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Solution of Boundary Value Problems of Plasticity
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In the paper conservation laws of a special form for systems of first-order differential equations depending
on two dependent and independent variables are looked at. It is shown how the conservation laws can
be used to solve hyperbolic-type and elliptic-type systems of equations that are come across in the theory
of plasticity. FEzxamples of an effective use of the described technique are given. With the use of the
conservation laws was found the elastoplastic boundary in a problem of stress-strain state of a plate with

free-form holes.

Keywords: conservation laws, elastic-plastic boundary
DOLI: 10.17516,/1997-1397-2018-11-3-356-363.

Introduction

Symmetries and conservation laws allow studying of differential equations from different
points of view.

Symmetries act on the manifold of solutions of differential equations and that is why allow us
to study and find their solutions in two ways. The first way is to find the so-called fixed-points,
i.e. such solutions that do not change when some symmetries act. Invariant solutions get found
in such a way. This method is realised to the full extent in the papers of L.V.Ovsyannikov [1].

The other approach is frequently declared but is seldom realised. Its main point is that we
get symmetries to act on the given solution and we obtain new solutions of the same differential
equation system. It was used in the papers [2-5]. There may be an obstruction for realisation of
this method which is "poorness" of the admitted group of symmetries or difficulty to interpret
the found "multiplied" solutions. We manage to avoid difficulties in interpretation if we act
not on the solution itself but on some other objects related to it, for example on characteristics
in case of hyperbolic equations. Use of symmetries when solving boundary value problems for
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differential equation systems encounters significant difficulties, though attempts of such a kind
have been undertaken, this is evidently explained by local property of symmetries. But on the
other hand the technique of using symmetries allows finding and describing fairly wide classes of
solutions, and at that fairly effectively.

Conservation laws building technique is in actual fact dual to symmetries building technique
and the methods to find them are close to the methods to find symmetries. But the results
significantly differ: conservation laws allow solving boundary value problems, and at that fairly
effectively. This is illustrated in a series of papers on solving of boundary value problems for
plasticity equations and other continuum mechanics equations [6-10].

1. Fundamental definitions

For simplicity we restrict ourselves to the case of differential equations depending on two
independent x,y and two dependent variables w,v. This case is simpler for understanding; best
investigated and is frequently come across in mechanics problems. Let us look at the system of
the two differential equations

Fl == Fl (x,y.u,v.ur, Uy s vzavy) = 07 F2 = F2 (x,y.u,v.um, uyavravy) = 07 (1)
where the index below stands for a derivative with respect to the corresponding argument.

Definition 1. As the conservation law for system of equations (1) we will call the expression in

the form of
DoA+ DyB = Q1 (F1) + Qs (F), (2)

where Q; 1 = 1,2 some linear differential operators that at the same time are not trivial, Dy, D,
are operators of full differentiation for the corresponding variables Dy = Op+ uz0y+ v 00+ - . .,
Dy =0y + uy0y +v,0, + ... .

Remark. This quite a commonplace definition is reasonably suitable for the presentation of our
results. More general approach can be learned in [11].

Definition 2. Vector (A, B) is called conserved current.

In this paper functions and are supposed to be dependent on x,y, u, v only. We can assume
that and also depend on the derivatives but such conservation laws for system (2) are difficult
to interpret and that is why they will not be considered here.

From (1) according to Riemann formula it follows

7{ Ady — Bdz =0, (3)
C

where C is closed contour in which Functions and have no singularities for simplicity. Let us
show how conservation laws (2) can be used for different types of differential equations.

2. Use of conservation laws to solve hyperbolic systems
of differential equations

Assume (1) is a system of hyperbolic differential equations. Its characteristics are written as

dy dy
. —_— L — = . 4
1 dJU ﬂ(uvvvxvy) ( )

r :
2

:a(u7v7x7y)7 F
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These characteristics proceed from the endpoints of the segment of curve L 1 < x < x5 with
conditions established on it
ulr, = ug,v|r, = vo.

Assume (xp, yp) is the point of intersection of the characteristics (see Fig. 1).

y A 3
rf ]"g
Xy f X2
> x
Fig. 1
Let us find this point. By virtue of (3) we have
/Ady — Bdx+ | Ady— Bdx+ | Ady— Bdx =0. (5)
L Iy sy

We have

/ Ady — Bdzx = / (A—aB)dy = (A—aB)ylj! — / yd(A — aB),
I I Ty

Ady — Bdx :/

T

(4~ 8B)dy = (4~ 3Bl ~ [ (4~ 5B).

Ty 1)

Let us assume that and is the solution of equation (2) with the following boundary conditions
(A —aB)|r, = const, (A — BB)|r, = const.

In this case from (5) we can obtain coordinate y,. In the same way coordinate z, shall
be obtained. In this way we manage to build the characteristics of System of equations (1),
and therefore to solve the set problem. Moreover for many of mechanics problems building
of the characteristics often give more information to the researcher than finding of an explicit
solution. The described method is effective, with the use of which were solved Cauchy and
Riemann problems for perfect plasticity equations, and also some problems for other equations
of mechanics [12].

3. Use of conservation laws to solve elliptic of differential
equation systems

Assume system (1) is of an elliptic type. We will be finding the solution of equation (2) that
has a singularity in point (zg, y9). Assume that on closed curve L the functions u|;, = ug,v|r, = vo
are defined.

Let us encircle point (zg, yo) with a circumference with a radius ¢ : (x — x9)?+(y — yo)? = &2.

Let us connect it as shown on Fig. 2, with a cut with contour L.

We have

/ Ady — Bdz + | Ady — Bdz + [ Ady — Bdx + /Ady — Bdz = 0. (6)
L Fl Fg 13
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Fig. 2

From (6) we obtain

/Ady—de:—/Ady—de.
L €

Let us set ¢ — 0. We obtain a relation relating u (zg, yo),v (zo,¥0) and /Ady — Bdz.
Having chosen another conserved current with the same conditions we get another rela-
tion relating u (zo, yo0) , v (20, yo) and /Ady — Bdxz. These two relations allow finding values

L
u (20, Y0) ,v (2o, yo) and because point (xg,yo) is arbitrary, then therefore the solution for the
set problem has been built. This method is realised in papers [8-10]. It allowed calculating of
the boundary between plastic strain range and elastic strain range for rolled section rods being
twisted. The results of the calculations are given in the Fig. 3.
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Fig. 3

4. Solution of a plane elastic-plastic problem

Within the plastic strain range in a bidimensional case with a general yield criterion the
equations will be written as
Oo, OT or  Ooy

oxr Oy =0, (™)
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(0z,0y,7) =0. (8)

Within the elastic strain range relations (7) and compatibility condition of deformations are
performed that is written as

o, OT 0 or n %

or * oy oz oy 0 ©)
0*(0z + 0y N *(0n+0y) 0
Ox2 Oy? -

5. Problem setting

Let us consider a finite rectangular plate with dimensions of a x b with holes of an arbitrary
shape limited by contours I'1, I's, ..., I'y,. Let us assume that the plate is under different stresses
in z,y directions, and the contour lines of the holes are under the action of the set stresses.

On the external boundaries of I'y we get the following conditions

U;c|x=a = Ux|ac=0 =(q1, O'y|y=b = Uy|y=0 = q2. (10)

Other stress components on these boundaries are equal to zero.
On the boundary of contours I'y,I's, ..., 'y, the condition is fulfilled.

agn’ +Tm’ ri = ph, (11)

ri =pj, ™' +o,m

where ¢;, p? are constants, (n‘, m?) is vector components of the normal to contour T';.
We assume that stresses 0, 0y, 7 on contours I'y, I'a, . . ., I'y,, are such that plasticity condition
(8) is fulfilled.
From equation (9) we obtain
oz + 0y =F(z,y), (12)

where F (x,y) some solution of Laplace equation (9). From (10) and (11) it follows that in order
to find F' (z,y) we need to solve Laplace equation with the following boundary conditions

F|:1::a = F|w:0 =dq1, F|y:b = F|y:O = 42, F i = dz (13)

Value d’ shall be determined from the solution of the three equations (11) and (8).

Let us consider the solution of problem (12), (13) as known because this is a classical problem
for Laplace equation. In this case in order to find o,,7 we will get the system of equations
_0do, | OT Ot 0Qo, OF _

+ =0, By= +—=0. (14)

(I)l_ax oy 2_8x_8y oy

For system (14) let us write conservation laws in the form of (2)
Dy A+ DyB = Q1 (P1) + Q2 (P2) .
Let us find conserved current in the form of:

A=oq(z,y)op+ b1 (2, y)T+n (2,y), 15)
B =as (x,y) 05 + B2 (z,y) T+ 72 (2,9y) .
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As a result we have

Oay 0B 0p1 O Oy1 | Oy oOF
Ox oy 0, Ox + Oy 0, Ox + Oy & Oy (16)

Finally conserved current shall be written as
A= Qg (J:,y)az +61 (Jf’y)T""Yl (mvy)a

(17)
B=-pi(z,y)0 + a1 (z,y) T+ (z,y),

coefficients of which are related by relations (16).
To simplify further calculations let us suppose that we have only one hole limited by contour
Ty, (see Fig. 4) according to Green formula we get

Ady — Bdz+ ¢ Ady — Bdz =0. (18)
Fo Fl
y N s
O |-
@
> x
Fig. 4

Let us look at the two singular solutions of equations (16)

ol — T — X 51__ Y —Yo
1= ) 1 — ’
(r o) + (v —wo)° (2= 20)" + (s = o)’ (19)
v =— [ wady, i =0.
OéQ _ Y —1Yo ﬂ2 _ T — o
1= ) 1 — ’
(z - 20)” + (y — 90)° (= 20)” + (y — yo)° (20)

73 = — [ wady, A =0.

From (19) and (20) according to the above shown formulas we finally obtain

210, (0, Y0) = —/ yz_ o 700 — x2— = 37 | dy—
o \ (@ —20)" + (¥ — o) (x —20)" + (¥ — o)

Y—7Yo T — o
— 5 50 + 5 27—&-7% dx—/ ’ylldy,
(z —20)” + (¥ — vo) (. —0)" + (¥ — yo) r

277 (0, Yo) = —/ x2— o 500 + y2— o0 57 | dy—
ro \ (z —20)” + (¥ — %) (x —x0)" + (¥ — o)

T — Zo Y — Yo
i 5 50z + 5 27—&-7% dx—/ ’yfdy,
(. —20)” + (¥ — o) (x —20)" + (¥ — vo) ry
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oy(x0,y0) = F(x0,y0) — 02(z0,Y0)-

We insert the obtained stresses into yield condition (8). In those points where f(o,,0,,7) <0,
it will be elastic range, and other points of the plate belong to plastic range.

Conclusion

The results of the use of conservation laws to solve boundary value problems have shown that

this method is effective for the problems of the theory of plasticity and elastic plasticity.
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Pemmenue KpaeBbIX 3a/Ja4 IIJIaCTUYIHOCTHU C MCIIOJIb30BaHMEM
3aKOHOB COXpPaHeHUndA

Cepreii 1. Cenaion

HNpuna JI. CaBocTbsiHOBaA

Cubupckuil rocy/1JapCTBEeHHbIN yHUBepcuTeT Hayku u TexHosoruit um. M. @. Pemernesa
Kpacuosipckmit pabounit, 31, Kpacunosipck, 660037

Poccus

Ouabra H. Yepemnanosa

Mucturyt MmatemaTuku u GyHIaMEHTATIBHON MHMOPMATHKHI
Cubupckuii deepabHbIil YHUBEPCUTET

Csobonmsrit, 79, Kpacuosipck, 660041

Poccus

B pabome paccmompenvl 3aK0OHbL COTPAHEHUA CNEYUAALHO20 8UAA s cucmem JuPPepenHyuarvbHbir Yypas-
HEeHUL NePB8020 NOPAJKG, 3ABUCAULUE OM 06YT 3GEUCUMBT U HE3ABUCUMBT nepemennoix. Iloxasano xax
3AKOHBL COTPAHENUA MORYM OBIND UCTLOAL30BAHBL OAS PEULEHUS CUCTEM YPAGHEHUT 2unepbosuteckozo u
QAAUNMUYECKO20 TMUNOSG, KOMOPLE BCMPEUAIOMCA 8 MeoPpuY, naacmuywrkocmu. IIpusederv, npumepss h-
Ppexmuerozo npumerenus onucannot memodury. C' nomowpro 3aK0H08 cOTpaHenUs Hatoena Ynpyaonia-
CMUNECKAsA 2PAHULG 8 3a0aUe 0 HANPAHCEHHO JEPOPMUPOBAHHOM COCTNOAHUY NAACTIUHBL C OTNEEPCTIUAMU
npPou3eoNLHOT POPMbL.

Karouesvie caosa: 3akomvl COTPAHEHUA, YNPY20NAACTNUECKAA 2PAHUUA.
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