane, while the pore length is L, = 400 um. When the results of Space—
Charge and Navier—Stokes / Nernst—Planck—Poisson models are compared, the pore radius is
R, = 8 nm, while the length is reduced to L, = 4 pm since very long pores cannot be easily
handled by the latter model. The corresponding dimensions of reservoirs are R, = 100 nm,
L, =400 nm, see Fig. 1. By comparing scalings (12) and (19), one can see that the decrease of
pore length by a number of times results in the increase of velocity and ion fluxes by the same
number of times.

4.2 The fields of potential, concentration, and pressure

The comparison between non—polarizable and polarizable uncharged nanopores is shown
in Fig. 4 for NaCl aqueous solution. In the former case described by Egs. (5) and (6), the
concentrations of cations and anions coincide. Due to the difference between ion diffusion
coefficients (D, /D_ = 0.65), the electric field £ = —V® develops. It speeds up the slower
diffusing cation and retards the faster diffusing anion to make the total ion fluxes equal and
satisfy the condition of zero current. In a polarizable pore, this electric field induces the surface
charge, which changes almost linearly from the pore entrance (Z/L, = 0) to the pore exit
(Z/L, = 1), while keeping the total surface charge & zero, see Fig. 4 (d). It results in the
higher concentration of cations (anions) at negatively (positively) charged part of the pore,
Fig. 4 (b). The separation of charge induces the Donnan potentials at the pore entrance and
exit, which both contribute to the enhancement of membrane potential in comparison with
non—polarizable pore, Fig. 4 (a). The separation of charge also results in osmotic pressure
jumps at the pore entrance and exit, see Fig. 4 (c). These jumps balance the electric force,
which develops in the interfacial regions, where non-zero net charge is subjected to a large
electric field. A good agreement between the NS-NPP model and the extension of SC model
to polarizable nanopores is observed, which validates the latter model.

A closer look at the interfacial regions is presented in Fig. 5. The potential and concen-
tration drops in the NS-NPP model, which takes into account the reservoirs, are smooth and
lower in comparison with the SC model, which uses jump boundary conditions. It explains a
slight decrease of pressure jump magnitude at the pore exit, see Fig. 4 (c¢). In a polarizable
nanopore, the electric field resulting from strong potential gradients at the entrance and exit
significantly increases the induced surface charge there (Figs. 5 (c,d)). This effect can be de-
scribed only by NS-NPP model with continuous change of potential and ion concentrations at
the two interfaces.

The two—dimensional fields of potential, ion concentrations, and pressure without interfa-
cial jumps are presented in Fig. 6. They are calculated by the SC model. It can be seen that
the surface potential is constant (—2.7 mV), while the potential increases (decreases) in those
regions of pore, where the concentration of cations (anions) is higher. The pressure rise near
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polarizable (o = 0, dashed curves) and polarizable (¢ = 0, solid curves) nanopores in NaCl solution calculated
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the wall compensates the electric force (the last term in Eq. (13)), which is directed towards
the wall.

4.3 The induced—charge electroosmosis

A higher osmotic pressure jump at the pore exit in comparison with that at the pore
entrance induces the osmotic flow in the direction from lower to higher salt concentration, Fig.
7 (a). The higher concentration of cations (anions) near the pore entrance (exit) results in
the decrease (increase) of velocity in the near—wall region due to the presence of electric field.
The opposite situation is observed at the pore center since the total volume flow rate (average
velocity) is constant along the pore. The described effect becomes stronger with increasing the
concentration contrast, Fig. 7 (b,c). In this case, the induced charge at the pore wall increases
resulting in a higher charge separation inside the pore, and, consequently, higher electroosmotic
flow in the near—wall region. For high concentration contrast (Cr,/Cr = 1000), a region of large
negative charge develops at the pore exit. The flow near the pore walls enhances, while its
reversal is observed at the pore center to keep the average axial velocity constant, see Figs. 7
(c,d). Two counter—rotating vortices develop occupying around 2.5% of the total channel length
and extending to the right reservoir. Note that a similar effect was found to be responsible for
overlimiting current when applying a potential difference across a microchannel [52]. In this
work, we show that electroosmotic flow can be generated by the interaction between electric
field resulting from diffusion of ions with different mobilities and charge separation caused by
the induced surface charge.

The comparison between the SC and NS-NPP models in Fig. 7 reveals that the latter
model provides slightly reduced velocity magnitudes. This effect becomes more noticeable with
increasing the concentration contrast due to stronger reduction of osmotic pressure drop at the
pore exit in the NS-NPP model, see Fig. 4 (c¢). The calculations show that the differences
between models become smaller with increasing the pore length. Note that the velocity profiles
in the NS-NPP model were taken at Z/L, = 0.005 and Z/L, = 0.995 to avoid the influence of
entrance/exit effects.

4.4 Comparison between theory and experiment

The membrane potentials of uncharged non—polarizable (¢ = 0, R = 14 nm) and polariz-
able (¢ = 0, R = 8 nm) membranes in KCI and NaCl solutions have been calculated with the
help of SC model. The results are shown in Fig. 8 by dashed curves. For non—polarizable pores,
the membrane potential linearly depends on the logarithm of concentration ratio according to
(7). For polarizable pores, it significantly deviates from linear dependence since the magnitude
of induced charge increases with increasing the concentration contrast. In particular, for NaCl
solution with log(Cr,/Cr) = 1, the induced charge varies from —0.48 to 0.54 mC/m? (Fig. 4
(d)), while for log(Cr,/Cr) = 3 its variation is from —8.58 to 8.06 mC/m?. The induced-charge
enhancement of diffusion potential for KCI solution with almost equal ion diffusion coefficients
(D;+/D_ = 0.96) is quite significant (more than 16 times at log(CL/Cgr) = 3), see Fig. 8
(a). For NaCl solution with D, /D_ = 0.65, the enhancement is around 2.6 times at the same
concentration contrast, see Fig. 8 (b).

The theoretical results are well supported by the experimental data. The measurements
for Nafen membrane were performed at pH = 9.1 in KCI solution and pH = 8 in NaCl solution,
which correspond to the point of zero charge for alumina surface [53,54]. The values of surface
charge density o obtained by fitting of experimental data to the theoretical model of non—
polarizable nanopore with R = 14 nm are presented in Table 2. They are rather low, so the
fitted curves only slightly deviate from those corresponding to o = 0.

For C-Nafen membrane with conductive carbon surface, the adsorption of alkali metal
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Figure 8: Membrane potential of Nafen (blue) and C-Nafen (red) membranes in KCl (a) and NaCl (b) aqueous
solutions. Experimental data (points), calculations for uncharged non—polarizable (blue) and polarizable (red)
pores (dashed curves), fitting of experimental data (solid curves), ideal anion selectivity (solid black line). Error
bars correspond to 1 standard deviation. The parameters are given in Table 2, L,=400 pm.

Table 2: Experimental cases with fitted values of ¢ (Nafen membranes) or R and & (C-Nafen membranes).

Electrolyte Aqueous KCI Aqueous NaCl
Membrane Nafen C—Nafen Nafen C—Nafen
Cr, mM 1 0.1 1 1

R, nm 14 8.8 14 9.4

o or o, mC/m? 0.329 0.039 0.128 0.045

cations on the defects of carbon structure can occur and modify the surface charge, see [48]
and [55-57]. To minimize this effect, low electrolyte concentrations were used: Cr = 0.1 mM
for KCl and Cr = 1 mM for NaCl. In this case, the experimental data were fitted to theoretical
model of polarizable nanopore to obtain the total surface charge density @ and pore radius R,
see Table 2. The obtained values of & are positive but rather small, while the R values are
in good agreement with low temperature nitrogen adsorption data (8 nm) [48]. So, the fitted
curves are close to those of fully uncharged (&) polarizable membranes in Fig. 8.

4.5 The influence of fixed concentration C'y, and pore radius

The diffusion potential A®p of an uncharged non—polarizable membrane at constant tem-
perature depends only on the ratio of concentrations and ion diffusion coefficients, see Eq. (7)
and the corresponding dashed curve in Fig. 9 (a). In this case, there are no interfacial pressure
jumps, so the average axial velocity V' = 0 (Fig. 9 (b)). The average ion flux J = .J, where .J
is given by (6). Figure 9 (c) shows that it increases with increasing the concentration contrast.
The magnitude of pore-averaged potential increases as well according to (9) since stronger
electric field is required to make the ion fluxes equal at higher concentration contrast (Fig. 9
().

In the case of membrane with polarizable pores, the situation is strikingly different. The
membrane potential now essentially depends on the concentration C'gr. At lower concentrations,
the Debye length is larger, which means a stronger overlap of electric double layers created by
the induced surface charge. The calculations reveal that the magnitude of Donnan potentials
at the pore entrance and exit (see Fig. 4 (a)) becomes larger when Cg decreases at fixed ratio
Cp/Cr. Tt explains the stronger enhancement of membrane potential at lower C'r shown in Fig.
9 (a). The magnitudes of average axial velocity and average ion flux increase with increasing
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Cg, see Fig. 9 (b,c). The redistribution of surface charge by electric field causes its suppression
near the pore surface (Fig. 6 (a)). Thus, the magnitude of surface potential ®; in a polarizable
nanopore becomes smaller than that in a non—polarizable nanopore, see Fig. 9 (d). Note that
in the latter case, the surface potential is not constant, so the value ®; is compared with the
pore—averaged potential ® given by (9). It is clear that the suppression of electric field becomes
stronger for lower concentrations Ckg.

The effect of decreasing the pore radius is similar to that of decreasing concentration. It
is demonstrated in Fig. 10. In both cases, the Debye length increases leading to a stronger
overlap of electric double layers. The membrane potential shows a significant increase when
R, decreases, but even at large R, its enhancement is quite noticeable in comparison with the

non—polarizable case. The variation of pore radius, however, does not influence the average ion
flux, see Fig. 10 (c).

4.6 The influence of ion diffusion coefficients ratio

The effect of ion diffusion coefficients ratio on the membrane potential is shown in Fig.
11 (a). For both non—polarizable and polarizable pores, A® = 0 when D = D,/D_ = 1,
while it approaches the Nernst potential when D — 0, see Egs. (7) and (8). In the range
0 < D < 1, a dramatic enhancement of diffusion potential in a polarizable pore is observed. It
becomes larger with increasing the concentration contrast. Especially unusual is the strong rise
of membrane potential magnitude near D = 1. It means that a very small difference between
diffusion coefficients can result in a large change of membrane potential. This conclusion is
confirmed by the experimental data in KCI solution, see Fig. 8 (a).

For a polarizable nanopore, the average axial velocity is zero when D = 1 since the
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interfacial pressure jumps are not formed in the absence of induced charge (Fig. 11 (b)). It
also tends to zero when D — 0. The calculations show that in this case the magnitude of
induced charge near the pore entrance becomes much larger than near the pore exit, which
results in almost equal magnitudes of interfacial pressure jumps. An interesting conclusion
is that the magnitude of average axial velocity reaches maximum at some value of diffusion
coefficients ratio.

The average ion flux decreases with decreasing the ratio of diffusion coefficients D =
D./D_ at fixed D_, see Fig. 11 (c). According to (6), the flux is dominated by the smaller
diffusivity. At the same time, the magnitude of pore-averaged potential described by Eq. (9)
increases when the ratio Dy /D_ goes to zero (Fig. 11 (d)). The decrease of surface potential
magnitude in a polarizable nanopore in comparison with the pore-averaged potential of a non—
polarizable nanopore is clearly seen. Note that the average axial velocity, ion flux, and surface
potential become larger in magnitude when the concentration contrast becomes larger.

The calculations in this work have been performed assuming that D, < D_;so0 < D < 1.
The case D, > D_ can be reduced to the previously considered one by applying the following
change of dimensionless variables

u — Du, cp —C_, c_ — Cy, o — —, (35)
Os —» —0sg, Ps = —Ps; Qs — —(s. (36>

In (36), one should choose either the first, second, or third formula when boundary conditions
C1, C2, or C3 are imposed on the nanopore wall, respectively, see Table 1. After application of
(35), (36), the governing equations (13)—(17) and boundary conditions in Table 1 remain the
same, but in formulas for dimensional variables (12) and dimensionless parameters (18) D_ is
replaced by D, and vice versa. So, one finds 0 < D < 1 as in the previously considered case.
It follows that at the same ratio of smaller to larger diffusivity, the magnitude of membrane
potential is the same, but its sign is negative when D, < D_ and positive when D, > D_.

5 Conclusion

In this paper, we have studied theoretically and experimentally the generation of membrane
potential at zero current in nanoporous membranes separating two reservoirs with different
electrolyte concentrations. The TMS model was used to describe the transport of ions in
uncharged non—polarizable nanopores. The simulation of polarizable nanopores was performed
by the Navier—Stokes / Nernst—Planck / Poisson (NS-NPP) model with floating boundary
condition at the conductive pore wall. The extension of the Space-Charge (SC) model to
polarizable nanopores was proposed for the first time and validated against the full NS-NPP
model.

A new mechanism for the generation of membrane potential in polarizable nanoporous
membranes has been discovered. The electric field generated by diffusion of ions with different
mobilities induces a non—uniform surface charge, which results in charge separation inside the
nanopore. A higher concentration of cations (anions) is observed at negatively (positively)
charged part of the pore. The corresponding Donnan potentials appear at the pore entrance
and exit leading to a dramatic enhancement of membrane potential in comparison with un-
charged dielectric membrane. The theoretical predictions have been confirmed experimentally
by measuring the membrane potential of dielectric and conductive membranes in KCIl and
NaCl aqueous solutions. The membranes were prepared from Nafen alumina nanofibers with
the diameter of around 10 nm. Chemical vapor deposition (CVD) was used to form conductive
carbon layers on the nanofibrous membrane structure.

The calculations reveal that charge separation induces unequal pressure jumps at the pore
entrance and exit leading to osmotic flow in the direction from lower to higher concentration. At
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high concentration contrast, the interaction between electric field and uncompensated charge
results in the appearance of electrokinetic flow near the pore exit in the form of counter-rotating
vortices. A detailed simulation by NS-NPP model reveals that the magnitude of induced charge
increases greatly in the interfacial regions due to strong electric fields there.

It is found that the enhancement of membrane potential in initially uncharged polarizable
nanopores becomes greater with decreasing the electrolyte concentration and pore radius. The
membrane potential is zero at equal ion diffusion coefficients and coincides with the Nernst
potential when their ratio tends to zero (or to infinity) for both non—polarizable and polariz-
able nanopores. In the intermediate region, the latter exhibit much large membrane potential
in comparison with the former ones. A strong sensitivity of membrane potential to small dif-
ferences in ion diffusion coefficients is demonstrated. The described phenomenon may find
applications in precise determination of ion mobilities, electrochemical and bio—sensing, as well
as design of nanofluidic and bioelectronic devices.
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Appendix

The formulas for coefficients of matrix £ were derived in [15] for the case of equal ion
diffusion coefficients (D = D, /D_ = 1). We have generalized these formulas to the case when
D, and D_ have different values:

1
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11 8C¥’
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where ¢, = (1, z). Note that the dependence of ¥ and ¢, on z is not explicitly stated here.
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