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Conjugate equations based on a conception of the uniform mathematic description of a naturally 
equal heating transfer process in all points of a heterogeneous system is proposed. The equations 
may be applied to describe the heat and mass exchange processes in the divided boundaries of 
the heterogeneous systems instead of conventional IV type boundaries conditions. The modeling 
results of the underground coal gasification heat and mass exchange is adduced in the new problem 
definition.
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Introduction

The research of heat-mass exchange processes (HME) is very actual area today. The results 
of the researches is much used power engineering, metallurgy, chemicals, building and space 
exploration.

Mathematical modeling HME processes in heterogeneous systems is consider. In the systems 
separate phases have different physical properties and is in close contact. The systems describes by 
boundary conditions IV type. It’s writes as equal of temperature and heat transfer rate of contact 
phases. The equation accuracy is heating effects in boundaries (surfaces division)
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1, 2  – indexes of first and second boundary contacts phases; t1,t2,tξ  – temperature of first, second 
and third phases in the boundary, °С; λ1,λ2 – coefficient of heat conductivity first and second phases, 
W/(m∙K); n – normal on division surface; ξ – point coordinate, which placed on the division surface, m;  

−ξτξ ))(,,( tQ  – heat effect on the division surface, W/m2.
HME tasks in heterogeneous systems described IV type boundary conditions refers to conjugate 

tasks HME.
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1. Conjugate heat-mass exchange tasks  
with static and mobile division boundary

The HME tasks divides to two class conjugate tasks in dependence of specific conditions on 
phases division boundary. The first class is task with static boundaries, the second is task with mobile 
boundaries.

The tasks of first class includes tasks inside/outside convectional HME between liquid (gas) flow 
solid body. And besides it includes many tasks of heat-mass exchange between static bodies, e.g. 
solid – solid, solid – liquid and no mixed liquids [1–6]. 

In case of static bodies with static division boundaries in formula (1) heat effect is null and IV type 
boundary condition becomes simple:
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Heterogeneous systems HME tasks with phase and chemical transformations bringing to changing 
divisions boundary put into the second class [7–17].

Stefan task was an early one of the second class. Historically just in Stefan task the IV type 
boundary condition was used for the first time in 1889. It was described wet ground freeze process 
wing phase transmissions of water [7]. The boundary condition with origin (drain) as hidden heat of 
phase transmissions write down on mobile boundary:
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−pht  water phase transmission temperature (to ice and inversely), °С; −ρ⋅,phq  specific phase 

transfer hidden heat of dry ground J/kg and dry ground density, kg/m3; −τξ dd  phase transfer 

boundary movement velocity, m/s.  

It should be noted that in coarse-dispersed grounds the water phase transmission temperature 

is constant – =pht const because water is in free. And water in fine-dispersed grounds is bound, so 

freezing occur in range of temperatures =pht var. 

Tasks with state of matter changes and relating boundaries movement would refer to Stefan 

tasks in what follows. In this case in the systems of bodies with the phase transitions allows for heat 

emission in solidification zone by solution or melt phasing diagram [8–12]: 
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tph – water phase transmission temperature (to ice and inversely), °С; qph; ρ  – specific phase transfer 
hidden heat of dry ground J/kg and dry ground density, kg/m3; dξ/dτ  – phase transfer boundary 
movement velocity, m/s. 

It should be noted that in coarse-dispersed grounds the water phase transmission temperature 
is constant – tph =const because water is in free. And water in fine-dispersed grounds is bound, so 
freezing occur in range of temperatures tph =var.

Tasks with state of matter changes and relating boundaries movement would refer to Stefan tasks 
in what follows. In this case in the systems of bodies with the phase transitions allows for heat emission 
in solidification zone by solution or melt phasing diagram [8–12]:
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Ccr, λcr – volumetric heat capacity, J/(m3K), and heat conductivity in solidification zone as function of 
coordinates and temperature; S(τ) – function of heat emission in solidification zone by state of body 
diagram. In the phase division boundary writes IV boundaries conditions as before (3).

In addition Stefan tasks to second class of HME mobile boundary conjugation tasks refers tasks 
of chemical conversions with heat emissions or absorptions in the phase division boundary [13–16]. 
For example it’s burning and thermo chemical destruction of solid fuels wich blows high-enthalpy gas. 
IV type boundary condition writes for temperature fields and heat flows conjugation in phase division 
boundary in this case [13]:
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g, s, w, e – gas flow, solid body, phase division boundary (wall) and external surface of boundary 

layer indexes; y – coordinate of orthogonal system; −⋅εσ,  Stefan–Boltzmann constant, 5,7∙10-8 

W/(m2K4), and emissivity; −sii R,q  heating effect and solid boby disappearance mass velocity by 

i-th heterogeneous chemical reaction in the wall, kg/(m2s). 

Besides condition (5) components mass-conservation conditions writes in the phase division 

boundary. For gas the heat exchange describes energy equation subject to homogeneous reactions 

heat volume sources. For solid fuel the heat exchange describes thermal conductivity equation or if 

the solid fuel would have porosity and so diffusion-convective thermal conduction process would 

be have energy equation too. 

When III type boundary conditions uses to describe nonstationary HME processes in 

heterogeneous systems the temperature fields of the modeling system divided to independend 

sections. The problem statement result to improbable and inconsistent solutions [3, 8, 13]. Instead 

of this case IV type boundary conditions give able to consider the heterogeneous systems as single 

whole by consideration thermal interaction between all particles. 

However a question is appear – Why the transfer of substance, for example energy, impulse, 

amount of the substance, in the united system modeling by different mathematical ways? In the 

volume of bodies the heat transfer describes by energy equation and otherwise in boundary by 

equation of IV type boundary condition, when the physical laws not change. May the energy or heat 

conductivity equations use as conjugation of volumes and boundaries of HME tasks? 
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2. The uniform heat transfer mathematic description  
in phase volume and boundaries conception

The conception was to bring forward by authors [17] and where was apply conjugation equation 
instead of IV type boundary condition. The conception based on the next reasoning.

Let’s look flat HME task between solid body and washed liquid which have different temperature 
in initial time. Let’s place elementary volume Δx, Δy thereby one half is on solid body and another is 
on washed liquid (Fig. 1). Let’s call it conjugate elementary volume.

Thermophysic properties of solid body is the same by nature in conjunction volume 1’and in 
volume of body 1. As well washed liquid 2 and 2’ is. The properties have difference by quantitatively 
but not qualitatively.

On the other hand thermal transfer processes is unchangeable by their nature thermal conductivity, 
convection and radiation regardless of place in the considered body either in volume of phase or divided 
boundary.

Thereby substance thermophysic properties sameness and thermal transfer processes unchangeable 
in the volume and in boundary implicate their identical formalized description as energy equation 
independently to current point place either in heterogeneous system.

2.1. The conjunction equation in fixed boundary tasks

Let’s conclude differential heat transfer equation in fixed divided boundary conjunction voluentary 
unit (Fig. 1). Let’s make next assumptions in the case:
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−	 bodies in the conjunction unit 1’ and 2’ is homogenous and isomorphous;
−	 p = const;
−	 liquid is incompressible ;
−	 liquid motion is stationary with velocity vector projection Ox, Oy – wx = const, wy = const;
−	 bodies inside heat origins specify as space coordinates and time functions;
−	 fiction is neglect.
The interactive bodies heat quantity changing in voluentary unit through time interval Δτ may to 

define
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Fig. 1. The conjugate elementary volume: 1 – the fluid flow (gas mixture); 2 – the solid body; 1’, 2’ – fluid flow and 
the solid body in the conjugate elementary volume correspondently
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Let’s take two first series terms. In the lower semi-element will collect a heat quantity by axis Oy 
heat flux for a Δτ time. The heat quantity is
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In much the same way a lower semi-element heat quantity by axis Ox heat flux for a Δτ time and 
a upper semi-element heat quantity by heat flux of axis Ox, Oy for the same time is
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As a result of applying of (8), (9) in the lower semi-element will be 
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,pf psc c  – the specific heat capacity, J/(kg·K); ,f sρ ρ  – the density, kg/m3 ; , , , , ,pf ps f s f sc c ρ ρ λ λ  – 

the thermal conductivity W/(m·K) for liquid and solid phases accordingly. 

Let’s transfer the convective derivative in the left part equation (15) 
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The energy equation (15) is different from the basic energy equation which written 

separately for the volume of the body 1 and the volume of the body 2(Fig. 1). The equation (15) 

includes the heat transfer of both interactive bodies among themselves in the boundary division. 

Let’s name the equation (15) as interactive bodies energy conjunction equation or more simple as 

conjunction equation. 

Thus eonjunction equation (15), (15’) allow to model the naturally equal processes of heat 

transfer in heterogeneous system by the structurally equal energy equation as in volumes of bodies 

as in their divided boundaries without the irregular inclusion in the form of IV type boundary 

condition. 

Let’s introduce the designation for the substantial derivative of liquid flux as 
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cpf, cps – the specific heat capacity, J/(kg∙K); ρf, ρs – the density, kg/m3; cpf, cps, ρf, ρs, λf, λs  – the thermal 
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The energy equation (15) is different from the basic energy equation which written 

separately for the volume of the body 1 and the volume of the body 2(Fig. 1). The equation (15) 

includes the heat transfer of both interactive bodies among themselves in the boundary division. 

Let’s name the equation (15) as interactive bodies energy conjunction equation or more simple as 

conjunction equation. 

Thus eonjunction equation (15), (15’) allow to model the naturally equal processes of heat 

transfer in heterogeneous system by the structurally equal energy equation as in volumes of bodies 

as in their divided boundaries without the irregular inclusion in the form of IV type boundary 

condition. 

Let’s introduce the designation for the substantial derivative of liquid flux as 
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the thermal conductivity W/(m·K) for liquid and solid phases accordingly. 
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separately for the volume of the body 1 and the volume of the body 2(Fig. 1). The equation (15) 
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 is Laplace operator. 

In contrast to considered case (Fig. 1) an occurrence is possible when two bodies moves 

relative to each over. The examples is liquid – gas or two immiscible dropping liquids. In the case a 

additional term appears. The term describes the convectional heat transfer in boundary area in the 

second body which early considered as immovable. Thus the both derivative in the left side of (15) 

equation is substantial. 

The simplest form of conjunction equation (16) would to be in case of an immovable bodies 

interaction with an immovable divided boundary and the absence of volume thermal sources: 
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In this form the conjunction equation (17) is the functional analogue of IV type boundary 

condition (2). There is two difference between they. Firstly the heat transfer in divided boundary 

and the heat transfer in inside points of bodies describes equally in formalized form. In this case 

they describes by heat equation. Whereas in (2) instead of the heat equation uses the boundary 

conditions. Secondary the nonstationarity of the temperature field in dividing boundary 

environment models by conjunction equation itself. Due to this the conjunction equation (17) 

consistently blends with the mathematical model of nonstationary heat exchange in heterogeneous 

system. In case of the type IV boundary conditions (2) the nonstationarity of the temperature field 

don’t denote explicitly as well as in (3) and (5). The nonstationarity express indirectly through 

nonstationary heat equation which writes for the bodies inside points (4). In other words the IV type 

boundary conditions in nonstationary conjugate HME tasks brings the induced heat inertia in the 

divided boundary environment. In reality nonstationary conjugate HME processes in heterogeneous 

systems proceeds in continual temperature changes conditions in spatial and temporal as well in the 

inside bodies as in the divided boundary environment. 

 

2.2. The conjugate equation in the floating boundary tasks 

If the gas mixture stream flows around the solid body and at that the heterogeneous chemical 

reactions of mixture components and the solid body takes place (Fig. 2) then the terms qhr is appear 

in equation (15). Exactly the terms qhr take account the thermal effects of the chemical reactions. 

The material dimension of the solid body will be observed with a displacement the phases divided 

boundary as a result of the chemical reaction. 

The conjugate equation will complicate if the solid body is porosity and is permeable for 

gases. The porous solid fuels is thermal decomposed under heating. The decomposed process lead 

to the volatile matters vaporization. Under a overpressure the volatile matters filters through the 
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changes conditions in spatial and temporal as well in the inside bodies as in the divided boundary 
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2.2. The conjugate equation in the floating boundary tasks

If the gas mixture stream flows around the solid body and at that the heterogeneous chemical 
reactions of mixture components and the solid body takes place (Fig. 2) then the terms qhr is appear 
in equation (15). Exactly the terms qhr take account the thermal effects of the chemical reactions. 
The material dimension of the solid body will be observed with a displacement the phases divided 
boundary as a result of the chemical reaction.

The conjugate equation will complicate if the solid body is porosity and is permeable for gases. 
The porous solid fuels is thermal decomposed under heating. The decomposed process lead to the 
volatile matters vaporization. Under a overpressure the volatile matters filters through the porous to the 
phase divides surface (Fig. 2). Thereby the convectional heat transfer qks created. Besides the thermal 
decomposition process is endothermic reaction with heat absorption – qvs. And so if the HME occurs 
in the presences of high temperatures then in equation (15) need to input the origins heat terms. The 
terms would to take into account the radiation of the interphase surface – qRs and the radiation of the 
gas – qRf. Then in base of the reasoning equal 2.1 item the conjugate equation in vector form may write 
as:
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,i iD C  – diffusion coefficient, m2/s and mass concentration of i-th component of gas mixture. 

Let’s give some examples of using the conjugate equation (18) which take place upon 

mathematical modeling of the HME process in the heterogeneous systems with the floating divided 

boundary. 

 

3. The conjugate equation in the underground coal gasification HME task 

In the [16] Kreinin E. V. and Shifrin E. I. produced a mathematical model wich quite 

complete described physical and chemical effects of the stable phase underground coal gasification 

(UCG) in the gas generator (GG). But strictly speaking no one of the process stages is stable. Since 

a moment of a fireplace creating to a reaction canal forming and further GG exploitation their 

material composition, a gas mixture components mass concentrations and temperature fields of  the 

coal layer and the gas flow changes in time of the essence. 

A mathematical model of a nonstationary HME reaction channel d= 200 mm oxidative and 

reduction domains creating process in the well GG was build in the article [17] in the simplest 

problem definition. In the case the coal-bed is entire solid body and the only heterogeneous redox 

reaction С + О2=СО2; С + СО2=2СО takes place in a reaction channel wall in the oxidative and 

reduction domains: 
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−kokk Ekq ,, thermal effect, J/mol, preexponential efficient, m/s, activation energy, J/mol, k-th 

heterogeneous reaction; 2,1=k , 1 – О2, 2 – СО2; −R  the gas constant, J/(mol∙K); −kС  k-th 

component molar concentration, mol/m3. 

In the problem definition the last term of equation (19) define a two heterogeneous reactions 

heat effect intensity with O2, CO2 components. The first occurs with calorification in oxidative 

	 (18)

Di, Ci – diffusion coefficient, m2/s and mass concentration of i-th component of gas mixture.
Let’s give some examples of using the conjugate equation (18) which take place upon mathematical 

modeling of the HME process in the heterogeneous systems with the floating divided boundary.
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,i iD C  – diffusion coefficient, m2/s and mass concentration of i-th component of gas mixture. 
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(UCG) in the gas generator (GG). But strictly speaking no one of the process stages is stable. Since 

a moment of a fireplace creating to a reaction canal forming and further GG exploitation their 

material composition, a gas mixture components mass concentrations and temperature fields of  the 

coal layer and the gas flow changes in time of the essence. 

A mathematical model of a nonstationary HME reaction channel d= 200 mm oxidative and 

reduction domains creating process in the well GG was build in the article [17] in the simplest 

problem definition. In the case the coal-bed is entire solid body and the only heterogeneous redox 

reaction С + О2=СО2; С + СО2=2СО takes place in a reaction channel wall in the oxidative and 

reduction domains: 
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−kokk Ekq ,, thermal effect, J/mol, preexponential efficient, m/s, activation energy, J/mol, k-th 

heterogeneous reaction; 2,1=k , 1 – О2, 2 – СО2; −R  the gas constant, J/(mol∙K); −kС  k-th 

component molar concentration, mol/m3. 

In the problem definition the last term of equation (19) define a two heterogeneous reactions 

heat effect intensity with O2, CO2 components. The first occurs with calorification in oxidative 
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−kokk Ekq ,, thermal effect, J/mol, preexponential efficient, m/s, activation energy, J/mol, k-th 

heterogeneous reaction; 2,1=k , 1 – О2, 2 – СО2; −R  the gas constant, J/(mol∙K); −kС  k-th 

component molar concentration, mol/m3. 

In the problem definition the last term of equation (19) define a two heterogeneous reactions 

heat effect intensity with O2, CO2 components. The first occurs with calorification in oxidative 

, 1 – О2, 2 – СО2; R – the gas constant, J/(mol∙K); Ck – k-th component 
molar concentration, mol/m3.

In the problem definition the last term of equation (19) define a two heterogeneous reactions heat 
effect intensity with O2, CO2 components. The first occurs with calorification in oxidative domain and 
the second occurs with the thermal absorption in reduction domain of the reaction channel. And at 
the same time the wall of the channel burns down under heterogeneous reaction exposure. A reaction 
channel cavity enlarges by degrees. Primarily the cylindrical cavity is transformed to spindle-shaped.

The task is solved by the numerical implicit finite difference sweep method. This allowed to build 
the optimal algorithm by a time step variation in the condition of an essential temporal discontinuity. 

Fig. 2. The firing elaboration processes scheme of the coal-bed reaction channel: 1 – the flow of gas mixture; 
2 – the peripheral layer of the coal-bed; 3 – the near-wall layer of the coal-bed which prone to the thermal decom-
position; 4 – the volatile matters filtration in the coal-bed pores; ; r0, rw, rt – the radiuses of the initial channel, the 
mobile divided boundary of the solid body-gas and the coal thermal decomposition mobile boundary correspon-
dently; l – the reaction channel length
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For example most intensive temperature field forming in the channel and the coal-bed occurs for first 
24 hours. The time step was accepted as one hour for the time span. After first 24 hours the time step 
was increased to 24 hours by degrees.

A mathematical model offered in the articles [18] is more sophisticated then [17] one. The model 
takes into account an endothermic process of the coal thermal decomposition in the coal-bed body. Coal 
is structural changed by the thermal decomposition wich bring to coke, pitch and a volatile matters 
generation. The volatile matters filters through the coal-bed clefts and pours in the reaction channel 
(Fig. 2). In this connection in the problem definition new floating boundary appears. This is a coal 
thermal decomposition boundary. With all this the coal-bed is considered as a double layer system wich 
consists from a peripheral layer and a near-wall layer (Fig. 2). The heat transfer in the peripheral layer is 
described by the heat equation as before. The coal thermolysis occurs in the near-wall layer and the heat 
transfer there is described by the energy equation with a consideration of a convective heat transfer by 
the filtering volatile matters flow in the coal-bed porous space and a coal thermolysis heat origin:
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−ϕi the i-th coal component in the share units: 1 –, 2 – pitch, 3 – the volatile matters, 4 – a mineral 

share; −λi the i-th coal component thermal conductivity; −thq heat of the coal thermal 

decomposition, J/kg; −ρ1  a density of the combustible share of coal in solid phase; −v  radial 

component of a velocity vector of a filtration the volatile matters in the coal-bed, m/s. 

In the channel wall an energy conjugation equation is 
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φi – the i-th coal component in the share units: 1 –, 2 – pitch, 3 – the volatile matters, 4 – a mineral 
share; λi – the i-th coal component thermal conductivity; qth – heat of the coal thermal decomposition, 
J/kg; ρ1 – a density of the combustible share of coal in solid phase; v – radial component of a velocity 
vector of a filtration the volatile matters in the coal-bed, m/s.
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q3, ko3, E3, – thermal effect, J/mol, preexponential efficient and energy of a volatile matters burning 
activation; M3 – a volatile matters molecular mass, kg/mol.

In comparison of (17) the equation (19) has terms which allows coal decomposition heat in the 
upper semielement of a conjugate elementary volume and volatile matters burning heat in the lower 
semielement. It is fifth and sixth terms in right side of the equation.

In the [18] problem definition a radiation components of the energy transmission qRs, qRf did’t 
consider by supposition that the process proceeds in well walls self-irradiation condition. And also a 
coal properties changing supposes quasistationary on account of slower coal-bed heating. In every 
new time step thermalphysics properties values recalculates by empiric formulas. For example an 
equivalent coal thermal conductivity factor is calculated by Roussel formula [19]:
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−λλ g,0  veritable coal thermal conductivity and gas thermal conductivity factors, W/(m·K); m – 

coal porosity. A temperature dependence of effective heat capacity factor of Irsha-Borodino deposit 

on the materials [19] is approximated as: 
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Kinetic coal description is supposed in accordance with data offering in [20]. 

A pitch share which generated by the coal decomposition defines from continuity equation 

on the analogy of [13]: 
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A volatile matters share defines under the assumption of the mineral share is constant 

4ϕ =const: 

)(1 4213 ϕ+ϕ+ϕ−=ϕ . 

The mathematical model besides the temperature fields conjugate equation includes  

concentration fields conjugate equations of the gas components which simultaneously presents in 

the solid body and the gas mixture of channel. The concentration fields conjugate equations is 

similar to temperature fields conjugate equation by they structure and so don’t bring here. 

A computing experiment of an HME of firing well creating process with account of coal 

thermal decomposition had realized for the same conditions as in [17]. In the brown coal-bed from 

	 (22)
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example an equivalent coal thermal conductivity factor is calculated by Roussel formula [19]: 
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−λλ g,0  veritable coal thermal conductivity and gas thermal conductivity factors, W/(m·K); m – 

coal porosity. A temperature dependence of effective heat capacity factor of Irsha-Borodino deposit 

on the materials [19] is approximated as: 
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Kinetic coal description is supposed in accordance with data offering in [20]. 

A pitch share which generated by the coal decomposition defines from continuity equation 

on the analogy of [13]: 
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A volatile matters share defines under the assumption of the mineral share is constant 

4ϕ =const: 

)(1 4213 ϕ+ϕ+ϕ−=ϕ . 

The mathematical model besides the temperature fields conjugate equation includes  

concentration fields conjugate equations of the gas components which simultaneously presents in 

the solid body and the gas mixture of channel. The concentration fields conjugate equations is 

similar to temperature fields conjugate equation by they structure and so don’t bring here. 

A computing experiment of an HME of firing well creating process with account of coal 

thermal decomposition had realized for the same conditions as in [17]. In the brown coal-bed from 

The mathematical model besides the temperature fields conjugate equation includes concentration 
fields conjugate equations of the gas components which simultaneously presents in the solid body and 
the gas mixture of channel. The concentration fields conjugate equations is similar to temperature 
fields conjugate equation by they structure and so don’t bring here.

A computing experiment of an HME of firing well creating process with account of coal thermal 
decomposition had realized for the same conditions as in [17]. In the brown coal-bed from the Irsha-
Borodino deposit had bored a well with the diameter 200 mm and the length 100 m. In a distance 41 m 
from the well entry had created a fireplace by 4 m length and simultaneous oxygen-containing blowing 
supply.

The results of the experiment has showed the mathematical model of an HME of firing well 
creating process in coal-bed with using the energy conjugate equations (21) and the diffusion conjugate 
equation truly adjust with physical representation of the processes nature.

For example the blowing velocity value influences deeply on the reaction channel wall temperature 
status and on the expansion velocity of the reaction domain front along the well axis. A essential 
channel wall convectional cooling on the scope of the combustion zone 41– 45 m is observed by 
changing the middle blowing velocity w0 from 0,1 to 0,5 m/s (Fig. 3). With middle blowing velocity 
w0=0,06 m/s to twentieth hour from the combustion zone creating the wall temperature is higher then 
the initial temperature (t0=1000°C, dotted line 1 Fig. 3) everywhere and achieves 1220°C. The blowing 
velocity increasing brings to enlargement of the setback temperature domain (t < t0). And when the 
blowing velocity reaches w0=0,5 m/s the wall temperature becomes lower than 1000°C along the whole 
length of the combustion zone (Fig. 3). A beginning section of the combustion domain is cooled to the 
utmost. If the blowing velocity w0 is 0,1 and 0,3 m/s the temperature of the beginning section of the 
combustion domain will fall from t0=1000°C to 750 and 305°C correspondently. And if the w0 is 0,5 
m/s the temperature will become lower ignition point t < tig=200°C (Fig. 3).



– 495 –

Еvgeniy P. Khagleev. The Conjugate Equations in the Heterogeneous Systems Heat and Mass Exchange Tasks

From the other hand blowing velocity increasing brings to increasing combustion domain front 
velocity along the stream. The wall temperature is distinctly increased after twenty hours of firing 
elaboration with w0=0,06 m/s. But the combustion domain length lr had stays the same 4 m (from 
41to 45 m). When wср becomes 0,3 m/s the combustion domain length becomes lr=8 m and the front 
of ignition moves along to stream from 45 m point to 49 m (Fig. 3). The front of ignition moving 
the utmost is when the w0=0,5 m/s and the front achieve 49,5 m point. But on the velocity the first 
combustion point fades as noted above.

Besides the blast velocity the reaction channel forming is influenced by oxygen concentration on 
the blast. The oxygen-enriched blast СО=0,3–0,4 supply more intense coke burning on the channel wall 
and increasing the wall temperature (Fig. 3). This provides coal-bed heating and more deep combustion 
front moving along stream in compare an ordinary air blowing.

A preliminary blast heating 20 to 300°C before blowing it to well don’t influence to reaction 
channel forming because the blowing has relatively low thermal capacity. The capacity is less than 
coal-bed thermal capacity in three times. When blowing air has passed a distance from well entry 
to fireplace (it’s 40 m in the case) it would cooled by heat transfer with well walls. So there is no 
difference between lower and high temperature blowing.

The feature of the mathematical model [18] is to take into account the processes of the coal 
thermal decomposition in the bed and the volatile matters filtering (20) passes in the opposite direction 
to the coal-bed heating direction. As a consequence of this the coal-bed heating in the model is more 
slowly than in the model [17]. For example in the case w0=0,1 m/s and taking into account the coal 

Fig. 3. The reaction channel wall temperature status on 20 th hour of the firing elaboration: 1 – the initial wall 
temperature; 2 – the wall temperature when blowing velocity w0= 0,06 m/s; 3 – the wall temperature when blow-
ing velocity w0= 0,10 m/s and with taking into account the volatile matters filtration in the pores of the near-wall 
layer; 3’ – the same without account of the volatile matters filtration; 4 – the wall temperature when blowing 
velocity w0= 0,30 m/s; 5 – the wall temperature when blowing velocity w0= 0,50 m/s; 6 – the coal ignition tem-
perature; 7 – the coal thermal decomposition temperature
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thermolysis and the volatile matters filtering the wall temperature in the combustion domain 3 is less 
in three-five times than in the model which don’t consider the process 3’ (Fig. 3).

Conclusions

1.	 The energy (thermal conductivity) conjugate equation was received. It bases on the conception 
of the uniform mathematic description of a naturally equal heating transfer process in all points of a 
heterogeneous system.

2.	 The energy conjugate equation on the divided boundary describes processes of the both 
interacting bodies. The bodies may be in different states of matter and be mobile relative to each 
other.

3.	 In the non-stationary HME processes the IV type boundary conditions obviously reflect only 
the process temporal homogeneity but the thermal inertia in points of the divided boundaries they 
includes only by artificially (unnaturally). In the other hand the conjugate equations equally describes 
the energy transfer essence in all points of heterogeneous system. And besides the conjugate equations 
reproduces temporal changeability of temperature and the thermal flows in an explicit form.

4.	 For appropriate describes of HME processes in heterogeneous systems isn’t enough to use 
only temperature fields conjugate equations. Because besides heat exchange processes in the systems 
there is mass exchange processes with interpenetration. Therefore there is need to add the components 
concentration fields conjugate equations in the equation set. 

5.	 The conception of the uniform mathematic description of HME process in the heterogeneous 
systems may apply to the underground coal gasification task. The numerical experiment results is well 
conform with physical representation of the reaction channel firing elaboration processes in the coal-
bed.
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Уравнения сопряжения  
в задачах тепломассообмена  
гетерогенных систем 

Е.П. Хаглеев
Сибирский федеральный университет 

Россия 660041, Красноярск, пр. Свободный, 79

Предложены уравнения сопряжения, основанные на концепции единообразного 
формализованного представления одинаковых по своей природе механизмов переноса 
теплоты во всех точках гетерогенной системы. Уравнения сопряжения могут быть 
применены при описании процессов тепломассообмена на границах раздела фаз 
гетерогенных систем вместо традиционных граничных условий четвертого рода. 
Приведены результаты моделирования задачи тепломассообмена при подземной 
газификации угля в постановке с использованием уравнений сопряжения.

Ключевые слова: гетерогенная система, границы раздела, тепломассообмен, граничные условия 
IV рода (ГУ IV рода), уравнения сопряжения, подземная газификация угля, реакционный канал 
угольного пласта.


