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Abstract 27 

Larch-dominant communities are the most extensive high latitude forests in Eurasia and are experiencing the 28 

strongest impacts from warming temperatures. We analyzed larch (Larix dahurica Turcz) growth index (GI) 29 

response to climate change.  The studied larch-dominant communities are located within the permafrost zone of 30 

Northern Siberia at the northern tree limit (ca. N67°38ʹ, E99°07ʹ). Methods included dendrochronology, analysis of 31 

climate variables, root zone moisture content, and satellite-derived gross (GPP) and net (NPP) primary productivity. 32 

It was found that larch response to warming included a period of increased annual growth increment (GI) (from the 33 

1970s to ca. 1995) with a follow on GI decline. Increase in GI correlated with summer air temperature, whereas an 34 

observed decrease in GI was caused by water stress (vapor pressure deficit and drought increase).  Water stress 35 

impact on larch growth in permafrost was not observed before the onset of warming (ca. 1970). Water limitation 36 

was also indicated by GI dependence on soil moisture stored during the previous year. Water stress was especially 37 

pronounced for stands growing on rocky soils with low water holding capacity. GPP of larch communities showed 38 

an increasing trend, whereas NPP stagnated. A similar pattern of GI response to climate warming has also been 39 

observed for Larix sibirica Ledeb, Pinus sibirica Du Tour and Abies sibirica Ledeb in the forests of southern 40 

Siberia. Thus, warming in northern Siberia permafrost zone resulted in an initial increase in larch growth from the 41 

1970s to the mid-1990s. After that time, larch growth increment has decreased. Since ca. 1990 water stress at the 42 
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beginning of the vegetative period became, along with air temperature, a main factor affecting larch growth within 43 

the permafrost zone. 44 
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Introduction 56 

Larch stands, composed of Larix dahurica Turcz, L. sibirica Ledeb, and L. cajanderi Mayr cover about 70% of the 57 

permafrost area in Russia (with roughly one third covered by Larix dahurica). The northern tree line in Siberia is 58 

formed sequentially (from west to east) by Larix sibirica, L. dahurica, and L. cajanderi. On the boundary of its 59 

southern range, larch mixes with evergreen conifers (Siberian pine, Pinus sibirica Du Tour, fir, Abies sibirica 60 

Ledeb, spruce, Picea obovata Ledeb., Pinus sylvestris L.), and hardwoods (Populus tremula L., Betula pendula 61 

Roth., B. pubescence Ehrh.). Within permafrost areas, larch competes effectively with “dark needle conifers” 62 

(Siberian pine, fir and spruce) due to its deciduous nature and dense bark that protects against winter desiccation and 63 

snow abrasion (Kharuk et al. 2013). Larch species are also more resistant to wildfires in comparison with “dark 64 

needle conifers”. Moreover, larch is a pyrophytic species, i.e., wildfires promote seed germination and growth by 65 

reducing moss and lichen groundcover. Consequently, age of larch stands regularly corresponds to the dates of 66 

intensive (stand replacing) ground fires. Fresh burns are also occupied by Betula pendula and alder (Duschekia 67 

fruticosa (Rupr.) Pouzar). Within permafrost areas, larch forms mainly open stands. Closed stands are typically 68 

located on well-drained soils along streams and rivers.   69 

Larch dominated communities are known to be a carbon sink (e.g., Schuur et al. 2015). Meanwhile, 70 

increasing permafrost temperatures in Siberia (e.g., Romanovsky et al. 2017) are leading to increased carbon (C) 71 

release.  Vegetation and larch stands, in particular, may influences the rate of C release by carbon assimilation due 72 

to potentially increased primary productivity as a result of longer growing seasons and soil fertilization (Schuur et 73 

al. 2008).   74 

Larix dahurica Turcz is a highly ecologically adaptive species with range from about 72°+ north to the 75 

southern Siberian and Mongolian forest-steppes (~48°N). This is a fast growing, drought-resistant, salt-tolerant, 76 

shade-intolerant species.  Larch is an oligotrophic species and can grow on diverse soil types.  Under favorable 77 

conditions, larch reaches 35 m height with diameter up to 1 m.  Maximum larch age may exceed 500 years (with up 78 

to ~1000 years reported by Koropachinsky and Vstovskaya 2012). Cones open in the spring spreading seeds over 79 

the snow cover; fertile seeds may be retained within cones up to 4 years.  L. dahurica can also regenerate by 80 

layering (Koropachinsky and Vstovskaya 2012). Larch growth within permafrost areas is limited by poor drainage 81 

and a shallow root zone which is compressed within the shallow thawed permafrost layer. This layer regularly is 82 

about 30–50 cm or less within dense moss sites, although on sunny well-drained slopes it may exceeds 1.0 m. 83 

Within sites with a dense moss cover larch forms subordinate roots.  Larix dahurica, due to a shallow root system, is 84 

more vulnerable to surface fires compared to Larix sibirica, which occupies mainly non-permafrost areas and is 85 

more resistant to fires by forming thick bark around bole base. 86 

The significant warming observed in the permafrost zone of Siberia suggests an increase in tree growth 87 

because temperature is a primary growth-limiting parameter within high latitudes (e.g., Lloyd and Bunn 2007; 88 

Richardson and Friedland 2009). Indeed, there are reports on larch stand densification, growth increment increase, 89 

and regeneration advance into the tundra (Kharuk et al. 2006; Shiyatov et al. 2007; Esper et al. 2010; Kirdyanov et 90 

al. 2013). Larix dahurica growth increase was also reported for the alpine permafrost zone (Zhang et al. 2016). In 91 

addition, climate-driven “southern” species (e.g., Pinus sibirica du Tour, Abies sibirica Ledeb) invasion into larch 92 

dominated forests was documented by Kharuk et al. (2005). These shade-tolerant species can grow under the larch 93 

canopy and consequently with time may replace shade non-tolerant larch in the upper canopy.  94 

Climate-driven growth increase was reported also for some tree species in European and North American 95 

forests (e.g., Kullman and Kjällgren 2006; Lenoir et al. 2008; Harsch et al. 2009; McMahon et al. 2010). In addition, 96 

the decreasing sensitivity of tree growth indices to temperature during recent decades was reported (D’Arrigo et al. 97 

2005; Andreu-Hayles et al. 2011; Lebourgeois et al. 2012), including European larch (Larix decidua Mill.).  98 
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(Coppola et al. 2012).  This effect may be attributed to increased water stress caused by elevated temperatures 99 

(Kharuk et al. 2015). Growth increment decrease of Larix sibirica during “warming hiatus” (i.e., from late 1990s 100 

until ca. 2013) was documented for semi-arid areas (Liu et al. 2013), whereas within areas of sufficient precipitation 101 

(i.e., high elevations) a steady growth increase was observed (Kharuk et al. 2015).  102 

 This study aims to analyze Larix dahurica Turcz growth response to warming within a typical permafrost 103 

area in Central Siberia.  We hypothesize that larch growth response to warming should be sensitive to both, 104 

temperature and water regime changes.  105 

Study area 106 

The study area was located within the Kotuy River watershed in the Putorana Plateau. This area is 107 

underlain by permafrost soil and is at the northern larch range in Central Siberia (Fig. 1). Annual precipitation 108 

average is 375 mm (195 mm in June, July and August (JJA)) between 1980 and 2016.  Mean July and January 109 

temperatures were +14°С and –34°С, respectively. Within this area, Larix dahurica forms mainly low-closure 110 

stands on cryosols (clay permafrost soils). The mean upper tree line limit is about 500 m a.s.l. Along with larch, a 111 

shrub form of alder (Duschekia fruticose; mean height about 2 m) occurs within wind-protected areas. Ground cover 112 

is composed of sedge, lichen, and moss.  Small shrubs included Betula nana L., Salix sp., and Vaccinium sp.  113 

Historically, wildfire activity within the area is low (fire return intervals about 200 years) (Kharuk et al. 2016a). 114 

Materials and methods  115 

We used field studies, remote sensing (Terra/MODIS and GRACE satellite data) and dendrochronology data 116 

for our analysis. Field measurements were taken within the Kotuy River valley within an elevation range of 270–480 117 

m and with slopes up to 7° (see Fig. 1). We used small boats to transport personnel and supplies down the Kotuy 118 

River between helicopter drop off and pick up points. The total covered distance was 135 km. The area was 119 

explored along five transects (mean length 2.6 km) positioned across the river valley and covered the variety of 120 

larch stands within the study area. In addition, samples were taken from a “hill site” (elevation 450 m with a south-121 

west facing steep (about 15°) slope; Fig. 1). Temporary test sites (TS; Table 1) were located along transects with 122 

about 170 m between them (total number = 55). The TS radius (R = 9.8 m or 15 m) was selected depending on stand 123 

closure. Data collected within TS included geolocation, tree height, DBH (diameter at breast height = 1.3 m), vigor 124 

(for trees with DBH > 3 cm), permafrost and moss and lichen cover depth, shrubs, ground cover and soil 125 

description. Permafrost depth was measured with a metal rod. Samples for dendrochronological analysis were taken 126 

with an increment borer at DBH height in each TS. 162 trees in total were sampled (about 32 samples per transect).   127 

The reason for the “hill site” (HS) selection was there were visual signs of different trees health status in 128 

close proximity. Thus, trees located within channels of ephemeral streams had green healthy needles (“healthy 129 

cohort”), whereas needles of trees located between adjacent channels were chlorotic (“declining cohort”). Soils 130 

within channels were brown-clay permafrost, whereas between channels soils were rocky with poor water holding 131 

capacity. Twenty trees were sampled for both cohorts for comparative growth pattern analysis.  132 

Dendrochronology analysis 133 

Tree ring widths were measured using LINTAB III device (precision of 0.01 mm). Cross-dating was performed by 134 

standard methods as described by Rinn (1996). For cross-dating statistical analysis and generalized chronologies 135 

construction ARSTAN (v.44), COFECHA, and TSAP software were used. Individual chronologies with low 136 

correlation with the master-chronology were deleted from further analysis. The Regional Curve Standardization 137 

(RCS) method (ARSTAN v.44) was applied for construction of standard chronologies and elimination of growth 138 
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trends (Esper et al. 2003; Sullivan et al. 2016). As a result, growth indices (GI), that is relative indices of the radial 139 

growth, were obtained.  140 

Climate variables and GPP/NPP data  141 

Larch growth was analyzed with respect to the main climate variables: air temperature, precipitation, drought index, 142 

vapor pressure deficit (VPD), and vegetation period length. The latter was defined as a number of days with 143 

t > +10°C. Although Rossi et al. (2008) showed that cambium of conifers is activated by temperatures within the 144 

range of +4…+6°C, we found that using t > +10°C provides the best fit.  Soil moisture content was estimated based 145 

on monthly GRACE-derived Equivalent of Water Thickness Anomalies (EWTA) data. EWTA accuracy is reported 146 

as 10–30 mm month
-1

 with spatial resolution 1°×1° (Long et al. 2014; http://www.grace.jpl.nasa.gov).  Climate 147 

variables were obtained from NASA’s MERRA2 databases (grid 0.5° × 0.625°; 148 

https://disc.sci.gsfc.nasa.gov/datasets), and from the nearest meteorological station (WMO 23383 “Agata”, 66.88°N, 149 

83.47°E, ~ 250 km distance from the study site).  Drought index SPEI (The Standardized Precipitation-150 

Evapotranspiration Index) is defined as the difference (Di) between precipitation amount (Pi) and potential 151 

evapotranspiration (PETi), where i – period, data are normalized in space and time (Vicente-Serrano et al. 2010). 152 

SPEI data were obtained from http://sac.csic.es/spei (grid 0.5° × 0.5°).  SPEI was considered for the growing season 153 

months of June–August within the study area.  Gross Primary Productivity (GPP) and Net Primary Productivity 154 

(NPP) data were acquired from NASA’s Terra/MODIS as 8-day composites products 155 

(https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table, see tables mod17a2h and mod17a3h). 156 

Results  157 

Climate variables dynamic 158 

Summer temperatures and the number of days with temperatures t > 0°C and t > +5°C increased since 1970 159 

(Fig. 2a,f). A minor summer precipitation increase occurred during 1980–1990 along with a strong precipitation 160 

variability increase observed since the 1970s
 
(Fig. 2c). The drought index, SPEI, showed a continuous decreasing 161 

trend (Fig. 2e) which indicates increasing impact of drought conditions since the 1950s. Seasonal SPEI pattern has 162 

also changed significantly since the 1990s, with June becoming the driest month (Fig. 2d). Vapor pressure deficit 163 

strongly increased since the year 2000 (Fig. 2e). 164 

Larch growth index (GI) dynamics 165 

Growth index chronologies were highly correlated (r = 0.82) for all five transects. In addition, the growth pattern of 166 

the “healthy cohort” within “hill site” was similar to those chronologies. Based on this, “healthy cohort” samples 167 

were combined with transect data (total sample size N = 182).  Larch GI increase has been observed since the mid-168 

1970s followed by GI depression since the late 1990s (Fig. 3). Minimal GI values corresponded to severe droughts 169 

(e.g., 1989, 1999, and 2010) and extremely cold years (e.g., 1989). The declining trees cohort responded to warming 170 

by general GI depression without any period of GI stimulation by elevated temperature (Fig. 3). 171 

Larch GI vs climate variables and GPP 172 

Larch growth index (GI) correlated with air temperature, water regime parameters (June precipitation, vapor 173 

pressure deficit VPD, drought index, and soil water anomalies of previous year), and growth period length (Fig. 4). 174 

Over recent decades (since ca. 1990) larch showed increased sensitivity to atmospheric drought (indicated by VPD 175 

and SPEI) (Fig. 4c,f; Fig. 5a,b). That is especially noticeable for declining trees cohort, which showed drought 176 

sensitivity even in winter months due to winter desiccation. GI relationship with SPEI changed from negative in 177 

https://disc.sci.gsfc.nasa.gov/datasets
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table


6 

 

1980s to positive in the mid-1990s. Soil water stored during the previous year is also significant for larch growth 178 

(Fig. 4e). GI of declining trees cohort is sensitive to prior year August precipitation (r = 0.33, p < 0.1).  179 

Growth increment correlations with air temperatures changed from positive to non-significant for both 180 

cohorts and even negative (April–May; Fig. 5c,d). Running correlation showed a positive correlation between GI 181 

and air temperature until ca. 1990 with a following decrease in correlation (Fig. 6).    182 

There was a good correlation of larch GI and GPP (r
2
 = 0.64), whereas correlation with NPP is poor 183 

(r
2
 = 0.19; Fig. 7a).  Notably, within the study area larch GPP showed a strong positive temporal trend, whereas 184 

NPP values stagnated (Fig. 7b).  185 

Discussion 186 

The results show that within the study area air temperatures, since 1970, have risen +0.4°C per decade in summer 187 

(+0.5°C mean annual), which is consistent with reported values for high-latitude regions (+0.4°C per decade; 188 

Hartmann et al. 2013). The general pattern of larch response to that warming was two-phased: GI increased since the 189 

onset of warming in the 1970s, which lasts until ca. 1990 with a following growth depression. Period of GI increase 190 

correlated with summer air temperature, whereas a depression in growth was caused by increased water stress 191 

(vapor pressure deficit and drought increase). The phenomenon of drought impact on the tree growth within 192 

permafrost was not observed before the onset of warming. Within Siberia, a similar two-phase pattern of growth 193 

response to warming was found for Larix sibirica in semi-arid areas in southern Siberia (Kharuk et al. 2018) and for 194 

precipitation-sensitive species (i.e., Pinus sibirica Du Tour, Abies sibirica Ledeb) in more humid southern taiga 195 

habitat (Kharuk et al. 2016b, 2017a). 196 

In earlier studies (e.g., Kirdyanov 2010), larch growth in high latitudes and high elevations was considered 197 

to be limited by temperature. According to our study, larch growth followed temperature at the beginning of the 198 

warming only.  Further warming caused growth depression from water stress increase at the beginning of the 199 

vegetation period. The seasonal pattern of drought index SPEI changed since the 1990s indicating a strong increase 200 

in atmospheric drought in June. According to Novick et al. (2016), atmospheric demand limits evapotranspiration to 201 

a greater extent than soil moisture. Changes in SPEI and especially a rapid increase in vapor pressure deficit resulted 202 

in a negative impact on growth of both healthy and declining trees (Fig. 4c,d). The limitation of growth due to water 203 

stress is also indicated by GI dependence on the amount of soil water acquired during the previous year (Fig. 4e). 204 

Indeed, study stands received limited summer precipitation (195 mm received mainly during August) to go along 205 

with increasing vapor pressure deficit and drought.  Moreover, high inter-annual precipitation variability caused 206 

periodic droughts (Fig. 2b,c). The results obtained coincided with Restaino et al. (2016) observation of forests in the 207 

western US, where increased temperature suppressed Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) growth 208 

via increased vapor pressure deficit. The divergence between tree growth and elevated temperature were also 209 

discussed for Alaskan forests (Andreu-Hayles et al. 2011). The negative effect of warming was also described for 210 

Larix sibirica Ledeb and Pinus silvestris L. growth in semi-arid forests of Interior Asia (Liu et al. 2013).  211 

The sensitivity of Larix dahurica growth index to temperature decreased since ca. 1990, whereas sensitivity 212 

to drought increased (Fig. 5, 6). The loss of the temperature signal in the tree-ring chronologies was also described 213 

for European larch (Larix decidua Mill.) (Coppola et al. 2012). Franceschini et al. (2013) also pointed that tree-ring 214 

indices tracked the rising temperature up to a certain point and then began decreasing as temperatures continued 215 

rising. A change of primary growth factor from temperature to available water was also described for Pinus mugo 216 

Turra at higher elevations in the Alps Mountains (Churakova et al. 2016).  217 

In our study area, the switch from growth limitation by temperature to limitation by water was primarily 218 

observed in the declining trees cohort located on soils with low water-holding capacity (Fig. 5a). In addition, 219 

https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=Anna%20Coppola&eventCode=SE-AU


7 

 

elevated spring (April–May) temperatures had a negative impact on the growth of both cohorts (Fig. 5c,d). This may 220 

be related to cambium activation caused by early spring warming followed by frost damage.  221 

Further increase of drought frequency (as predicted by e.g., Pachauri et al. 2014) may lead to larch decline 222 

and mortality in drought-prone areas (as, for example, within declining trees habitat with south facings slopes with 223 

soils of low water holding capacity). This effect has also been reported for “dark needle” conifers (Pinus sibirica, 224 

Abies sibirica) in southern Siberia (Kharuk et al. 2016b). At the same time water deficit may be partially mitigated 225 

by an increased permafrost thaw depth that encourages tree growth (Sugimoto et al. 2002; Romanovsky et al. 2017). 226 

According to Zhang et al. (2016) that effect was observed for high elevation Larix dahurica stands in Northern 227 

China, where synergy of permafrost thawing and air temperature increase stimulated larch growth. 228 

Meanwhile larch communities GPP within permafrost areas showed a strong positive trend in the 2000s on 229 

the background of NPP stagnation (Fig. 7); the latter should be attributed to increased respiration demands caused 230 

by elevated temperatures and atmospheric drought. NPP stagnation was approximated by larch GI decrease in the 231 

21
st
 century, which is understandable because GI is the NPP proxy. In spite of larch GI decrease since the late 232 

1990s, mean decadal larch GI values were higher in the 21
st
 century than in the pre-warming (1950–1970) period 233 

(0.84 ± 0.03 and 1.24 ± 0.06, respectively).  234 

Permafrost degradation simulations predicts higher carbon fluxes as the effects of increasing temperatures. 235 

(Schuur et al. 2015) However, decomposition occurring within thawing permafrost can lead to increased soil 236 

fertilization that can intensify plant growth and mitigate carbon losses (Koven et al. 2015). Wildfires in permafrost 237 

forests result in thawing of permafrost and an increase in the active layer.  This impact may serve as a proxy (in the 238 

sense of thaw depth) of the impact of warming on permafrost. Thus, after wildfires, seasonal permafrost thaw depth 239 

may increase up to 3–4 times with a 2–3 times GI increase (up to 7–8 on the drained soils; Kharuk et al. 2011).  Fire 240 

frequency itself within the study area was rather low before warming (with fire return intervals about 200 years, 241 

Kharuk et al. 2016a). Meanwhile warming-induced fire frequency and burned area increase are being observed (and 242 

predicted) in the larch taiga (Kharuk and Ponomarev 2017b). Increased wildfire rate should be favorable for larch 243 

since this promotes regeneration eliminates competitive species (e.g., Siberian pine and fir). However, there are still 244 

uncertainties. For example, warming increases larch competition with less cold-tolerant invaders such as Pinus 245 

sibirica, Abies sibirica, Picea obovata, and Pinus sylvestris. The harsh environment favors frost-resistant larch 246 

species and its domination within the permafrost zone. Thus, one of the expected consequences of warming and 247 

permafrost thawing is decreasing the proportion of larch within the northern Siberian taiga (Kharuk et al. 2005). 248 

Conclusions 249 

1. Within the permafrost zone in northern Siberia climate warming caused a two-phase impact on larch trees: 250 

growth increase from 1970s until ca. 1990 followed by a growth depression.  251 

2. Growth increase correlated with summer temperature, whereas growth depression was caused by increased 252 

water stress (vapor pressure deficit and drought increase). This phenomenon was not observed before onset 253 

of warming.  254 

3. Larch growth sensitivity to temperature decreased since ca. 1990 and increased for precipitation.  255 

4. GPP of larch communities increased since 2000s, whereas NPP values stagnated.  256 

 257 
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