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Introduction

Universal algebraic geometry is a new area of modern algebra, whose subject is basically the
study of equations over an arbitrary algebraic structure A. In the classical algebraic geometry A
is a field. Many articles already published about algebraic geometry over groups, see [1-3,11,14],
and [16]. In an outstanding series of papers, Z. Sela, developed algebraic geometry over free
groups to give affirmative answers for old problems of Alfred Tarski concerning universal theory
of free groups (see [18]). Also in [13], two problems of Tarski about elementary theory of free
groups are solved. Algebraic geometry over algebraic structures is also developed for algebras
other than groups, for example there are results about algebraic geometry over Lie algebras and
monoids, see [9,15], and [19]. Systematic study of universal algebraic geometry is done in a series
of articles by V. Remeslennikov, A. Myasnikov and E. Daniyarova in [5-8|, (during this article,
we cite to these papers as DMR-series).

In this article, after a fast review of basic concepts of universal algebraic geometry, we describe
the relation between the properties of being equational noetherian and ascending chain condition
on ideals of an arbitrary algebra. We also give a formulation of Hilbert’s basis theorem for
varieties of algebras and obtain a criterion to investigate it for a given variety. For any algebraic
language £ and a fixed algebra A of type L, we define the concept of noetherian A-algebra
and we prove that the term algebra T)(4)(X) is noetherian if and only if every A-algebra is
A-equationally noetherian, provided that A has a trivial subalgebra. Here L£(A) denotes the
language obtained from £ by adding new constant symbols a € A. We will prove this theorem
in a more general setting; we define algebraic geometry over a pre-variety of algebras and prove
that the free algebra of a pre-variety of A-algebras is noetherian if and only if every element of
that pre-variety is A-equationally noetherian.

The reader who needs some backgrounds of universal algebra, should see books [4,12], or [17].
Our notations here almost the same as in DMR-series. Many results of this work can be stated
for structures over any first order language, but for the sake of simplicity, we restrict ourself for
the case of algebraic languages.

*mshahryari@tabrizu.ac.ir
(© Siberian Federal University. All rights reserved

- 521 —



Mohammad Shahryari Equationally Noetherian Algebras and Chain Conditions

1. Algebraic sets and coordinate algebras

The notations in this article are taken from DMR-series. We need to review some definitions.
From now on, £ is an arbitrary algebraic language and A is a fixed algebra of type £. The
extended language will be denoted by £(A) and it is obtained from £ by adding new constant
symbols @ € A. An algebra B of type L£L(A) is called A-algebra, if the map a — af is an
embedding of A in B. Note that here, a® denotes the interpretation of the constant symbol a in
B. We assume that X = {x1,...,2,} is a finite set of variables. We denote the term algebra in
the language L£(A) and variables from X by T(4)(X). An equation with coefficients from A is
formula of the form p(z1,...,2z,) =~ q(x1,...,2,), where

p(xla s axn)7Q(x17 s ,l’n) € TE(A)(X)

For the sake of convenience, we will denote such an equation by p ~ ¢. The set of all such
equations will be denoted by At,(4)(X). Any subset S C Aty4)(X) is called a system of
equations with coefficients from A. A system S is called consistent, if there exists an A-algebra
B and an element (by,...,b,) € B™ such that for all equations (p ~ ¢) € 5, the equality

pB(blv .. vbn) = qB(bl, .. 7bn)

holds. Note that, p® and ¢? are the corresponding term functions on B™. A system of equations
S is called an ideal, if it is a congruent set on the term algebra, i.e. the set

Os ={(p,q) :p~q€ S}

is a congruence on Tr(4)(X). Some times we denote this congruence by the same symbol S.
For an arbitrary system of equations S, the ideal generated by .S, is the smallest congruent set
containing S and it is denoted by [S].

Suppose B is an A-algebra. An element (b, ...,b,) € B" will be denoted by b, some times.
Let S be a system of equations with coefficients from A. Then the set

Ve(S)={be B":V(p~q) €S, p°(b) = ¢"(b)}
is called an algebraic set. It is clear that for any non-empty family {S;}icr, we have
Vel JSi) = Va(S).
iel il
So, we define a closed set in B™ to be empty set or any finite union of algebraic sets. Therefore,

we obtain a topology on B"™, which is called Zariski topology. For a subset Y € B", its closure
with respect to Zariski topology is denoted by Y. For any set Y, we define

Radp(Y)={p~q:VbeY, p?(b) = ¢"(b)}.

It is easy to see that Radp(Y) is an ideal. Any ideal of this type is called a radical ideal. The
coordinate algebra of Y is the quotient algebra

Ty (X)
L) = Radp(Y)’

An arbitrary element of I'(Y") will be denoted by [p]y .
Suppose Y C B™ and p is a term. Define a function p¥ : Y — B by the rule

pY(B) = pB(bl, ceiybp).

This is called a term function on Y. The set of all such functions will be denoted by T'(Y)
and it is naturally an A-algebra. It is easy to see that the map [p]y — pY is a well-defined
A-isomorphism. So, we have I'(Y) 2 T'(Y).
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2. Equational Noetherian algebras and chain conditions

An algebra B is said to be equationally noetherian, if for any system of equations S C At,(X),
there exists a finite sub-system Sy, such that Vp(S) = Vi(Sp). More generally, an A-algebra B
is called A-equationally noetherian, if for any system of equations S C At (4)(X), there exists a
finite subset Sy C S, such that Vi(S) = Vp(Sy). It is easy to show that we can choose Sy from
[S], rather than S. It is proved that (see [6]) an A-algebra B is A-equationally noetherian, if and
only if every descending chain of closed subsets in B™ has finite length, for any n. Remember
that a system of equations said to be an ideal if

Os={(p,q) :p=qe S}

is a congruence on T (4)(X). We say that S is A-ideal if for any distinct a;,as € A, we never
have a; ~ ap € S. Similarly, a congruence R on an A-algebra B, is called A-congruence, if
a1 Rag, with a1,as € A, implies a; = as. An A-algebra is called noetherian, if it satisfies the
ascending chain condition on A-congruences. Note that this implies that every A-congruence is
finitely generated and vise versa.

Suppose A contains a trivial subalgebra. Then we claim that the term algebra T, (4)(X)
is noetherian, if and only if every A-algebra is A-equationally noetherian. We will prove this
assertion in a more general form, for any pre-variety of A-algebras. Hence, we need to define the
notions of universal algebraic geometry with respect to a given pre-variety.

In the sequel, we assume that A is an algebra containing a trivial subalgebra. Suppose X
is a pre-variety of A-algebras. As before, let X be a finite set of variables. Suppose Ry is the
smallest A-congruence with the property T (4)(X)/Rx € X. It can be easily shown that

Ry ={(p~q) € Atga)(X) : X EVar.. . Van(p~ g}

Let
Tray(X)

Ry
It is well-known that Fx(X) belongs to X and it is freely generated by the set X. We denote an
arbitrary element of Fx(X) by P, where p is a term in £(A). Note that if £ is the language of
groups and X is the variety of all groups, then Fx(X) = F(X), the free group with the basis X.
If Ais a group and X is the class of all A-groups, then Fx(X) = A % F(X), the free product of
A and the free group F(X).

Suppose now, B € X and b € B". We know that there exists a homomorphism ¢ : Fx(X) —
B such that

Fx(X) =

@(p) - pB(bla cee bn)
Therefore, if p; = Py, then pP(by,...,b,) = pF¥(b1,...,b,). This shows that the following
definition has no ambiguity.

Definition 2.1. An X-equation is an expression of the form p ~ q, where p and q are terms in
the language L(A). If B is an A-algebra and b is an element of B™, we say that b is a solution

of G, if pP(b1,...,b,) = ¢ (b1,...,by).

Let S be a system of X-equations. The set of all solutions of elements of S, will be denoted
by V& (S). The following observation shows that this is an ordinary algebraic set. Let S’ be the
set of all equations p &~ ¢ such that p ~ § belongs to S. Then it can be easily verified that

VE(S) = Via(S').

Therefore, in the sequel we will denote the algebraic set V3 (S) by the same notation Vp(S).
The Zariski topology arising from algebraic sets relative to the pre-variety X is the same as the
ordinary Zariski topology. If Y C B™, we define
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Rady(Y)={p~q:YoeY pP(bi,...,by) =¢®(by,...,bn)}.

The quotient algebra Fr(X)

B0 R

is the X-coordinate algebra of Y. Again, it is easy to see that I'x(Y) =2 I'(Y)). We are now, ready
to prove our main theorem.

Theorem 2.1. Let9) be a variety of algebras of type L and A € ) containing a trivial subalgebra.
Let X = Q4 be the class of elements of P which are A-algebra. Then the free algebra Fx(X) is
noetherian if and only if every B € X is A-equationally noetherian.

Proof. Suppose first that Fx(X) is noetherian and B € X. Let S be a system of X-equations
and S
©s={P7): p=7€ S}

Let R be the congruence, generated by Og. If R is not an A-congruence, then distinct elements
ay and ag in A do exist such that (a1,as) = (a1,a2) € R. Let

S*={p~7q: (p,9) € R}.
It is easy to see that
VB(S) = VB(S*) =,

so, we can assume that Sy = {a1 ~ az} C S*, and hence Vi(S) = Vp(Sp). Therefore, we assume
that R is an A-congruence. By assumption, R is finitely generated, so there exists a finite subset
Ry C R, such that [Rg] = R. Let Sy be the set of equations corresponding to Ryg. Then Sy C S*
and we have S5 = S*. Hence

VB(S) = Vp(5") = VB(55) = Vi (So).

This proves that B is A-equationally noetherian.
Conversely, suppose every B € X is A-equationally noetherian. Let R be an A-congruence
on Fx(X). The algebra . Fre(X)
"TTR
belongs to ) and it is an A-algebra. So, Br € X. We denote an arbitrary element of By by t/R.
If (p,q) € R, then

pPR(Z1/R, ..., Tn/R) = p(z1,...,20)/R=q(x1,...,2,)/R = ¢®°*(Z1/R, ..., Tn/R).

Hence, if we let Sg to be the set of X-equations corresponding to R, then the generic point is a
solution of Sg, i.e. _ _

R (Z1/R,...,Tn/R) € Vp,(SR).
Suppose p & ¢ is an arbitrary X-equation and

(Z1/R,...,Tn/R) € V(P = 7).

Then, (p,q) € R. Keeping in mind this observation, now assume that

RiCRyC---
is a proper chain of A-congruences in Fx(X). For any i, let
Si={p=7: (9.9 € Ri}.

Suppose (P;,q;) € Ri+1 \ R; and L; is the congruence generated by R; and (p;, ;). Finally, let
T; be the set of X-equations corresponding to L;. Then we have S; ¢ T; C S;11. Let B =[], B;,
where B; = Fx(X)/R;. Then clearly, B € X and so, it is A-equationally noetherian. Since
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A contains a trivial subalgebra, so we can assume that B; < B, for all i. Now, by the above
observation,

(fl/Ri, C. ,fn/Rl) S VBl(SZ) - VB(SZ),

but it is not an element of Vg (7;) and consequently, it does not belong to Vg (S;+1). This shows
that the following chain of algebraic sets is proper

VB(Sl) D VB(SQ) Do,

which is a contradiction. m|

Now, we are able to give an exact formulation of Hilbert’s basis theorem. Suppose £ is an
algebraic language and ) is a variety of algebras of type L. Let A € 9 and X = ) 4 be the class
of all elements of ) which are A-algebra. If A has maximal property on its ideals, is the algebra
Fx(X) noetherian?

Example 2.1. Let £ = (0,1,4, x) be the language of unital rings and ) be the variety of all
commutative rings with unite element. Let A € Y and X = Ya. If X = {x1,...,z,}, then
Fx(X) = Alxy,...,x,] and hence Hilbert’s basis theorem is valid in this case.

Example 2.2. Let L = (e, !,) be the language of groups. Let Q) be the variety of groups. Let
A be any group and X =Ya. Then Fx(X) = Ax F(X). We show that Fx(X) is not noetherian
even if A has mazimal property on its normal subgroups (maz-n). Consider the Baumslag-Solitar
group

Bpn = (a,t: ta™t™ " = a™),

where m,n > 1 and m # n. Then, as is proved in [1], this group is not equationally noetherian.
Let B = A* By, ,. Then B is an A-group which is not A-equationally noetherian. So, by the
above theorem A x F(X) is not noetherian, Hilbert’s basis theorem fails.

Example 2.3. Let Q) be the variety of abelian groups and A € ) be finitely generated. Suppose
X =9Qa. Then it is easy to see that Fx(X) = A x Fu(X), where Fo,(X) is the free abelian
group generated by X. So, Fx(X) = A X Z". As a Z-module, clearly A x Z™ is noetherian, so
Hilbert’s basis theorem is true for any finitely generated abelian group A in the variety of abelian
groups. As a result, every abelian group B containing A is A-equationally noetherian.

As we mentioned above, if A < B and B is not equationally noetherian, then it is also not
A-equationally noetherian. So, let ) be a variety of algebras and A € ). Let X = Q4. If there
exists an element B € ) which is not equationally noetherian, then by our theorem, Fx(X) is
not noetherian, so we never have a version of Hilbert’s basis theorem for the variety 2.

Example 2.4. Let %) be the variety of nilpotent groups of class at mostc. If A €Y and X =Pa
and B € Q) is not finitely generated, then by [16], B is not equationally noetherian and hence
Fx(X) is not noetherian.
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SKBaI_[I/IOHaJII)HO HEeTepOBbI a..TII‘86pLI n nelrHblie yCJIOBUdA

Moxaman ITaxpuapu

B amotli cmambve Mmbl ONUCHLEAEM COOTMHOULEHUE MEOfC(?y ceouUCMBAMU SKSGMUOHCLJLT)HO’EL HEMEPOBOCTU

YCAOBUSA B0CTO0AWUL UYenel 6 UOEAAAT NPou3sosvHol anzebpul. Mu makotce daem Popmyasuposky meo-

pemws [uavbepma o basuce u noaywaem Kpumepuli 8 U3YHeHuy €20 0aa 0aHH020 MHO2000DA3UA.

Karoueswie caosa: anzebpauseckue cmpykmypot, YpasHEHUS, AA2e0PAUYECKOE MHOHCECMEO, PAOUKAA, KO-

opdunamnas anzebpa, Monoso2uA 3apucckozo, Hemeposa anzebpa, IKEUUUOHAALHOCTD HEMEPOSHLT Q-

2ebp, npedmmozo0bpasue, MHo2000pasue, c60600H0e NMpPoudsedeHue, MAKCUMAALHAA T-2PYNNa, MeoPeMa

Tuavbepma o basuce.

- 526 —



