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The 2D perfect fluid motions equations in Lagrangian coordinates are considered. If body forces are
potential one, then there is the general integral called Weber’s integral and the resulting system includes
initial data which in fact make the problem of group-theoretical classification actual. It is established
that the basic group becomes infinite-dimensional with respect to the space variable too. The exceptional
values of arbitrary initial vorticity are obtained at which we can be observed further extension of the
group. Group properties of Fuler equations in arbitrary Lagrangian coordinates are also considered and

some exact solutions are constructed.
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Introduction

Group analysis of differential equations (Lie —Ovsyannikov symmetry method [1-3]) became
a powerful tool for studying nonlinear equations and boundary value problems. This analysis
is especially fruitful in application to the basic equations of mechanics and physics because the
invariance principles are already involved in their derivation. Symmetry methods are successfully
used to study the mathematical models in hydrodynamics and to construct exact solutions of
non-linear problems, e.g. in [4-6]. An admissible group characterizes symmetry properties of
differential equations and used for complete integration or construction of certain classes of exact
solutions as well as qualitative investigation of the equations.

In describing the motion of an ideal incompressible fluid that has a free boundary the problem,
in particular waves problem, is reduced to finding the solution of the Euler equations with
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the fulfilment of the kinematic and the dynamic condition at the free surface. The kinematic
condition allows us to convert this problem to another one in which the domain is fixed. It is
achieved by the transition to the Lagrangian coordinates which are introduced as the coordinate
values of the fluid particles at the initial time [7]. The new system of differential equations arised
very is often used for the investigation solvability of this problem [8-11].

The paper purpose is to study group properties of equations which describe 2D perfect liquid
flows. It is well known [12] that, there are two integrals of such equations in Lagrangian coor-
dinates. First of them is the Cauchy one which implies that the particle vorticity is preserved
under planar motions. The second integral is appeared due to Weber transformation which ap-
plies to Euler equations [12]. The differential equations system corresponding Cauchy integral is
the closed system for only trajectories. In this case the problem of group-theoretic classification
was solved in [13,14]. Another differential equations system is the closed system for trajectories
and Weber’s potential. The passage from one system to another mentioned above is a nonlocal
transformation, therefore there should be no isomorphism between the basic Lie group of the
equations under consideration. So, we consider the last differential equations system in terms of
trajectories and Weber’s potential. It is established that the basic group is infinite-dimensional
with respect to the space variables. The exceptional values of initial vorticity at which we ob-
serve further extension of the group are obtained. Group properties in arbitrary Lagrangian
coordinates are considered and two exact solution are constructed.

1. Governing equations

A nonstationary 3D flow of an ideal incompressible fluid is described by the following system
of equations (Euler equations)

1
ut—|—uVu—|—;Vp:g(x,t)7 divu =0, (1.1)

where p = const is the fluid density and g is the vector of body forces, u(x,t) and p(x,t) are the
velocity vector and the pressure, respectively.
Let us introduce the Lagrangian coordinates £ by solving the Cauchy problem

dx

i u(x,t), x|t:0 =& (1.2)
Without loss of generality we can assume that the fluid density equals unity. Then the system
(1.1) can be rewritten in the following form [7]

M* (x4 — g(x,t)) + Vp=0, div M 'x;=0. (1.3)

Here M is the Jacobi matric

Te L, T a(x)
M= yg n yg = %a
e Ay A

and M* is inverse matrix to M. The second equations of (1.3) is equivalent to equation
det M = 1]7].
If body forces have a potential g = VA then from the first eq'n of (1.3) we derive [7]

M*x; = Vo +ug(€), (1.4)
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1
pr+p= §|Xt‘2+h+X(t)v (1.5)

where ug(€) is the initial value of u(x,t) and x(¢) is arbitrary function. The relation (1.5) is
the Weber’s integral. If flow is potential one then this integral coincides with Cauchy—-Lagrange
integral [6,7].

Function ¢(&,t) is the solution of second order elliptic eq’n

div [M~'M* 1 (Ve +uo(€))] =0 (1.6)

and can be called Weber’s potential.

For 2D motions let us put ug = (u(§,n),v(&,n)), & = (§,n), x = (2(&,n,1),y(&,n,t)). Then
the equations (1.4), (1.6) imply the closed differential system

zt = Yn(pe +ul§;m) — yelpn +0(€,n)); (1.7)
Ye = —xy (e +u(§,m)) + ze (0 +v(€,m)); (1.8)
TeYy — Tnye = 1; (1.9)

ug + v, =0, (1.10)

where (&, n,t), y(&,n,t) are the trajectories of liquid particles and ¢(&, 7, t) is the Weber poten-
tial. The relationship (1.10) is the compatibility condition for velocity vector at initial time.
The pressure distribution can be found from Weber’s integral (1.5) in the following form

1
P& t) =5 (@7 +u7) = e+ h& 1) (1.11)
and h = —gy(&,n,t) for water waves, where g = const is the gravitational acceleration.

Remark 1. Equations (1.7), (1.8) are equivalent to the following
Ye = TtTe T YtlYe — U, Py =TTy + YtYy — V.
The compatibility condition of these equations implies the eq’n
Telyp — TpZer + Yelnt — Ynler = w(E, 1) = ve — uy # 0. (1.12)

It is the conservation vorticity law (Cauchy integral [7]). The equations (1.9) and (1.12) are the
closed system for functions x(&,n,t), y(£,n,t). The group properties for this system were studied
in [13,14]. Due to inequality (1.12) an unsteady flow is rotational one for all time.

2. Symmetry properties of system (1.7)—(1.9)

Firstly, let us compute the equivalence transformation. We can demonstrate that the equiv-
alence transformation is

t=ait, T=aj(vcosas+ysinas)+az, Y =ai(—zsinas+ycosas)+ ay,

& =ai(fcosas +nsinas) + as, 7= a1(—&sinay + ncosasz) + aq, (2.1)
@ = arp + b1 + ban + d(1);
(&, 7) = asw(,7) # 0. (2.2)
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Here a1 # 0, as, as, a4, a5 # 0, by, by are arbitrary constants and d(t) is arbitrary function. Of
course compatibility condition (1.10) is invariant with respect to transformation (2.1). At last,
we should supplement (2.1) with the discrete transformation

T=-x, Y=-—y. (2.3)

Generator for system (1.7)—(1.9) is sought in the form

0 0 0 0 0 0
_ ¢l 2 3 1Y 2 Y 3 Y
V=¢85, +¢ 8§+£ 8n+” 5 T ay+" 25 (2.4)

where £, ' depend on all variables t, &, 1, , v, ¢. To derive the determining equations it is
necessary to apply the first prolongation Y{;) of generator Y to system (1.7)-(1.9). After a large
member of calculations the determining system can be reduced to the following one

gh=¢€t), €=, &€=,
n'=Ciz+ Coy+n(t), n°=Cry—Cox+m(t), &+E& =201,
1’ = (201 — &) + ez +myy + h(€,n) + d(t), (2.5)
u(§y — &) — Eug — Euy — v — he = 0,
(€ = &) — EPvg — vy — Equ—hy = 0,

here n(t), m(t), d(t) are arbitrary smooth functions, Cy, Cs are constants.
From the last two equations (2.5) for h we get that ¢! = C3t + Cy and

2w + §3w7, + C3w =0, (2.6)
It is the classifying equation and now we can find the function % in the form
h:/ﬁ@ﬁwwfﬁwféwfﬁﬂ@+h«éwmfﬁ%—éw—ﬁﬂm. (2.7)
Basis for the Lie algebra is

Lo : Y1 =0, Yo =y0, — 20y, Yn =n(t)0y + ny(t)x0,,

Yo = m(t)dy + my(t)yd,, Yg=d(t)d,. (28)
It is convenient to use the new unknowns £2(¢,7), £€3(€,7) by the formulae
& =0+, &€ =Cin+&(En), (2.9)
then the classifying part of system (2.5) of determining equations can be rewritten as
§+6 =0, he=u(Cy—Cs+8&)— (Cr&+E)ug — (Crn + & )u, — Ev,
hy = v(Cr = Cs + &) = (C1& + €)ve = (Cun + &)y — Gu, (2.10)
(C1€ + E)we + (C1m + E)wy + Caw = 0.
If w = wg = const, then C3 = 0 and Ly is prolonged by the generators
Yy = n0¢ — ey + h0,, Y3 = E0c + 10y + 20, + y0y + (20 + h)0, (2.11)
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with arbitrary function ¢(&,n). Function h(£,n) is determined from (2.7), where C5 = 0,
€2 = & =1, & = & = —1p¢ with arbitrary function ¥(&,n), u = @(&,n) — won for gener-
ator Yy and C5 = 0, €2 = ¢, €3 =n, u = u(&,n) + won for generator Ys. The functions @(&,n),
v(€,n) are the solution of Cauchy—Riemann system: @¢ + v, =0, @, —ve = 0.

If w(&,n) # const basis for the Lie algebra extended Ly is given by the generators

_ OF (w) 5 — OF (w)
an ¢ o¢

Function F is arbitrary for Y and h(€, ) is found from (2.10), where C; =C3 =0, £2=0F (w)/dn,
€3= —0F(w)/0¢. For generator Y) § is a constant and the vorticity w(&,n) has the form

w(&m) =n"°f(E/n), (2.13)

with arbitrary function f(¢), ¢ = &/n. In this case h = 0.

Yr

Oy, Yy = 60y + E0¢ + 10y + 205 + Y0y + (2 — 0)pdy.  (2.12)

3. Invariance of the initial conditions

Solving the system of equations (1.7)—(1.9), which is not normal with respect to time, it is
necessary to take into account the initial conditions

r=¢ y=mn t=0. (3.1)

We require the relations (3.1) are invariant under action of the generator Y from (2.5). The
system of determining equations has the simpler form

g =Cst, &€ =&+ Can+n(0), & =Cin—Ca +m(0),
n' = Crz 4+ Coy +n(t), n* = Cry— Cox +mf(t),

n® = (2C1 — C3)p + myx + muy + h(€,m) + d(t), (3.2)

he = (C1 — Cy)u — E2ug — E3u,) + Cov,

hy = (Cy — Cs)v — 521)5 - 53% — Cou;
(C1€ + Con +n(0))we + (Cin — C2€ + m(0))wy, + Csw = 0. (3.3)

The basic algebra Ly includes the generators
Zn =n(t)0y + ()20,  Zp = m(t)0y + my(t)yd,, 5.0
Zg =d(t)0,, n(0)=m(0)=0.

Here the equivalence transformations have the form (2.1), (2.2). To carry out the group
classification let us rewrite the classifying eq’n (3.3) in the form

(A& + Bn+ C)we + (An — BE+ D)w, + Hw =0 (3.5)

with some constants A, B, C', D and H. It is easy to verity that eq’n (3.5) in invariant with
respect to equivalence transformations (2.1) with the transformations of A, B, C, D, H such as

A=A, B=B, C=cosayC —sinasD —a3A — a4B,

_ _ (3.6)
D = cosasD —sinasC — ayA+asB, H = H.
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Under integration of equation (3.6) we consider the following cases:
I. AB # 0. Then using (3.6) we can set C = D = 0. Eq'n (3.5) has the solution

w = explyz aretg(€/m)]f (€2 + 1) /2 exply arctg(¢/n)]) (3.7)
with constants o # 0, 72 and arbitrary function f.
II. A#0, B=0. Then from (3.6) C = 0 and the solution of eq'n (3.5) has the form
w=(n+73)"f < ; ) (3.8)
n+7s
with constants s, 74 and arbitrary function f.
II. A= 0, B# 0. Then C = 0 and we obtain the solution of eq'n (3.5) in the form
W = exp {76 arcsin (275_62>] f(*+ (5 —€)?) (3.9)
n?+ (s —¢)
with constants 75, 7 and arbitrary function f.
IV. A =0, B=0. Then the solution of eq’n (3.5) can be written as
w=e 7 f (€ = yam), (3.10)
if C#0,or
w=e " f (1€ = om), (3.11)

if D # 0 with ~7, 78, v9 are constants and f is arbitrary function.

Substituting solutions (3.7)—(3.11) to classifying equation (3.3) and using formulae (3.2) and
(2.2) we obtain the extension of the Lie symmetry algebras spanned by generators Lgg. The
result of group classification is presented in Tab. 1. There we can find the form of the function w
and basis of generator which are possessed by equations (1.7)—(1.9) and initial conditions (3.1).

Table 1. Results of group classification

w Generators Remarks
(3.7), f is arbitrary function Loo, 74
(3.7), f=1 Loo, 21, Z2, Z3
(3.7), f=¢", 1 #0 Loo, Z4, Zs ¢ = (€2 4 n*)"/? explys arctg(é/n)]
B7), f=012#0,m=1 Loo, 21, Zs ¢ = (&2 41?2 explarctg(¢/n)]
(3.8), f is arbitrary function Loo
(3.8), f=1 Loo, Z7
(3.8), f=(C+7)", 71 #0 Loo, Zs ¢=¢&/(n+)
(3.9), f is arbitrary function Loo
(3.9). F =1 Loo, Zo
(3.9), f=(C—=3)", 77 #0 Loo, Z10, Z11 C=n%+ (5 —&)?
(3.10), f is arbitrary function Lo
(3.10), f =1 Loo, Z12
(3.10), f = €M%, 410 # 0 Loo, Z13 C="8E— M5+ #0
(3.10), f = (2 Loo, Z14, Z15 ¢ =188 —79m,7 #0
(3.10), f = (C+1)"2, y11 #0 | Loo, Z16, Z17 ¢ =78 —v9m,79 # 0
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In Tab. 1 the following generators are involved in extension of the algebra Ly :

Z1 =72t + (€ =m0 + (£ +1)0y + (x — y) O + (:c +4)0y + [(2 = 72)p + 1§, m)]0,
he = (1 —y2)u — (§ = n)ug — (€ +n)uy
hy = (1_'72)7]_ (f 77)”5 - §+77)Un+u

N
N
I

§0¢ + Oy + yOy + [2¢ + h(£,1)]0,
he = u —&ug —nuy,  hy = v — &g — Nuy;
Zy = =ty + n — £0y + YOy — 10y + [v200 + h(£,1)]0,
he = you — nue + Euy + v, hy = You — NUe + vy — U;
Zy = —st0y+E0: +10y + w00 +y0y + [(2 + 18) 0 + h(&, )]0,
he = (1 + ys)u — Eug — nuy,  hy = (1 +78)v — Eve — nuy;

Zs = —(v2 +18)t0r + 10 — £0y + yOr — 20y + [(v2 + 78)¢ + h(&,1)]0,
he = (v2 + y8)u — nue + §uy + v, hy = (v2 + 78)v — Nug + §vy — U5
Zs = a(0)0¢ — a(0)0, + a(t)0, — a(t)0y + [ai(x +y) + h(&,1)]0,
he = —a(0)ug + a(0)u,, h, =—a(0)ve + a(0)vy;
Z7 = —atO + £0¢ + (N + 73)0n + 20x + (y + 730(t))0y + [(2 + 7a) + v3a:y + h(&,1)] 0y
he = (1 +73)u — Eug — (N4 v3)uy,  hy = (14 73)v — Evg — (4 ¥3)vp;
Zg = —760: — Y6a(t)0r + Oy + a(t)0r + (—v6atx + ary + h(§,7))0,
he = —y6ue — uy,  hy = —yve — vy, a(0) =1;
Zy = (§ —75)0¢ +n0y + (v — v5a(t)) 0z + YOy + (20 — ysa: + h(§,1))0,
he =u — (§ = y5)ue — Ny,  hy = v — (& = v5)ve — NUy;

Zio = —27y7t0; + (§ — 5)0¢ + 10y + (v — v5a(t))0y + Y0y + [2(77 + 1) — vsa:x + h(E€,n)]0,

he = (297 + Du — (§ — y5)ue — Ny,  hy = (27 + 1)v — (£ — ¥5)ve — Nuy;

Zn1 =6t + 10 — (§ — 75)9y + Y0 — (x — y5a(t)) 0y + (=6 + Vsary + h(§,n))0y
he = you — nue + Euy +v,  hy = Y60 — nug + vy —u, a(0) =1;

Zrg = 7ty + 0 + a(t)dy + (—yrp + a12) Dy,
he = —yru—ug, hy = —y7v—vg, a(0) = 1;
Z13 = 11079t0: + Oy + a(t)dy + (—y1070% + ary + h(€,1))0,
he = —y1070u — Uy, hy = —Y10790 — vy, a(0) = 1;
Zha = =12ty + €0 + a(t)x0y + [(2 + Y120 + @ + h(€, )]0,
he = (1 +v12)u — ug — nuy, by = (1 + y12)v — Evg — noy;

Zis = 0¢ — 79_1’78577 + a(t)0, — ’79_1’)’8‘1(t)ay + (ar — g Mysary + h(E, )0
he = —ug — ’Yg_l’Ysuna hy = —ve — '79_1781’717 a(0) = 1;
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Z16 = —12t0; + €0 + (n— 5 '711)0n+ 202+ [y — v9 '1110(8)]0,+
+ (99— 75 "11aty+ h(€,1)) 0y,
he = (14 y12u — ug — (1 — 75 'y11) iy,
hy = (1+ 7120 — ve — (1 — 75 '11)vy, a(0) = 1;
Zir = O¢ + a(t) 0y + v "8a(t)0y + Yo 80y + [V Tysary + h(€,1)]0,,
he = —ug — 7;178“n> hy = —ve — 75178”71’ a(0) = 1.

Remark 2. For potential flows u = ¢o¢, v = @, and range of ¢ — ¢ + g gives v = v = 0.
Basic algebra Lie of generators is the following

()0 — pi(t) 90y, YO — 10y, n(t)0y + ne(t)0yp, m(t)0y + my(t)0,,

d(t)0y, V0t — VYe0y, E0¢ + 0y + 20, + YOy + 20,
with arbitrary smooth functions p(t), n(t), m(t), d(t), ¥(&,n).

4. Arbitrary Lagrangian coordinates

The Cauchy problem

dx dy

E :U(.T,y,t), E =

v(x’ y?t)’
m‘t:o =¢& y|t:0 =n

defines the Lagrangian coordinates ¢ and 7 as the Cartesian coordinates of a fluid particle at
the initial time. However, instead of £ and n distinguishing between points, we can take any
quantities a and b connected with £ and 7 via a one-to-one correspondence, see Fig. 1,

ng(aﬂb)’ 77:9((1;5)» J = fagb — fv9a # 0. (41)

Domain of geometrical
Lagrangian coordinates

—

Flow domain
Py

Trajectory

i JJL'L/-‘_.H

[&]

%
L AN

- X(a.bt)

E=T1(a5)

0

T . Dromain of arbitrary (auxili
Origin of coordinates . wrary (auxiliary)

-~ Lagrangian coordinates

Fig. 1. Arbitrary Lagrangian coordinates
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System (1.7)—(1.9) is equivalent to the system

JX; =Yy (D, 4+ Uy) — Yo(Pp + V1); (4.2)
JYy = =Xy (@ + Ur) + Xa(®p + V1); (4.3)
XY, — XY, = J(a,b) (4.4)
with the initial data
X|,_, = fla,b), Y|,_,=g(a,b). (4.5)

New "velocities" Uj(a,b), V1(a,b) are connected with u(&,n), v(§,n) by the relations
Ui(a,b) = fau(f(a,b), g(a, b)) + gov(f(a,b), g(a,b)),
Vl (av b) = fbu(f(au b)v g(av b)) + gb’()(f(a, b)a g((l, b))

We substitute X (a,b,t)=xz(&,n,t), Y(a,b,t)=y(&,n,t), ®(a,b,t)=¢(&,n,t) in to (4.2)—(4.4)
with £ and 7 defined by (4.1). It is easy to see that the function z, y, ¢ satisfy system (1.7)—(1.9),
moreover z = &, y = n under ¢ = 0. Hence, the Lie group of transformations for the systems
(1.7)—(1.9) and (4.2)—(4.4) are similar. The generator admitted by system (4.2)—(4.4) has the
form

Y1 = EHt)0, + €3 (a,b)8a + & (a,b)0 + 1" Ox + n°0y + 0’0o,

where £1(t), nt, n%, n% are the same as for generator Y. The coordinates £2(a,b), &5 (a,b) satisfy
the determining equations

(JED)a + (JE)s = 2C1 J,
(4.7)
& (wi/J)a + & (wi/ )y + Cawr /J =0,

where wy (a,b) = J(a,b)w(f(a,b),g(a,b)) = Vig — Ui is a new "vorticity".

5. Examples of exact solutions

5.1. Unsteady flow in a layer with one free boundary

Let us take v = v(n), v, # 0, then from (1.10) u(&,n) = —v,€ + u1(n) with some function
u1(n). In such case the initial vorticity has the form w(§,n) = vy,& — u1,. Because of ui(n)
is arbitrary the system (1.7)-(1.9) admits 3D subalgebra (0¢,d,,0,). Since the variables t, n
and y are invariant, we seek a partially invariant solution of rank 2 and defect 2 in the form
z=uz(&nt), y=y(nt) and ¢ = p(&,n,t). Inserting it into (1.9), we obtain

= a(g+ 00, y= [ - (1)
x_a”rh n’ 9 y_ o a(Z,t) .
with initial data
a(’]a 0) = 17 at(7770> = _U’m b(7770) = 0) bt(777 0) =1u (77) (52)
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The functions a(n,t), b(n,t) and ¢ = (&, n,t) can be found from equations (1.7) and (1.8) as

a=f(t) {1—vn/0tf2d(:)}, b=u1(n)f(t) Otﬁdz;),

¢ . (5.3)
¢ = (aas + Un)? + [(abt)y — u1y]€ +/0 (btbn + % - U) dn,

where f(t) is arbitrary function satisfying the conditions f(0) = 1, f;(0) = 0. Then, from Weber’s
integral (1.11) and formulae (5.1), (5.3) we find the pressure

k()

p=1(n,t) = == 2*(&m) — gy(n, 1), (5.4)
where . .
0=t - [ 2Dy h = T (5.5)

and [(t) is arbitrary function.

Solution (5.1)—(5.5) can be interpreted as the motion of plane layer (or a filled-up fluid layer)
with a free boundary (or a moving rigid wall). Really, assume at the initial time there is a liquid
layer of thickness y = hy = const. The lower rigid wall y = 0 is fixed and upper boundary y = hg

n
is a free one. The initial velocity field is given the formulae u = w1 (n)§+ua(n), v = — [ui(n) dn.
0

The further motion is described by formulae (5.1)—(5.5). Of course, the outer pressure must be
equals pour = I(t) — k(t)x2(&,1)/2 — gy(n, t) and the evolution of free boundary h(t) is given by

h(t) = % /Oho {1 — vy (1) /Ot fzd(:_)} - dn. (5.6)

5.2. Example of Gerstner’s waves

the expression

Let us take mapping (4.1) in the form
Lok L kb 2kb
E=a+ 7€ sin(ka), n=>b— 7 cos(ka), J=1—e"". (5.7)

It is one-to-one under conditions k& > 0, b < by < 0, but there is not explicit dependence a, b on
&, n. However, the formulas

X=a+ % e sin[k(a+ct)], Y =b-— % ek cos[k(a + ct)],

(5.8)
ekt
o= - {sin[k(a + ct)] — sin(ka)}
give us the exact solution of system (4.2)—(4.4) (k, ¢ are constant).
Physical vorticity is
2kcek?
w = —71 — 62](717 . (59)
The fluid pressure can be found from integral (1.5)
1

p=g(by —b) + 3 P (k0 — g2kboy (2 — g/ (5.10)
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Formulas (5.7), (5.8), (5.10) determine the water waves called Gerstner’s waves [12]. These
waves are stationary in coordinate system which moves with velocity —c along the x-axis. Free
boundary is a straight line b = by (in variables a,b) or it is trochoid with wave number 27 /k.
Such waves are always vortex flow and vorticity has a maximum on free boundary and decreases
exponentially with the fluid depth.

If b > 0 then mapping (5.7) is not one-to-one and such solution has not physical meaning.
The case by = 0 gives us the cycloid equation

x=a+ % sin(ka), y=>b-— % cos(ka).

For ka = (2n+ 1)m, n € N, this cycloid has a cusps.

In conclusion, Gerstner’s waves are the invariant solution of system (4.2)—(4.4) with respect
to two-dimensional subalgebra (c™10;—0, —0x; Op) when J = 1—e?** f = a4+ k= 'ekbsin(ka),
g=b—k~1e* cos(ka). New initial "velocities" have the form

Uy = ce®®® 4 ce* cos(ka), Vi = cetPsin(ka),

where ¢ = (g/k)l/z. Notice that Ui, + Vi = 0.

Conclusion

The equations describing 2D ideal liquid flows under potential force action are considered.
Using Lagrangian coordinates this system is reduced to the system for particle trajectories and
Weber’s potential. Group classification with respect to the initial vorticity is performed. The
equivalence group admitted by the governing equations is calculated. This group is infinite one
and is used to reduce arbitrary element to the simpler form. As the example two exact solutions
are constructed.
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CuMmMeTpuiiHblii aHAJIN3 YpPaBHEHUI M1€aJTbHON YKUJTKOCTHA
B TepMHUHAX TpaeKTopwuu —orteHnuaj Bebepa

Bukrop K. Annpees

NucruryT Bhraucinresnsaoro mogenuposanns CO PAH
Axkaznemroponok, 50/44, Kpacuaosipck, 660036

Nucturyr MmaremMaruku n pyHIaMEHTAILHON HHMOPMATUKHI
Cubupckuii dhemepasbHblii YHUBEPCUTET

Cobomnbrit, 79, Kpacnosipck, 660041

Poccus

Hapbsa A. KpacHoBa

MucruryT MareMaTuku U GyHIaMEHTAJIBHON HH(HOPMATUKI
Cubupckuii delepalibHbIl YHUBEPCUTET

Cpobomusrii, 79, Kpacrnosipck, 660041

Poccus

Pacemampusaromes ypasrenus 08ymepror dsuscenuts udearvrol sorcudkocmu 6 koopdunamax Jlaezpan-
otca. JIAsA NOMEHYUANDHOIT 6HEWHUT CUA OHU UMerom obuutl urwmezpans Bebepa, npuvem nosas cucmema
ex0uaem 6 ceba HauaavHvle danrbie. Imo deaaem aKMYaALHOU 3a0ayy 2pynnosoti KAGCCUGUKRAUUU.
Yemarosaerno, wmo ocHo8HaA 2pYNNA HENPEPBIBHLIT NPeodpa3osanutl Asasemcs beckorewHomeprot no
NPoOCMPaHCMeeHHbM Koopouramam. Hatidenvl cneyuasvrvie 3a6UCUMOCTIU HAYANOHOT 3A8UTPERHOCTIU,
npU KOMOPHIT NPOUCTOOUM pacuiuperue pynno.. Kpome mozo, udyierv. epynnosvie c60GUCMEa UcCTOOHOT

CUCTMEMDL 68 NPOU3BONDHDIL NAPAHHCEBBLT %oop(?unamaac U HatOeHvl MOuHBLE pewerHUA.

Kaoueswie crosa: ypasrernus Iiiepa, cummempuinml anaiud, npeobpasosarue Bebepa, npeobpasosanue

IKBUBANEHIMHOCTNU, 2PYNNOBAA KAACCUPUKAUUA.
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