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Abstract. We present a model of localized spin dynamics at room temperature for the low-

dimensional solid-state spin system, which contains small ensembles of magnetic nuclei (N ~ 

40). The standard spin Hamiltonian (XXZ model) is the sum of the Zeeman term in a strong 

external magnetic field and the magnetic dipole interaction secular term. The 19F spins in a single 

crystal of fluorapatite [Ca5(PO4)3F] have often been used to approximate a one-dimensional spin 

system. If the constant external field is parallel to the c axis, the 3D 19F system may be treated 

as a collection of many identical spin chains. When considering the longitudinal part of the 

secular term, we suggest that transverse component of a spin in a certain site rotates in a constant 

local magnetic field. This field changes if the spin jumps to another site. On return, this spin 

continues to rotate in the former field. Then we expand the density matrix in a set of 

eigenoperators of the Zeeman Hamiltonian. A system of coupled differential equations for the 

expansion coefficients then solved by straightforward numerical methods, and the fluorine NMR 

line shapes of fluorapatite for different chain lengths are calculated. 

1.  Introduction 

Our work is devoted to possibilities of one-dimensional models in the statistical theory of shape of the 

NMR absorption line. Recently, considerable progress has been made in studies on mechanisms 

responsible for the wings of a magnetic resonance line [1], but in absence of isolated groups of magnetic 

nuclei, a problem ‘as old as NMR’ of calculating the shape of the NMR absorption line is still one of 

the most difficult problems of solid state radiospectroscopy. The difficulties of the theory are 

compounded by the clear lack of experimental data: the absence of fine structure of the spectra makes 

them insufficiently critical in comparing theory and experiment. Therefore, considerable interest is 

associated with the experimental data obtained on the samples, in which the magnetic nuclei form low-

dimensional lattice. Non-ergodic quasi-equilibria was also observed in the linear spin ½ chains [2]. 

We consider a system of N particles of spins ½ in a sample of volume V. The Hamiltonian for such 

a system in the rotating frame can be written as 

   

R 0,R

N
i j

i j

H H H


  . (1) 
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Here the double sum is taken over all N spins i and j forming a regular lattice. For like spins the 

unperturbed Zeeman Hamiltonian H0, R is given by 

  0,R rf

1 1

z z

i i i

i i

H S S
 

      . (2) 

For the case of like spins, one can eliminate Ω by performing the transformation into the interaction 

representation. 

The shape of the absorption line plays an important role in NMR theory. However, in its calculation, 

in view of the absence of an explicit small parameter and the many-particle nature of the problem, it is 

necessary to make approximations based on the simplest estimates and physical intuition. One of such 

approaches [35] is based on the non-equivalence of interactions between longitudinal and transverse 

spin components in a truncated dipole Hamiltonian, obtained for  = ½ from a general Hamiltonian 

 
     

2

2

R 3

1 3cos ijij ij z z

i j i j

ij

H H S S S S
r


   


   , (3) 

where rij is the distance between the ith and jth spins, θij is the orientation of the vector ijr , connecting 

the two spins with respect to the main magnetic field,  = ½  magnetic anisotropy. Here we consider 

the high-field approximation and retain only the first term of the dipolar Hamiltonian. This separation 

follows from the axial symmetry of the Hamiltonian, by which the longitudinal component of the total 

spin moment of the system is conserved, and the transverse damped to zero. This leads to a difference 

several times between the dephasing time (T2) of the transverse spin components and the slow variation 

of the longitudinal components (spectral diffusion). With increasing magnetic anisotropy (  0), these 

differences are amplified. 

A special case of the open chain is when we consider only the so-called “nearest-neighbour 

couplings”; there are N  1 of them, all with 

2

, 1

3

, 1

1 3cos i i

i i

b
r

 




 . The Hamiltonian above then simplifies 

to what we will refer to as our 1D NN model. The 1D NN case is known to be integrable (i.e. it has an 

exact analytical solution) via an algebraic method known as the Bethe Ansatz [6]. It is fair to say that in 

one dimension it is always important to consider boundaries, since physical systems only contain finite 

chains even in the absence of doping [7]. This is especially also true for artificially created spin chains 

using surface structures [8, 9], ion-traps [10], or ultra-cold gases [11–13] as quantum simulators, where 

measurements of spin correlations are in principle possible. 

2.  Theory and calculation 

2.1. 1D dipolar model 

Following direct-product formalism for calculating magnetic resonance signals [14], we seek the 

solution of the density matrix equation in the form 

        
 

g t Et
 



  , (4) 

where the coefficients g{}(t) are functions of time, and the E{} are a set of basis operators with numbering 

scheme (), such that 0,R0,R [ , ] H E EH E     , where H0,R is the Zeeman energy, µ is the 

difference between the number of operators S+ and S in an eigenoperator E{}, and  is the resonant 

frequency offset of spectral packet with respect to the oscillating rf magnetic field rf . These 

eigenoperators are linearly independent and orthonormal.  

         
†

,
Tr E E

   


 
 , (5) 
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For a system of N particles of spin ½, operators E{} can be written as a direct product of N spin operators 

corresponding to different particles 

   
 

1

i

N

i

i

E S





 , (6) 

were i = , , +, or . S+ and S are conventional raising and lowering spin operators and the polarization 

operators S and S. By using the above orthogonality property of the basis operators, one obtains a 

system of equations which couple the FID (free induction decay) components g{}(t). That is 

 
   

  
       

 
i

N
i j

ij

i j

t
C F r g t

t



  


 




 


 . (7) 

The matrix C(ij) is defined by 

    
     

 
   †Tr ,

i j ij

ijC F r E H E
    

 
  , (8) 

where the dagger † denotes the Hermitian conjugate. The explicit form of C(ij) clearly depends on the 

commutation relations between the basis operators and the Hamiltonian describing the interaction among 

the spin particles. In the case of the dipolar interaction, one obtains the following commutation properties 

for different types of pairwise combinations
   ji

i jS S


  

  
    ,
ij z z

i ij j i i jH S F r S S S S     
  ,  

  
    1

2
,

ij z

i j ij i jH S S F r S S      
  , etc. (9) 

where  
2

3

1 3cos ij

ij

ij

F r
r


 . Let’s move on to assessing the effect of localization on the spectra. Denoting 

local field on site i as b, we get socalled the spin-isochromatic components [14]: 

    
2 1 2

1 12 2 2 1
N

i i i

i

E b s N S S S
    

    ,  

      2 1 2

1 1 1 10 2 2 1
N

i i i i i i

i

E s N S S S S S S
       

      , (10) 

    
2 1 2

1 12 2 2 1
N

i i i

i

E b s N S S S
    

     , 

as well as new components which are “boundary terms” that need to be considered for return to the 

previous site:  

      2 1 2

1 2 2 12 2 2 2 1
N z z

i i i i i i

i

E b s N S S S S S S
     

      . (11) 

      2 1 2

1 1 1 12 2 2 2 1
N z z

i i i i i i

i

E b s N S S S S S S
     

       . 

Having applied an identity substitution  

  1
2 1 1 2 2 1 1 2 1 1 1 1 1 12

z z

i i i i i i i i i i i i i i i i i i i i iS S S S S S S S S S S S S S S S S S S S S                  

                   ,     (12) 

we get from the equation of motion for the many-body density matrix, 

                                 
            1 1 1

2 2 2 2
i , 1 2 0

i j
H E b b E b E b E          

  
,                         (13) 



4

1234567890 ‘’“”

ANNIC 2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 987 (2018) 012043  doi :10.1088/1742-6596/987/1/012043

 

 

 

 

 

 

where boundary term is an eigenoperator E(b/2), linearly independent and orthonormal. From the solution 
of the density matrix equation, it follows 

                      1 2 3 4 52 0 2t g t E b g t E b g t E g t E b g t E b        , (14) 

which implies the equations for the components g{}(t): 
 

i
g t

b g
t


 


C , for short. 

After the nonselective (/2)X  pulse the first no constant term of the density matrix (t) is given by 

        2

1

1

0 2 2 2 0
N

N N

i

i

S q E b E E b
kT

   




      
  . (15) 

where 
2

2

N
q

kT


 . The vector of initial values from equation (14) is    0 1, 2,1,0,0g   that yields 

5 possible spectral components. The amplitudes of individual spectral lines were determined by 

eigenvectors and eigenvalues of matrix C. 

Finally, the separation  between line shape components in fluorapatite was found 3.50 Oe (the 

experimental value 3.64  0.20 Oe [15]). This estimation demonstrates the strong influence of the 

localization on the NMR absorption line shape. Fluorapatite spin dynamics involves the orthonormal 

states such as, for example, E(b) and E(b/2), and constructs the actual eigenvectors of spin system as a 

linear superposition of the eigenvectors representing the two structures. As both structures have different 

energy, they are not equal contributors to the overall structure – the superposition is a weighted average, 

or a 0.959:0.267 linear combination of E(b) and E(b/2). When more contributing structures are included, 

the eigenvectors become more accurate and more excited states can be derived from different 

combinations of the contributing structures. 

The final results, frequencies and intensities (squared amplitudes), are given in Table I. 

Table 1. Calculated NMR spectrum for the linear three-spin chain model (relative to the 

Larmor frequency)1. 

 Frequency (Oe)  Intensity 

  3.50  0.294 

  1.36  0.135 

 0 0.143 

 

As expected, the next five-spin model transitions are grouped about the three-spin model transitions and 

after a Gaussian convolution, the line shapes from the two models would not differ significantly. 

2.2. 3D dipolar model 

The present work is essentially a computer simulation with identical, rigid spins. The first results justified our 

expectations [16]. They were obtained for 3D lattice structure of the single crystal CaF2. The following expression 

was obtained for the shape of the NMR line, which is the Fourier transform of the FID components g{}(t): 

  
 

        
22 2 2 2

i
Re

1 2 i i 1 i 1

x

x x z

g



      




      
, (16) 

 

                                                      
1 For the largest ratio between the strongest intra- and cross- chain couplings. 
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where 2 21

4
z ij

j

b   , and  ix  is connected by the Laplace transform with  x t , correlation function 

of the total magnetic moment of the system. The difference was from contributions of cross-correlation 

functions in the expression for  xF t , autocorrelation function for the spin in one of the nodes, because 

we neglected the possibility of returning to the original node in the 3D CaF2 spin system, which is strict 

for large-dimensional lattices if dimension d  . Under these assumptions, the following equation was 

obtained for  ix  : 

     
2 2

2 2

2

0

exp  z t

x z xi i t t i dt   



       , (17) 

This result differs from the result of [3], in which not all the terms retained in the above approximation are 

considered. The fourth moment of the absorption line by formula (16) is less than the total value by 14%, and by 

the results of [3] without renormalization, by 19%. The value of the fourth moment for 1D fluorapatite is less than 

the total by only 10%, which confirms the applicability of our approximation. 

3.  Discussion 

In the calculation of the spectra of correlation functions, we will follow an approximation proposed in 

[35]; in other words, we consider the longitudinal part of interaction in full while the transversal part 

is considered partly. Although the basic assumption about the constancy of fields is strict in the limit   0, 

formula (16) qualitatively correctly describes the change in the form of the spectrum with a change in the magnetic 

anisotropy parameter  : the narrowing from Gaussian at 0 to the  function at   = 1, and broadening for  > 0 

too. We found a numerical solution of equation (17) for various values of the parameter  and calculated the atlas 

of the spectra using formula (17). For a truncated dipole Hamiltonian, a line with a flat top is obtained, somewhat 

flatter than in the experiment. The best agreement with experiment has spectra at lower values  . Similar 

expansion was obtained in the calculations of other authors [3, 5]. It was explained because of the difference in the 

action of close and distant spins on the spin. The inclusion of the processes discarded above, connected with the 

change in the longitudinal components of the spins, will act in the same direction. 

In the formulas (16), (17) it is easy to include the heteronuclear interaction and inhomogeneous broadening of 

the Gaussian form. The mean square of the corresponding field 2

H  is added to 2

Z  in the last term of the exponent 

in (17), and in the formula (16) in the denominator it is necessary to replace in the second term  by 

 2 2 2

1 z z H       , and in the last term  
22 2 1z   by    2 2 2 2 2 2

1 1 12z H z         . The calculation 

performed with the obtained formulas makes it possible to trace the approximation of the shape of the NMR line 

to the Gaussian line in such systems as the parameter increases. 

In conclusion, we considered model of localized states in fluorine spin system of fluorapatite in 

comparison with 3D case. We have considered low-dimensional spin system and found strong 

dependence the absorption NMR line shape on spin localization. 
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