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In this paper is considered a class of m−wsh functions defined with relation dd
c

u ∧ (dd
c|z|2)n−m

> 0,

and is studied some properties of polar sets for this class.
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Introduction

Subharmonic (sh) and plurisubharmonic (psh) functions play the main role in theory of
functions of several real and complex variables. In the space C

n ≈ R
2n they defining by the

conditions

ddcu ∧ (ddc |z|
2
)n−1

> 0

or

ddcu > 0,

respectively. Here, as usual d = ∂ + ∂, dc =
∂ − ∂

4i
.

In this paper we consider the class of m-weak subharmonic (m−wsh) functions, defined by
relation

ddcu ∧ (ddc|z|2)n−m
> 0. (1)

As we see below this class wider than the class of psh functions, but strongly contains in the class
of sh functions. Moreover, in case, m = 1 the class of 1−wsh functions coincide with class of sh
functions and in case m = n the class of n−wsh functions coincide with class of psh functions.

In studying the class of m−wsh functions we essentially use the elementary theory of differen-
tial forms and currents, also methods of pluripotential theory. In general case, when u isn’t twice
differentiable, the relation (1) is interpretated in the sence of currents. Therefore in section 1 we
shortly give fundamental conceptions from the theory of currents. In section 2 we give general
definition of the m−wsh functions and some their simple properties. Section 3 devoted to the
mw-polar set and its characteristics.

1. Positive defined differential forms and currents

As usual, the space of differential forms of bidegree (p, p) in a domain D ⊂ C
n is denote by

F (p,p) = F (p,p)(D). The differential form in view

ω =

(
i

2

)p

(dℓ1 ∧ dℓ̄1) ∧ ... ∧ (dℓp ∧ dℓ̄p)
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is called main positive form of bidegree (p, p), 0 6 p 6 n, where ℓj = aj1z1 + ...+ajn
zn are linear

functions in the space C
n, j = 1, 2, ..., p. Linear combination of such form ωq

ω(p,p) =

N∑

q=1

fq(z)ωq, fq(z) ∈ C(D), fq(z) > 0,

is called strongly positive differential form of bidegree (p, p) in the domain D ⊂ C
n. Thus,

positive differential form of bidegree (0, 0) or bidegree (n, n) give to us positive scalar function
ω(0,0) = f(z) > 0 or

ω(n,n) =

(
i

2

)n

f(z)dz1 ∧ dz̄1 ∧ ... ∧ dzn ∧ dz̄n = f(z)dV, f(z) > 0,

where dV — Lebesgue’s element of volume in the space C
n ≃ R

2n.
The differential forms ω(p,p) ∈ F (p,p) of bidegree (p, p) is called weakly positive if ω(p,p)∧α is

positive form of bidegree (n, n) for any strongly positive form α ∈ F (n−p,n−p). Strongly positive
form is at the same time weakly positive, because exterior product of two strongly positive form
are positive.

In the cases p = 0, 1, n−1, n weakly and strongly positive are coincide. But, in cases 1 < p <
n − 1 not every weakly positive differential form is strongly positive.

Definition 1. Linear continuous functional T (ω) in the space of main differential form

F (p,p) = F (p,p)(D) = {ω ∈ F
(p,p)(D) ∩ C∞(D) : supp ω ⊂⊂ D}

is called current of bidegree (n − p, n − p) = (q, q)

The current T is called strongly (weakly) positive, if T (ω) > 0 for any weakly (strongly)
positive form ω ∈ F (p,p). It is clear, that for q = 0, 1, n−1, n weakly positivity of currents also
coincide with strongly positivity.

It is known, that positive currents are currents of measure type, i.e. differential forms,
coefficients which are Borel’s measures. More about the theory of currents see [1–4].

An impotent example of current of bidegree (p, p) in the pluripotential theory is current
ddcu ∧ (ddc|z|2)p−1, 1 6 p 6 n, defined as

ddcu ∧
(
ddc |z|

2
)p−1

(ω) =

∫
u
(
ddc |z|

2
)p−1

∧ ddcω , ω ∈ F (n−p, n−p)(D), (2)

where u ∈ L1
loc(D) are fixed functions. It is easy to proof that the current ddcu∧ (ddc|z|2)p−1 is

strongly positive if and only if, when it is weakly positive.

2. m–wsh functions

Definition 2. A function u(z) ∈ L1
loc(D), given in a domain D ⊂ C

n is called m−wsh function
(subharmonic function on (n − m + 1)–dimensional complex surfaces, 1 6 m 6 n) in D if:

1) it is upper semicontinuous in D, i.e.

lim
z→z0

u(z) = lim
ε→0

sup
B(z0,ε)

u(z) 6 u(z0);

2) the current ddcu ∧ (ddc|z|2|)n−m > 0 in D, i.e.

ddcu ∧
(
ddc|z|2

)n−m
(ω) =

∫
u
(
ddc|z|2

)n−m
∧ ddcω > 0, ∀ω ∈ F (m−1,m−1), ω > 0.
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The class of such functions is denoted by m−wsh(D). For convenience, the function u ≡ −∞
also included into the m−wsh(D) class. A letter "w" (weak) in denotation of class is put in
order to differ this class from the known class of m−sh functions. m−wsh function in the
domain D ⊂ C

n at the same time is subharmonic in the D ⊂ R
2n. Therefore, all properties of

subharmonic functions is true for m−wsh functions.
We provide a following properties of m−wsh function, which we will use further.
1) Linear combination of m−wsh functions with nonnegative coefficients are m−wsh functions,

i.e.

uj(z) ∈ m − wsh(D), aj ∈ R+ (j = 1, 2, ..., N) ⇒

a1u1(z) + a2u2(z) + ... + aNuN (z) ∈ m−wsh(D).

2) A limit of monotonically decreasing sequences of m−wsh functions is m−wsh function,
i.e.

uj(z) ∈ m − wsh(D), uj(z) ≥ uj+1(z), (j = 1, 2, ...) ⇒

lim
j→∞

uj(z) ∈ m−wsh(D).

3) Uniformly convergence of sequence of m−wsh functions is converge to m−wsh function,
i.e. if uj(z) ∈ m−wsh(D), (j = 1, 2, ...), uj(z) ⇉ u(z), then u(z) ∈ m−wsh(D).

4) (maximum principle). Let a function u(z) ∈ m−wsh(D) and in some point z0 ∈ D it
reaches its maximum, i.e.

u(z0) = sup
z∈D

u(z). (3)

Then u(z) ≡ const.
5) If u(z) ∈ m−wsh(D), then a convolution uj(z) = u∗K1/j(z−w) also belongs to m−wsh(D),

and uj(z) ↓ u(z) at j → ∞.
Here K1/j(x) = jnK (jx) and K is standard infinity differentiable kernel, with carrier

suppK ⊂ B(0, 1) and ∫

Rn

K (x)dx =

∫

B(0,1)

K (x)dx = 1.

The proof of these properties implies from analogous properties of subharmonic functions on
the plane and we down them (in details see [5]).

A following theorem gives us geometric character of m−wsh functions.

Theorem 1. Upper semi continuous function u, given in the domain D ⊂ C
n, is m−wsh if

and only if for any (n − m + 1)–dimensional complex surface Π ⊂ C
n restriction

u|Π ∈ sh (Π ∩ D) . (4)

Proof. Necessity. Let u ∈ m − wsh(D). According to property 5 we approxi-
mate u, with infinity differentiable functions uj ↓ u, uj ∈ m − wsh(D) ∩ C∞(D). We
fix a complex plane Π ⊂ C

n, dimC Π = n − m + 1, and we take an orthonormal ba-
sis ξ1, ..., ξn−m+1 on Π. Then (ddc|z|2)n−m |Π = (ddc|ξ|2)n−m and consequently, ddcuj ∧
(ddc|z|2)n−m

∣∣
Π = ddcuj

∣∣
Π ∧ (ddc|ξ|2)n−m . Since, ddcuj ∧ (ddc|z|2)n−m is positive differential

form of bidegree (n − m + 1, n − m + 1), then the restriction ddcuj ∧(ddc|z|2)n−m |Π > 0. Hence
ddcuj |Π ∧ (ddc|ξ|2)n−m > 0 and it means, that uj |Π ∈ sh(Π ∩ D) . Since, uj |Π ↓ u |Π at j → ∞,
then u |Π ∈ sh(D) .

Sufficiency. First we formulate a number of properties of upper semi continuous function
u(z), satisfying the condition (4), by them we will proof of sufficiency of theorem.

1) Finite sum α1u1 + ... + αkuk with positive coefficients α1, ..., αk > 0 will satisfy the
condition (4), if and only if u1, ..., uk satisfy the condition (4).
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2) Decreasing sequence or uniformly convergence sequence of functions {uj}, satisfying the
condition (4) converges to function of type (4).

3) The function u, satisfying the condition (4) either u ≡ −∞, or locally summable function,
i.e. u ∈ L1

loc(D).
Indeed, since u is upper semicontinuous, then it locally bounded from above. Therefore,

without lost of generality we may assume, that u < 0 in D. Let in some point z0 = 0 the
function u(0) 6= −∞. Then for any fixed surface Π ∋ 0, dim Π = n − m + 1, the restriction u |Π
is subharmonic in D ∩ Π. Consequently,

u (0) 6
1

Vn−m+1rn−m+1

∫

B(0,r)∩Π

u |Π dV |Π, (5)

where B(0, r) = {‖z‖ < r} is a ball, dV |Π is an element of volume on Π and Vn−m+1 is a volume
of unit ball in Π ≃ R

n−m+1. Hence, for any surface Π ∋ 0, dim Π = n−m+1, the restriction u |Π
has uniformly bounded integrals on Π ∩B(0, r). By the Fubini theorem and according to (5) it

follows that, −∞<

∫

B(0,r)

u(z)dz < 0. It means, that u locally integrable in a neighbourhood

of origin and it follows that the function u integrable on any Ball B(z0, r), z0 ∈ D, r > 0.
Remark 1. Here we apply the Fubini theorem on collection of complex surfaces passing through
origin. As it is known they generate Grassman’s manifold Mn,n−m+1. But to prove locally
integrability of u we can apply the theorem of Fubini for all complex surfaces Π passing through
some fixed surface L ∋ 0, dim L = n − m. The set of such Π will generate a projective space
Pm−1, and to proof u ∈ L1

loc(D) we can use a following convenient formula of Fubini

∫

B(0,r)

u(z) dv =

∫

Π∈Pm−1

ωm−1

∫

B(0,r)∩Π

u|Π(z) dV |Π, (6)

where ω is standard form of Fubini-Shtudi of projective space.
4) If u satisfy the condition (4), then the convolution uj(z) = u∗K1/j(z−w) also satisfy this

condition and uj(z) ↓ u(z) at j → ∞.
It follows from obviously relation

u ∗ K1/j(z − w) = jn

∫

Rn

u(w)K(j(z − w))dw =

∫

Rn

u

(
z +

w

j

)
K(w)dw. (7)

Here, the first integral represents infinity differentiable function, second integral satisfies the
condution (4). Convergence of uj(z) ↓ u(z) follows from (6).

Now we can complete the proof of theorem1. According to property 4) we construct ap-
proximation uj(z) ↓ u(z). Since, uj ∈ C∞ and uj |Π are subharmonic on any complex sur-
face Π, dimC Π = n − m + 1, then the restriction ddcuj ∧ (ddc|z|2)n−m |Π > 0. It means,
that the differential form ddcuj ∧ (ddc|z|2)n−m > 0. From convergence of uj(z) ↓ u(z) follows
ddcu ∧ (ddc|z|2)n−m > 0 in the sence of currents, and consequently, u ∈ m−wsh(D). The proof
of theorem1 is complete. 2

3. mw-polar sets

The polar and pluripolar sets are key notions of the potential theory (see [3, 6]). Therefore,
it is important the study of the mw-polar sets for the class of msh-functions.

Definition 3. By analogue polar sets, a set E ⊂ D ⊂ C
n is called mw-polar in D, if there exist

a function u(z) ∈ m−wsh(D), u(z)6≡ −∞, such that u |E = −∞.
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From inclusion m−wsh(D) ⊂ sh(D) it is follows, that each mw-polar set is polar. In
partiqular, the Hausdorf measure H2n−2+ε(E) = 0 ∀ε > 0, and consequently, Lebesgue measure
of mw-polar set E also is zero.

From embedding psh(D) ⊂ m−wsh(D) follows, that every pluripolar set is mw-polar. We
provide a nontrivial example of mw-polar set in the space C

3.
Example 1. We consider a function

u = ln[(z1 + z̄1)2 + (z2 + z̄2)2 + (z3 + z̄3)2] = ln |z + z̄|2 = ln
(
x2

1 + x2
2 + x2

3

)
+ ln 4,

where zj = xj + iyj , j = 1, 2, 3.
It is clear u is not 3 − wsh in D, i.e. it is not psh in D. It is not difficult to prove that it is

subharmonic, i.e. ∆u > 0. We show that it is 2−wsh function in C
3. Thereby we have, that real

3-dimentional surface R
3(x) =

{
z ∈ C

3 : Imz = 0
}

is 2w-polar in C
3. Taking direct calculation.

ω = (ddcu) ∧ ddc |z|
2

=
i

2

[
∂2u

∂z1∂z̄1
dz1 ∧ dz̄1 +

∂2u

∂z1∂z̄2
dz1 ∧ dz̄2+

+
∂2u

∂z1∂z̄3
dz1 ∧ dz̄3 +

∂2u

∂z2∂z̄1
dz2 ∧ dz̄1 +

∂2u

∂z2∂z̄2
dz2 ∧ dz̄2 +

∂2u

∂z2∂z̄3
dz2 ∧ dz̄3+

+
∂2u

∂z3∂z̄1
dz3 ∧ dz̄1 +

∂2u

∂z3∂z̄2
dz3 ∧ dz̄2 +

∂2u

∂z3∂z̄3
dz3 ∧ dz̄3

]
∧

∧
i

2
(dz1 ∧ dz̄1 + dz2 ∧ dz̄2 + dz3 ∧ dz̄3) = −

1

4

[(
∂2u

∂z1∂z̄1
+

∂2u

∂z2∂z̄2

)
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2+

+

(
∂2u

∂z1∂z̄1
+

∂2u

∂z3∂z̄3

)
dz1 ∧ dz̄1 ∧ dz3 ∧ dz̄3 +

(
∂2u

∂z2∂z̄2
+

∂2u

∂z3∂z̄3

)
dz2 ∧ dz̄2 ∧ dz3 ∧ dz̄3+

+
∂2u

∂z2∂z̄3
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄3 +

∂2u

∂z3∂z̄2
dz1 ∧ dz̄1 ∧ dz3 ∧ dz̄2 +

∂2u

∂z1∂z̄3
dz1 ∧ dz̄3 ∧ dz2 ∧ dz̄2+

+
∂2u

∂z3∂z̄1
dz3 ∧ dz̄1 ∧ dz2 ∧ dz̄2 +

∂2u

∂z1∂z̄2
dz1 ∧ dz̄2 ∧ dz3 ∧ dz̄3 +

∂2u

∂z2∂z̄1
dz2 ∧ dz̄1 ∧ dz3 ∧ dz̄3

]
.

Thus, for any form ν =
i

2
dℓ ∧ dℓ̄ of bidegree (1, 1) where dℓ = a1dz1 + a2dz2 + a3dz3

from ν =
i

2
dℓ ∧ dℓ̄ =

i

2

(
|a1|

2
dz1 ∧ dz̄1+ a1ā2dz1 ∧ dz̄2 + a1ā3dz1 ∧ dz̄3 + a2ā1dz2 ∧ dz̄1+

+ |a2|
2
dz2 ∧ dz̄2 + a2ā3dz2 ∧ dz̄3 + a3ā1dz3 ∧ dz̄1 + a3ā2dz3 ∧ dz̄2 + |a3|

2
dz3 ∧ dz̄3

)
, we get

ν ∧ ω = −
i

8

[
|a1|

2

(
∂2u

∂z2∂z̄2
+

∂2u

∂z3∂z̄3

)
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 ∧ dz3 ∧ dz̄3 +

+a1ā2
∂2u

∂z2∂z̄1
dz1 ∧ dz̄2 ∧ dz2 ∧ dz̄1 ∧ dz3 ∧ dz̄3 + a1ā3

∂2u

∂z3∂z̄1
dz1 ∧ dz̄3 ∧ dz3 ∧ dz̄1 ∧ dz2 ∧ dz̄2+

+a2ā1
∂2u

∂z1∂z̄2
dz2∧dz̄1∧dz1∧dz̄2∧dz3∧dz̄3+|a2|

2

[
∂2u

∂z1∂z̄1
+

∂2u

∂z3∂z̄3

]
dz1∧dz̄1∧dz2∧dz̄2∧dz3∧dz̄3+

+a2ā3
∂2u

∂z3∂z̄2
dz2 ∧ dz̄3 ∧ dz1 ∧ dz̄1 ∧ dz3 ∧ dz̄2 + a3ā1

∂2u

∂z1∂z̄3
dz3 ∧ dz̄1 ∧ dz1 ∧ dz̄2 ∧ dz2 ∧ dz̄3+

+a3ā2
∂2u

∂z2∂z̄3
dz3∧dz̄2∧dz1∧dz̄1∧dz2∧dz̄3+|a3|

2

[
∂2u

∂z1∂z̄1
+

∂2u

∂z2∂z̄2

]
dz1∧dz̄1∧dz2∧dz̄2∧dz3∧dz̄3 =
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=

[
|a1|

2

(
∂2u

∂z2∂z̄2
+

∂2u

∂z3∂z̄3

)
+ |a2|

2

(
∂2u

∂z1∂z̄1
+

∂2u

∂z3∂z̄3

)
+ |a3|

2

(
∂2u

∂z1∂z̄1
+

∂2u

∂z2∂z̄2

)
−

−a1ā2
∂2u

∂z2∂z̄1
− a1ā3

∂2u

∂z3∂z̄1
− a2ā1

∂2u

∂z1∂z̄2
− a2ā3

∂2u

∂z3∂z̄2
− a3ā1

∂2u

∂z1∂z̄3
− a3ā2

∂2u

∂z2∂z̄3

]
×

×
i

2
dz1 ∧ dz̄1 ∧

i

2
dz2 ∧ dz̄2 ∧

i

2
dz3 ∧ dz̄3 = α(z)

i

2
dz1 ∧ dz̄1 ∧

i

2
dz2 ∧ dz̄2 ∧

i

2
dz3 ∧ dz̄3,

where

α(z) = |a1|
2

(
2 |z + z̄|

2
− 4(z2 + z̄2)2

|z + z̄|
4 +

2 |z + z̄|
2
− 4(z3 + z̄3)2

|z + z̄|
4

)
+

+ |a2|
2

(
2 |z + z̄|

2
− 4(z1 + z̄1)2

|z + z̄|
4 +

2 |z + z̄|
2
− 4(z3 + z̄3)2

|z + z̄|
4

)
+

+ |a3|
2

(
2 |z + z̄|

2
− 4(z1 + z̄1)2

|z + z̄|
4 +

2 |z + z̄|
2
− 4(z2 + z̄2)2

|z + z̄|
4

)
+

+a1ā2
4(z1 + z̄1)(z2 + z̄2)

|z + z̄|
4 + a1ā3

4(z1 + z̄1)(z3 + z̄3)

|z + z̄|
4 +

+a2ā1
4(z1 + z̄1)(z2 + z̄2)

|z + z̄|
4 + a2ā3

4(z2 + z̄2)(z3 + z̄3)

|z + z̄|
4 +

+a3ā1
4(z1 + z̄1)(z3 + z̄3)

|z + z̄|
4 + a3ā2

4(z2 + z̄2)(z3 + z̄3)

|z + z̄|
4 =

=
4

|z + z̄|
4

(
|a1|

2
(z1 + z̄1)2 + |a2|

2
(z2 + z̄2)2 + |a3|

2
(z3 + z̄3)2 + a1ā2(z1 + z̄1)(z2 + z̄2)+

+a1ā3(z1 + z̄1)(z3 + z̄3) + a2ā1(z2 + z̄2)(z1 + z̄1) + a2ā3(z2 + z̄2)(z3 + z̄3)+

+a3ā1(z3 + z̄3)(z1 + z̄1) + a3ā2(z2 + z̄2)(z3 + z̄3)) =

=
4

|z + z̄|
4 |a1(z1 + z̄1) + a2(z2 + z̄2) + a3(z3 + z̄3)|

2
> 0.

Since, ℓ-arbitrary linear function, then ddcu∧ ddc|z|2 > 0, in C
3\R3(x) i.e. u is 2−wsh function

beyond of points R
3(x). In points R

3(x) function u
∣∣
R3(x) = −∞. Consequently, it will be

automatically 2 − wsh in these sense.

Definition 4. A domain D ⊂ C
n is called mw-convex, if there exist ρ(z) ∈ m−wsh(D) such

that lim
z→∂D

ρ(z) = +∞, and it called mw-regular, if there exist ρ(z) ∈ m−wsh(D) : ρ(z) < 0 such

that lim
z→∂D

ρ(z) = 0.

Next two theorems are analogue of corresponding theorems of classical and complex theory
of potential (see for example [6, 7]).

Theorem 2. Countable union of mw-polar sets is mw-polar, i.e. if Ej ⊂ D are mw-polar, then

E =
∞⋃

j=1

Ej is also mw-polar.

Theorem 3. Let D ⊂ C
n be mw-convex domain and subset E ⊂ D such that for any compact

subdomain G ⊂⊂ D the set E ∩ G mw-polar in G. Then E is mw-polar in D. Moreover,
if D–mw is regular, then there exist a function u(z) ∈ m − wsh(D), u |D < 0, u 6≡ − ∞, but
u |E ≡ −∞.
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Proofs of these theorem close to eachother. Therefore we provide only proof of the Theorem 3.
Since D is mw− convex domain, then a function ρ(z) = − ln ρ(z, ∂D) is m − wsh(D) and

lim
z→∂D

ρ(z) = +∞. Hence, Dr = {z ∈ ∂D : ρ(z) < r} ⊂⊂ D for any r > 0. We fix some point

a ∈ D and denote by Gj connected component of the set Drj
, enclosed a point a. Then there

exist a number rj > ρ(a) such that

Gj ⊂⊂ Gj+1,

∞⋃

j=1

Gj = D. (8)

Since E ∩ Gj+1 is mw-polar, then there exist a functions vj(z) ∈ m−wsh(Gj+2) such that
vj 6≡ −∞, but vj

∣∣
E∩Gj+2

≡ −∞. As the set {vj = −∞} has a Lebesgue measure zero, then the

set
∞⋃

j=1

{vj = −∞} also has a Lebesgue measure zero. Consequently, there is a point z0 ∈ G1

such that vj(z0) 6= −∞ for all j ∈ N .

Putting Cj = max
z∈Ḡj+1

vj(z), v̂j(z) = −
1

2j
·

vj(z) − Cj

vj(z0) − Cj
and uj(z) = aj(ρ(z) − rj+1), where

aj > 0 so big, that u
∣∣
Gj

6 −1. Then v̂j(z)
∣∣
Gj−1

< 0 and uj

∣∣
∂Gj+1

≡ 0. Therefore, it is not
difficult to proof, that

wj(z) =

{
max{v̂j(z), uj(z)}, for z ∈ Gj+1,
uj(z), for z /∈ Gj+1

(9)

is mw-subharmonic in D (j = 1, 2, ...).

Then the sum w(z) =
∞∑

j=1

wj(z) ∈ m−wsh(D), and w
(
z0
)

= −1, w |E ≡ −∞. It follows that

E is mw-polar in D.
In the case, when D = {ρ(z) < 0} is mw-regular, i.e. ρ (z) ∈ m−wsh (D) : ρ (z) < 0 and

lim
z→∂D

ρ (z) = 0, as a set Dr = {z ∈ ∂D : ρ(z) < −r} ⊂⊂ D, r > 0, and as a function uj we

take uj(z) = aj [ρ(z) + rj+1]. Here the sequence rj ↓ 0 such, that the connected component Gj

of Drj
satisfy the condition (8) and the aj a such, that u

∣∣
Gj

6 −1. Further, we construe wj as

in (9) and we put w(z) =
∞∑

j=1

wj(z). Then w will be at first negative m−wsh function in D and

secondly w |E ≡ −∞. 2
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Субгармонические функции на комплексных
гиперплоскостях C

n

Бахром И.Абдуллаев

В данной статье рассмотрен класс m − wsh функций, определяемых соотношением dd
c

u∧

∧(dd
c|z|2)n−m

> 0, и изучены некоторые свойства полярных множеств из этого класса.

Ключевые слова: m − wsh функции, mw-полярное множество, mw-выпуклая область, mw-

регулярная область.
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