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Introduction

Physically, any living being is a heat engine consuming fuel (a food) and an oxidizer (oxygen,

at most) and producing some mechanical work accompanied with (obvious) production of a heat.

In such capacity, we skip plants, mushrooms, etc. so called autotrophic organisms from further

consideration.

Keeping the analysis within the animals, we also should discrete them into two basic classes:

haematocryal (or poikilothermal) creatures, and homoiothermal creatures. The difference is cru-

cial, from the point of view of excessive, or "junk" heat production. Obviously, the animals from

both classes have to produce some heat, as a by-product of the mechanical work to be done. The

point is that poikilothermal animals (those from the first class) are considered to be in a thermal

equilibrium with the environment, while the homoiothermal ones exhibit good maintenance of

the body temperature.

Evidently, any creature producing mechanical work from a fuel oxygenation may not be in

absolute temperature equilibrium with the environment; meanwhile, the ratio of Vp to Vh has

a figure proximal to 10−5 ÷ 10−3, where Vp (Vh, respectively) is a "junk" heat production by a

poikilothermal animal (by a homoiothermal animal, respectively).

A diversity of living conditions observed worldwide falls beyond any imagination. It seems to

be surprising, but it isn’t so: there is the most general biological law which forces to inhabit any

possible space. In spite of the great biological significance of that law, we shall not discuss it here.

Nonetheless, such dense inhabitation poses another problem in modelling of thermal regulation of

both poikilothermal and homoiothermal animals: the problem of overheating. Indeed, any living

being lives within the clearly determined (for a given specie, of course) range of environmental
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conditions, where temperature is one of the most important parameters. Thus, a model of thermal

regulation must take into account this problem from both "ends" of the viable temperature range.

From thermodynamic point of view metabolism is a chain of non-equilibrium chemical reac-

tions in which energy is produced and consumed by the body. These reactions generally form a

steady state process (the process which is not in thermodynamic equilibrium, but has no depen-

dency on time). Steady state is more general than dynamic equilibrium because it accepts that

some of the processes may be irreversible. If system is in a steady state then some flows and

entropy production may be non zero, while certain properties of the system are unchanging in

time [20].

This article describes any details of neither metabolism in general, nor particular mechanisms

of energy generation by certain chemical reactions or mechanical work of the muscles. These

details can be found elsewhere (a good starting point can be [18], or [31]).

The major point is the well known fact that significant part of the generated energy is released

in form of heat and part of the heat is not used for any purposes inside of the body. Rate (power)

of this heat generation is further noted as excessive heat rate, or Hexc. Density (volumetric) of

this heat source is mentioned below as hexc.

This excessive heat should be transferred out of any endothermic animal’s body core. The

transfer itself should involve minimal extra activity to be at the maximum of efficiency. In other

words, excessive heat should be dissipated as passively as possible. The best candidate mechanics

is heat convection and diffusion into the ambience through the shell (skin) of the animal.

One of the major flaws of the present models is that they use Newton’s cooling to estimate

energy balance and/or temperature of an animal. This seems to be incorrect because the system

(animal) is not cooling, but actively works against it. Newton’s cooling may be proper descrip-

tion of some processes that establish thermal equilibrium, while living system struggles against

thermal equilibrium because it is just euphemism of “death” from the life’s point of view.

1. The model

The animal model follows well known "core and shell" description of animal’s body [3,29,37].

The model describes heat transfer through the shell (skin) of an animal. The importance of this

heat dissipation mechanics is founded by the heat dissipation limit theory introduced in [32].

Other modes of heat dissipation (e. g. dog’s panting) are not in the model scope. In other words,

the model describes heat dissipation of an animal that performs on near to rest metabolism, and

is situated in environment with a temperature that is within thermo neutral zone of the animal.

Major theoretical foundations of heat dissipation by animals can be found in [1, 14, 41]. The

model is not related to the animal as a whole, but rather describes local behaviour of heat transfer

and possible mechanisms of heat transfer regulation. Animals body is schematically drawn by

Fig. 1.

1.1. Core

Core is the animal’s body central compartment, where the heat is generated in metabolic

processes. From the proposed model point of view the metabolism is a chain of irreversible, non-

equilibrium chemical reactions producing energy that is utilized in the body. These reactions

generally form a steady state process (the non-equilibrium thermodynamic process having no

dependency on time). Steady state is more general than dynamic equilibrium since it accepts
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Fig. 1. Core and Shell Model

that some of the processes may be irreversible. If system is in a steady state then some flows

and internal entropy production may be non zero, while certain properties of the system do not

change in time [18,20].

This model describe no details of either a metabolism in general, or particular mechanisms of

energy generation by certain chemical reactions or mechanical work of the muscles. These details

can be found elsewhere (a good starting point can be [18], or [31]).

The major point of the core functionality model is the well known fact that significant part of

the generated energy is released in form of heat and part of the heat is not used for any purposes

inside of the body. Rate (power) of this heat generation is further noted as excessive heat rate,

or Hexc. Density (volumetric) of this heat source is mentioned below as hexc. It is important that

Hexc is produced by irreversible process, i. e. in metabolism.

1.1.1. Assumptions

The model does not concern about internal functionality of the core, but is focused on a heat

flow from the core to the ambience instead.

The first assumption is that the core is big, homogeneous closed system and does not have

effective spatial structure. This assumption allows us to consider the core as a system that is

entirely in a steady state, ignore local (internal to the core) flows, mass transfer, and use semi-

classical approach for core temperature calculation. This "big system" assumption follows the

idea that the core has permanent volume, and does not produce any work: dUc = dQc − pdVc =

dQc, where dUc is the differential of internal energy of the core.

Another assumption is that the core should always (on the model’s time scale) be in a steady

state. It means that total entropy production of the core dSc = dSext
c +dSint

c = 0, where dSint
c > 0

due to the Second Law of thermodynamics. Since internal entropy is generated in irreversible
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process (metabolism), all excessive heat should be transferred to the core externals (see details

in [18]):

dSc = dSext
c + dSint

c = 0 ⇒ dSext
c = −dSint

c

dSint
c =

dQexc

Tc
⇒ dSext

c = −
dQexc

Tc
, or

dSext
c

dt
= −

1

Tc

dQexc

dt
= −

1

Tc
Hexc ;

(1)

it means that core internal energy is constant:

dUc = dQc − pdVc = dQc = TcdSc = 0 , (2)

and the core temperature Tc = Qc/Cv does not depend on time:

∂Tc

∂t
=

∂Qc

∂t
= 0 . (3)

Note that full differential dQ is implemented instead of classical "imperfect differential" δQ

because the model describes steady states of non-equilibrium processes, as opposite to classical

description of thermodynamic equilibrium, see [18,20] for detailed explanation.

A specific core temperature Tc is one of the properties of a steady state, and may have dif-

ferent figure in another steady state. In the same time, metabolism depends on some enzymes

which performance depends (among other things) on temperature, so keeping Tc inside a pre-

ferred temperature range, or even constant, is an advantage. These considerations lead us to the

following assumptions of the core model:

– core heat production Hexc is constant (hexc is stationary function of coordinates);

– core temperature Tc is stationary function of coordinates regardless of external parameters.

Basically, these assumptions (or constraints if we speak about thermoregulation) describe

simplified thermodynamic of an endothermic animal.

1.1.2. Formalization

Entropy balance equation (1), constant internal energy equation (2), core heat production

rate hexc, and stationary distribution of temperature inside of the core (3) can be combined into

continuity equation that is just another form of the First Law of thermodynamics:
∫

∂S

~q(s) · ~n(s) dS =

∫

Vcore

hexc(~r) d~r , (4)

where ∂S is the core surface, ~q(s) is heat flow, ~n(s) is the outward-pointing unit normal to ∂S,

s is a parameter that defines coordinate on the surface, Vcore denotes entire space of the core,

hexc is the density of heat generated in core (see above), and ~r is coordinate inside of the core;

Fig. 1 illustrates this scheme.

Equation (4) simply means that total outgoing heat flow is equal to the total heat generation

rate of the core. One can apply Gauss theorem (divergence theorem) to re-write (4) as
∫

Vcore

∇ · ~q(~r) d~r =

∫

Vcore

hexc(~r) d~r , (5)

and write differential form of continuity equation for stationary distribution of heat in the core:

∇ · ~q = hexc(~r) . (6)
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Equation (6) is written for unit volume (in volumetric quantities). This equation is valid for any

sub-volume of the core. Because of this we continue model built-up for an arbitrary volume V

that is adjacent to the shell and is separated (conventionally) from the core by surface ∂C as

illustrated in Fig. 1.

To have well-defined problem in V , one must define boundary conditions for the equation (6).

Since we assume a constancy of the heat generation density rate in core

(

∂hexc

∂t
= 0

)

, the

equation (4) can be written as

∫

∂S

~q(s) · ~n(s) dS = const . (7)

Note that ~q(s) may be a function of time on any given part of the surface ∂S, while the whole

integral (7) can not. Consider the following example: divide the surface by even number of tiles

N , and "assign" heat flow Jodd to each odd numbered tile and heat flow Jeven 6= Jodd to each

even numbered tile. Equation (7) is fully satisfied and looks like

N/2
∑

n=1

(J2n−1 + J2n) =

N/2
∑

n=1

Jodd +

N/2
∑

n=1

Jeven = J ; (8)

swap Jodd and Jeven on all tiles: set flow Jodd to even numbered tiles, and flow Jeven for odd

ones. Total flow as it is defined by (7) becomes

N/2
∑

n=1

(J2n−1 + J2n) =

N/2
∑

n=1

Jeven +

N/2
∑

n=1

Jodd = J . (9)

Obviously, it is exactly equal to (8). If we run a recurrent process then every Jn depends on time

eventually, while both (8) and (9) are still equal and constant.

We assume that any time dependency in ~q(s, t) is a very slow function:

~q(s, dt) = ~q(s, 0) +

∞
∑

n=1

dtn

n!

∂n

∂tn

∣

∣

∣

∣

t=0

~q(s, t) = ~q(s, 0) + o(dt) ∼ ~q(s) . (10)

It means, for example, that local heat flows may significantly change on circadian time scale, or

even slower.

With this assumption we can finally formulate the local heat balance equation for the core:

∇ · ~q = hexc,

~q · ~n |∂S = Jc ,
(11)

where all quantities are volumetric, hexc > 0, and Jc > 0 by definition and the coordinate system

choice.

Note that we have not discussed any properties of the flux ~q yet, and the problem (11) is a

very general form of heat balance representation.

1.1.3. Convection-diffusion equation

The model provides the description of this flux by the means of convection-diffusion equation,

or advection-diffusion equation. The different names for the same equation are used depending on

nature of the subject: "convection" is correctly used for vector quantities like magnetic field ~B,
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and "advection" is correctly used for scalar quantities like heat Q, and the difference can be

very important under certain circumstances. Nevertheless, it is not important in our case and

we continue to use "convection-diffusion equation" as more familiar term.

The convection-diffusion equation is very well known in many fields of physics and mathe-

matics:

– drift-diffusion equation or the Smoluchowski equation (describes the flow of ions dissolved

in a liquid in presence of an electric field, or drift current in semiconductors);

– Fokker-Plank equation (describes the time evolution of the probability density function of

the velocity of a particle);

– various applications that describe random motion with diffusivity and velocity (or any

bias) field, including financial mathematics (e. g. Black-Scholes equation).

The model stipulates that ~q is a combination of two types of fluxes: diffusive flux due to

thermal diffusion, and advective flux which is the flux associated with advection of heat by flow

of fluid:

~q = ~qdif + ~qadv . (12)

Diffusion here is a thermal diffusivity process due to temperature gradient between core and

shell, and convection exists due to the blood flow inside of the core and from the core to shell.

Blood can work well in advection of heat because the viscosity of blood is 4 – 5 times higher

than the water (and salt water) viscosity, so the velocity boundary layer exceeds the diffusive

boundary layer in greater proportion than of water (i. e. Prandtl number Pr blood ∼ 30, while

Prwater ∼ 6 at the typical core temperature Tc ∼ 38◦C). Prandtl number is defined as:

Pr =
cpµ

k
, (13)

where cp is specific heat, µ is dynamic viscosity, and k is the thermal conductivity of the fluid. A

discussion of exact properties of the blood and blood flow falls beyond the scope of this article

and can be found in other researches; see, for example, [8, 16,26,36].

Advective flux is proportional to the velocity:

~qadv = ~vQ , (14)

where Q is heat, and ~v is the velocity of the fluid bearing the thermal energy (e. g. blood [41,42]).

Diffusive flux can be approximated by Fourier’s law (i. e. the flux is proportional to the local

temperature gradient), which is analogous to the Flick’s first law [12] well known in biology,

where it is used to describe gas flow through the cell membrane, for example):

~qdif = −D∇Q , (15)

where D is diffusivity and is defined as thermal diffusivity D =
k

ρcv
for the heat transfer appli-

cations [38].

In this definition, k is the thermal conductivity (SI unit of W/(m · K)), ρ is density, and cv

is specific heat capacity. Thermal diffusivity has SI unit of m2/sec and is the material property.

Under these approximations the total flux from the core surface can be presented as:

~q = −D∇Q + ~vQ , (16)
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and the heat balance equation (11) for the flux converts to the equation for the heat Q:

∇ · (−D∇Q + ~vQ) = hexc,

(−D∇Q + ~vQ) · ~n |∂S = Jc,

Q |∂C = f(~r) = const ,

(17)

where the additional boundary condition on the (virtual) surface ∂C has been added to make

the problem (now the second order PDE) well-defined.

The boundary condition on ∂C is Dirichlet (or the first type) boundary condition. This type

of boundary conditions are necessary here to make the solution unique (see [34]). The surface

∂C can be an arbitrary one with known temperature distribution, or an isothermal surface, as

suitable and as conforming the core internal structure (e. g. tissues morphology).

The boundary condition on ∂S is Robin (or the third type) boundary condition. This type

of boundary condition for the convection-diffusion equation is a general form of the impedance

boundary condition (insulating in case of Jc = 0). That latter is quite common in thermodynamic

problems, especially for the convective heat exchange applications, see [35] for comprehensive

introduction.

It should be noticed that the boundary condition on ∂S is natural and has meaning of

Neumann (or the second-type) boundary condition, in this model, because it simply defines a

heat flow across the boundary. The flow has a convective part demonstrating that ∂S is not rigid

and has some permeability.

This boundary position can be estimated using Péclet number Pe. This number is defined as

Pe =
|~v · ∇T |

|k∇2T |
=

Lv

D
= Re · Pr (18)

for heat transfer applications, where L is a characteristic length, v is a characteristic velocity, D

is a thermal diffusivity (as defined above), Re is Reynolds number, Pr is Prandtl number. Péclet

number has the meaning of:

Pe =
rate of advection

rate of diffusion
. (19)

According to this definition, we can say that ∂S lays in a region where Péclet number Pe ∼ 1,

or Reynolds number of the blood flow becomes equal to reciprocal of the blood Prandtl number,

Re ∼ 1/Pr. In that region, the diffusive heat flow becomes more important than the advective

heat transfer.

Using known blood flow characteristics (numbers are taken from [8] and it’s citations) and

values of thermal properties of animal tissues from [5], we can roughly classify the model regions

according to Péclet number of the blood flow (see Tab. 1, where Prandtl number of the blood

Pr = 30 is used, see (13)).

Region Reynolds number Re (by order of magnitude) Péclet number Pe
Core vascular 100 – 1000 3000 – 30000
Subcutaneous vascular 1 – 10 30 – 300
Microvascular 0.001 0.03

Table 1. Péclet numbers

The boundary ∂S lays inside the subcutaneous vascular system, close to the internal boundary

of the capillary network, as Fig. 2 shows. In a simple environment where the diffusion coefficient
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is constant and the flow is incompressible the equation (17) can be simplified to:

− D∇2Q + ~v · ∇Q = hexc,

(−D∇Q + ~vQ) · ~n |∂S = Jc,

Q |∂C = f(~r) = const ,

(20)

or, using core temperature Tc defined from Q = ρcvTc and assuming that cv and ρ are both

constant:

− k∇2Tc + ρ~v · cv∇Tc = hexc,

(−k∇Tc + ρ~vcvTc) · ~n |∂S = Jc,

Tc |∂C = g(~r) = const ,

(21)

where all the quantities are volumetric, Tc is the core temperature, k [J/(sec · m · K)] is the

thermal conductivity, ρ [kg/m3] is the density, cv [J/(kg ·K)] is the specific heat capacity, and ~v

[m/sec] is the blood flow velocity. All these properties may be determined either by a tissues, or

by the blood, because the core tissues are well perfused and it is possible to consider the tissue

and vasculature as a whole for the heat transfer models [1, 2].

Fig. 2. Illustration of ∂S position

Both Jc and hexc are locally defined and depend on the type and size of the animal (Klieber’s

law [17, 27]), current activity level of the animal, animal’s fit level, etc. Problem (21) can be

interpreted as a formalization of the homeostasis property of endothermic animals.

The heat flow Jc to the ambience, metabolic heat production rate hexc, and core temperature

Tc define a steady state of the core through equation (21). In this equation hexc is "inhomogeneous

right side" of convection equation, and Jc along with Tc are members of boundary conditions.

1.1.4. Core entropy balance estimation

If the core (which can be assumed to be a big system in equilibrium for the illustration

purposes) were connected to an ambience (another big system in equilibrium), we could estimate

the entropy production in a core and ambience in the following way: the core and ambience heat

exchange can be presented as a heat conduction in an isolated system consisting of two parts,

where each part is in equilibrium and has well-defined temperature Tc and Ta (assuming Tc > Ta,

and constant volume). Mass exchange can be neglected since the core is supposed to be a closed

system.

This system will maintain a heat flow JQ that transfers dQ per time dt per unit area from

hotter part to the cooler one. Since the volume is constant, the energy changes due to heat flow
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only and we can write dU = dQ for each part of the system. The First Law yields −dQc = dQa =

dQ, so that the total change of entropy in this system is

dS = −
dQ

Tc
+

dQ

Ta
=

(

1

Ta
−

1

Tc

)

dQ . (22)

Since Tc > Ta, one can see that dS > 0. This equation can be expressed as dS = FdX, where

F is thermodynamic force, and dX is a thermodynamic flow [25]. Finally, we can write expression

for the rate of entropy production as

Ṡ =

(

1

Ta
−

1

Tc

)

dQ

dt
=

(

1

Ta
−

1

Tc

)

Jc , (23)

where Jc ≡
dQ

dt
is heat flow per unit area from boundary condition of problem (17). Unfortu-

nately, the core is connected to shell and this approach does not work as appropriate. The reason

of fault is erroneous assumption of thermodynamic equilibrium in the shell.

1.2. Shell

The model describes a shell as a system confined between two "big" systems: a core and an

ambience where both of them have certain temperature (Tc and Ta < Tc). There is a heat flow
~JQ(~r, t) through the shell transferring heat from the core to an ambience. The shell is in a steady

state most of the time, but sometimes it can pass through some transitive states.

1.2.1. Assumptions

We propose the following assumptions, most of which are basic assumptions of non-

equilibrium thermodynamics:

– all flows are small;

– variations of flows are small (i. e. gradients and higher order derivatives can be neglected);

– all thermodynamic forces variations are small;

– all of the above is true in any part of the shell and is true for the entire shell (i. e. the shell

is homogeneous and has "small" thickness).

These assumptions can be combined into just one: the shell conforms to local equilibrium re-

quirements (see details in [18,20,25]). We also assume that shell is "passive" and it’s metabolism

can be neglected (i. e. a shell does not have internal heat sources).

All of the assumptions proposed above seem to be valid and reasonable for the temperature

and energy ranges that a living creature may normally meet. The shell is in permanent contact

with ambience. The ambience properties may change at any moment in any way that is completely

out of one’s control. By this reason we do not assume that shell is in a steady state permanently.

Transient processes are allowed and will be (briefly) evaluated.

The shell moves into transitive state immediately after ambience temperature or some other

thermal parameters of the ambience have changed. Life time of transitive state depends on

the shell geometry and thermal properties and can be estimated (by order of magnitude) as

τD ∼ O(L2
ρcp

k
), where L is the shell thickness and

ρcv

k
is inverse of the shell thermal diffusivity

coefficient.
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1.2.2. Formalization

We start from a derivation of equation for the temperature distribution in the shell when it

is in a steady state. As we have learnt already from equations (1) and (2), steady state means a

stationary distribution of temperature as it is formalized by equation (3).

It yields the following equation that is equivalent to the equation (6) while written for ~JQ:

∇ · ~JQ = 0 , (24)

where ~JQ is the heat flow that traverses shell, and ~r are the coordinates in the shell. The equation

is homogeneous because we assume that shell does not contain any heat sources.

The blood flow inside of the shell goes in capillaries and it has velocity that is lower by orders

of magnitude than the blood flow velocity in the core, and according to figures from the Tab. 1

the Péclet number for the blood flow in capillaries is Pe ∼ 0.03.

Thus, we believe that ~JQ is diffusive and can be approximated in the same way as in equa-

tion (15):
~JQ = −Ds∇Q , (25)

where Ds =
ks

ρscs
is the thermal diffusivity coefficient for the shell. Since we assume a homogeneity

for the shell, then Ds is neither a function of time, nor of coordinates, thus (24) can be transformed

into:

−Ds∇
2Q = 0 , (26)

or, taking temperature from Q = ρscsTs, one can write:

∇2Ts = 0 , (27)

where Ts is the shell temperature, and ks is the thermal conductivity of the shell.

We need, further, some boundary conditions to complete the problem definition. The model

proposes Dirichlet (or the first type) boundary condition on outer surface ∂A, and Neumann (or

the second type) boundary condition on inner surface ∂S. Final equation along with its boundary

conditions looks similar to (21), but does not include convection:

∇2Ts = 0 ,

ks∇Ts · ~n|∂S = −JQ ,

Ts|∂A = Touter .

(28)

Boundary condition on the inner surface ∂S simply means a heat flow continuity. The bound-

ary condition on the outer surface ∂A introduces a new temperature Touter. We may use a

common convective heat transfer approximation (Newton’s law of cooling) and stipulate that

Touter is defined by the equation Jc = κ(Touter − Ta) (per unit area), where κ

[

J

sec m2 K

]

is

the heat transfer coefficient. But, we calculate it from the entropy production rate of the system

instead, and demonstrate that convective approximation is just a special case of the more general

dependency.

1.2.3. Shell entropy production

Equation for entropy production rate can be written using the same method as is illustrated

during evaluation of (23), but the equation should be generalized as equation for production
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rate of entropy density, σ(~r, t) in every elementary volume d~r, because we can assume the local

equilibrium only. Taking note that

(

1

Ta
−

1

Tc

)

becomes ∇T−1, one can write:

σ(~r, t) d~r = ∇
1

T (~r)
· ~JQ(~r, t) d~r , (29)

where σ(~r, t) is production rate of entropy density, T (~r) is temperature of the shell, ~JQ(~r, t) is a

heat flow that “traverses” the shell, ~r is coordinate in the shell.

One can integrate (29) over the shell and obtain the total entropy production rate in the shell

as

Ṡshell(t) =

∫

V

σ(~r, t) d~r =

∫

V

~JQ(~r, t) · ∇
1

T (~r)
d~r , (30)

where
∫

V
d~r means an integration over the entire shell volume.

For the sake of clear demonstration of the major properties of the system, we consider unit

area cross section of the shell and assume that the shell boundaries are perpendicular to the heat

flux ~JQ. Illustration of this model is presented in Fig. 3.

Fig. 3. Shell Temperature Model

This simplification removes routine vector calculus transformations of the volume integral

in (30) and reduces 3D equation space to one dimension.

Let’s re-write (30) as one-dimensional linear integral. Shell cross section area is omitted

because we use per unit area values (and volumetric units as usual):

Ṡshell(t) =

L/2
∫

−L/2

JQ(x, t)
d(1/T (x))

dx
dx , (31)

where L is the shell thickness, and x is the coordinate across the shell. The coordinate system

origin is set at the shell median plane and positive direction points to the ambience. In these

coordinates the core surface ∂S is at x = −L/2 and the ambience surface ∂A is at x = L/2, see

Fig. 3 for illustration.
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Integral (31) can be integrated by parts and evaluates to:

Ṡshell(t) =
1

T (x)
JQ(x, t)

∣

∣

∣

∣

L/2

−L/2

−

∫ L/2

−L/2

1

T (x)

dJQ(x, t)

dx
dx = Ṡsteady(t) + Ṡtransient(t) ,

Ṡsteady(t) =
Ja(t)

Ta
−

Jc(t)

Tc
,

Ṡtransient(t) = −

∫ L/2

−L/2

1

T (x)

dJQ(x, t)

dx
dx ,

(32)

where Ja(t) = JQ(L/2, t) is the heat flux to the ambience, Jc(t) = JQ(−L/2, t) is the heat

flux from the core, Ṡsteady(t) is the steady state contribution, and Ṡtransient(t) is the transient

process contribution. Equations (32) immediately lead to the steady state entropy production

rate formula:

Ṡsteady =
Ja(t)

Ta
−

Jc(t)

Tc
=

(

1

Ta
−

1

Tc

)

Jc , (33)

under the local equilibrium assumption
d

dx
JQ(x, t) = 0 in any steady state, and we have Ja(t) =

Jc(t) = Jc (strictly speaking, on average), and Jc is not a function of time. It is clear that

Ṡsteady > 0 if Tc > Ta.

This demonstrates an important model limitation: inequality Tc > Ta must be valid at any

time. A transient process contribution Ṡtransient can be estimated due to the local equilibrium

assumptions. First, expand integrand into Taylor series around x = 0:

Ṡtransient(t) = −

∫ L/2

−L/2

∞
∑

n=0

xn

n!

dn

dxn

(

1

T (x)

dJQ(x, t)

dx

)∣

∣

∣

∣

x=0

dx , (34)

where
d0

dx0
f(x) ≡ f(x), and then change order of summation and integration:

Ṡtransient(t) = −

∞
∑

n=0

dn

dxn

(

1

T (x)

dJQ(x, t)

dx

)∣

∣

∣

∣

x=0

∫ L/2

−L/2

xn

n!
dx . (35)

Next, taking note that all odd numbered members of the series are zero because of the

integration limits symmetry, and any high (i. e. > 2) order derivatives can be neglected by the

accepted assumptions, equation (35) can be transformed to:

Ṡtransient(t) = −L

(

1

T (x)

dJQ(x, t)

dx

)∣

∣

∣

∣

x=0

= −L
1

Ts(t)

d

dx
JQ(t) , (36)

where the shell temperature is introduced as Ts(t) ≡ T (0, t). Finally, the equation (36) can be

expressed as

Ṡtransient(t) = −
Ja(t) − Jc(t)

Ts(t)
, (37)

where
d

dx
JQ(t) has been estimated as

Ja − Jc

L
, ignoring high order derivatives.

It is important that one should not use stationary flows in (37), because this equation describes

non-steady state, where both Ja and Jc may be functions of time. Same is true for the shell

temperature Ts. Complete estimation of total entropy production rate in the shell is then:

Ṡshell(t) =
Ja(t)

Ta
−

Jc(t)

Tc
−

Ja(t) − Jc(t)

Ts(t)
, (38)
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where both Ta and Tc are assumed to be weakly dependent on time (at most) in the same sense

as explained by (10).

The equation for the steady state entropy production (33) defines the entropy of a steady

state as a function of independent variables Ta, Tc, and Jc. Note that Ts is not a part of the

formula, and equations (33) and (23) are identical. It means that a shell can be in a steady state

for any combination of Ta, Tc, and Jc, but may have arbitrary Ts (until Ta < Ts < Tc and model

validity assumptions are held).

On the other hand, Ts presents in entropy production when the system is in a transient state,

see equation (37). This means that in spite of the fact that Ts has certain figure in any steady

state, it has been set up during the system relaxation from a transient to the steady state and it

may depend on the transient state details.

1.2.4. Shell temperature estimation

Since the shell temperature Ts presents only in equation for a transient process (37), we will

derive it’s value from the transient process properties. The shell can be set into a transient state

by the ambient temperature variation.

If ambient temperature Ta changes then the shell should move to another steady state accord-

ing to the steady state entropy production equation (33). New state depends on a new ambient

temperature, T̃a = Ta + δTa. Because temperatures of both core and ambience, and heat flow

Jc are all independent parameters of the steady state, we can choose Jc = const. The choice is

quite logical since Jc takes its origin in the core, but nothing can force that latter to change Jc

at the beginning of the transient process in the shell.

A transition process takes some time τ . During this time the shell entropy production rate

is different and "excessive" rate is equal to a value set by equation (37). Explanations of the

reasons why the shell should move to a transient state, why it will find another steady state, as

well as good estimation of τ are far beyond of this article scope.

A total excessive entropy that the transient process generates during its life time τ is equal

to integral of the entropy production rate over time:

δStransient = −

∫ τ

0

Ja(t) − Jc

Ts(t)
dt . (39)

Using the linear approximations for Ts(t) and Ja(t) as usual, one can write:

Ts(t) = Ts(0) + t
dTs

dt

∣

∣

∣

∣

0

Ja(t) = Ja(0) + t
dJa

dt

∣

∣

∣

∣

0

,

(40)

and equation (39) transforms to:

δStransient = −

∫ τ

0

Ja(0) + t
dJa

dt

∣

∣

∣

∣

0

− Jc

Ts(0) + t
dTs

dt

∣

∣

∣

∣

0

dt , (41)
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that after some transformations borrowed from the calculus hand-book has became

δStransient =

(

dTs

dt

∣

∣

∣

∣

0

)−1









Jc − Ja(0) + Ts(0)

dJa

dt

∣

∣

∣

∣

0

dTs

dt

∣

∣

∣

∣

0









×

× ln

(

Ts(0) + t
dTs

dt

∣

∣

∣

∣

0

)∣

∣

∣

∣

τ

0

−









dJa

dt

∣

∣

∣

∣

0

dTs

dt

∣

∣

∣

∣

0

t









∣

∣

∣

∣

∣

∣

∣

∣

τ

0

,

(42)

which in turn evaluates to

δStransient =

(

dTs

dt

∣

∣

∣

∣

0

)−1









Jc − Ja(0) + Ts(0)

dJa

dt

∣

∣

∣

∣

0

dTs

dt

∣

∣

∣

∣

0









ln









1 +

dTs

dt

∣

∣

∣

∣

0

Ts(0)
τ









−









dJa

dt

∣

∣

∣

∣

0

dTs

dt

∣

∣

∣

∣

0

τ









, (43)

and, after familiar assumption T−1

s (0)
dTs

dt

∣

∣

∣

∣

0

τ ≪ 1 finally converts to

δStransient ≈
Jc − Ja(0)

Ts(0)
τ = −

δJa

Ts(0)
τ , (44)

because Ja(0) is the heat flow to ambience at the beginning of transient process and can be

expressed as Ja(0) = Jc + δJa (in steady state Ja = Jc, or Ja(−0) = Jc).

An excessive entropy given by equation (44) makes the shell to gain (or loose) amount of heat

approximately equal to

δQshell = −τδJa . (45)

Finally, variance of the shell temperature is equal to

δTs = −
τ

ρscs
δJa , (46)

where the equation is conveniently written in per unit volume, per unit square units, and ρs is

the shell density, cs is specific heat capacity of the shell.

Equation (46) connects shell temperature variance to variance in heat flow to the ambience.

Notable property of this equation is the opposite direction of these variances: if the flow increases

at the beginning of transient process (δJa > 0) then shell temperature decreases by the end of

the transition (δTs < 0), and vice versa. This is true for any type of flow and is not related to

the flow dependencies on Ta and Ts (until the model assumptions are valid).

We can estimate the transient process time τ in simple situation, where the heat flow to

ambience Ja can be presented as a linear combination of conduction, convection, and radiation

flows, and heat transfer from shell to ambience conforms to Newton’s law of cooling. Newton’s law

of cooling application assumes that object (shell) has high heat capacity and high temperature

conductivity. Such assumption is more or less valid for large enough animals.

Ja = Jconduction + Jconvection + Jradiation . (47)

It is possible to use linearisation by temperature and express all of them collectively as

Ja = κ(Ts − Ta) , (48)
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where κ is the heat transfer coefficient (more correctly, a combination of heat transfer coefficients

of different heat transfer modes). A proof of validity and conditions of acceptance of this approach

for biological applications can be found in [3].

The heat transfer coefficient is a well-known property of heat exchange. Inverse of κ is often

used as "thermal insulance" in heat engineering applications, like lumped system analysis, see [4].

Correct calculation of κ is rather complicated task that involves the estimation or modelling of

many details of environment and is out of this article scope. Excellent introduction to this matter

from the point of view of biology can be found in [10].

With such representation of Ja it is clear that temperature variances are connected as

δTs = τ
κ

ρscs
δTa . (49)

Due to a steady state definition (Ja = Jc) and a constant value of Jc, it is clear that, by the end

of transient process, δTs = δTa. Of course, this is correct only if equation (48) is feasible and it

is better to say that δTs is a linear function of δTa.

It gives us the following estimation of τ :

τ =
ρscs

κ

in per unit volume per unit area units, or

τ =
Cs

κAs
in metric units, or

τ ∼
ρscs

κ

Ls as order of magnitude estimation ,

(50)

where ρs is a shell density, cs is a specific heat capacity of the shell, κ is a heat transfer coefficient

of the environment, Cs is a heat capacity (bulk) of the shell, As is a surface area of the shell,

Ls is a "characteristic size" of the shell. Estimation (50) is far from numerical precision and

just demonstrates dependency of transient process life time from material properties of the shell

and environment. Nevertheless, the estimation of τ in (50) is equal to "characteristic time" in

solution of Newton’s cooling equation, while it has been calculated in completely different way.

1.2.5. Formalization completion

Having results presented by equations (46) and (49), one can return to the steady state shell

temperature distribution problem (28) and re-define it in more details:

∇2Ts = 0 ,

ks∇Ts · ~n|∂S = −Jc ,

Ts|∂A = f (Ja) = Touter (Jc, Ta) = const ,

(51)

where temperature Touter (Jc, Ta) is a linear function of Ja and Ta as it follows from equation (46).

In the simple case of Newton’s cooling (analogy) defined by equation (48), this function can be

expressed as Ts|∂A = Ta +
1

κ

Jc.

The problem (51) can be solved for the same one-dimensional model of the shell as has been

used for entropy production rate calculation; see commentaries to equation (31) for the coordinate
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system definition details.

Ts(x) = C1x + C2 ,

C1 = −
1

ks
Jc ,

C2 = Touter (Jc, Ta) − C1

L

2
,

(52)

where C1 and C2 are integration constants derived from the boundary conditions. Complete

one-dimensional solution of steady state temperature distribution in the shell can be presented

in the following form:

Ts(x) = Touter (Jc, Ta) +
1

ks
Jc

(

−x +
L

2

)

, (53)

and temperature at inner surface ∂S is

Ts

(

−
L

2

)

= Touter (Jc, Ta) +
Jc

ks
L . (54)

For the simple case of Newton’s cooling analogy this equation can be written as

Ts

(

−
L

2

)

= Ta +

(

1

κ

+
L

ks

)

Jc . (55)

Since L, ks and κ are all positive, and Jc is non-negative, one can see that Ts > Ta where the

equality is reached if Jc = 0. Illustration of this solution is presented in Fig. 3.

The temperature of shell should not exceed the temperature of core (Tc > Ta), and we can

write condition of "maximal heat flow throughput" of the shell:

Jc 6
ks

L
(Tc − Touter) or, for Newton’s cooling

Jc 6

(

1

ks
L +

1

κ

)−1

(Tc − Ta) ,

(56)

and equivalent "maximal tolerable ambient temperature":

Touter 6 Tc −
L

ks
Jc or, for Newton’s cooling

Ta 6 Tc −

(

1

ks
L +

1

κ

)

Jc .

(57)

2. Temperature regulation

All values and functions below are locally defined in volumetric units.

2.1. Regulation goals

The goals of regulation are straightforward:

– temperature distribution Tc (~r) in core should be stationary;

– outgoing heat flux Jc should transfer all excessive heat away from the (local volume of)

core:
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∂Tc

∂t
= 0 , Tc = g (~r) , (58)

∂Jc

∂t
= 0 , Jc − f (hexc (~r)) = 0 . (59)

These requirements are not independent actually, and the second one is put here to emphasize

that Jc depends on the metabolism heat production rate hexc.

2.2. Regulation inputs

The core should activate temperature regulation because of two major reasons:

– metabolism rate change (e. g. change in activity level)

– changes in environment (e. g. change in temperature, or change in heat transfer coefficient

during diving)

hexc (~r) set by metabolism as required , (60)

Ts|∂S = Touter (Jc, Ta) +
Jc

ks
L set by environment . (61)

The first input, hexc is current metabolism rate function and is set according to the core needs

and circumstances (e. g. depends on activity level, or daytime, or season — the reasons are not

in this article scope). The core sets Jc according to this value.

Second input is a "projection" of the heat exchange with ambience to the core. It modifies

∇Tc|∂S . As one can see from equations (46) (or (49)) and (54), the higher is the heat flow

to the ambience, the lower is the shell temperature at its inner border Ts|∂S (and vice versa)

eventually. Corresponding gradient ∇Tc|∂S increases when Ts|∂S decreases and decreases when

Ts|∂S increases.

Note that ∇Tc|∂S is always non-positive, because Tc > Ts, but coordinate ~r increases in

opposite direction — from the core to the ambience. Since gradient vector points to higher value

(by definition), then ∇Tc|∂S 6 0 in this model.

2.3. Regulation controls

The core regulates a temperature using blood flow variation. It sets flow velocity ~v according

to the current values of Jc and ∇Tc|∂S as formalized by the following equation:

(−kc∇Tc + ρ~vcvTc) · ~n |∂S = Jc . (62)

Note that this equation (62) is one of the boundary conditions of the heat distribution prob-

lem (21).

Since both ∇Tc and ~v are the vectors, it is possible to change value and/or direction of ~v.

2.4. System response

Finally, the figures of (hexc, Jc, ~v) have been set up to fit the current conditions, and the core

temperature changes to be an appropriate solution of the following equation:

− kc∇
2Tc + ρ~v · cv∇Tc = hexc (~r) . (63)

Speaking precisely, Tc (~r) becomes equal to solution of the problem (21).
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2.5. Regulation implementation

The mathematical model seems to be quite heavy and hard to implement in a "controller" ,

but it is not true, and this regulation scheme may be implemented as a very simple fuzzy logic

controller, without any noticeable needs in computational power: measure Tc change and then

change |~v| in the same direction until Tc falls into acceptable range.

Of course, if some extra resources are available, this basic rule can be refined for faster and

more precious response.

3. Results discussion

3.1. Shell surface temperature

The model described above does not imply any global dependencies, works locally and inde-

pendently in every part of the system (animal’s body). It means that shell surface temperature

may be very inhomogeneous, because of differences in local heat transfer conditions and, possible,

different local core temperature and heat balance requirements.

The model describes heat transfer across the shell surface only, but heat transfer works along

the shell surface too, thus any local temperature excess initiates some lateral heat flows.

It concludes that a shell as a whole should not be described by stationary equation, like (28),

and one should use full form of the heat transfer equation, including time derivative, spatial

dependency of thermal properties, and time-depending boundary conditions:

∂Ts

∂t
−∇ · (ks (~r)∇Ts) = 0 ,

ks (~r)∇Ts · ~n|∂S = −Jc (~r, t) ,

Ts|∂A = Touter (Jc (~r, t) , Ta (~r, t)) ,

(64)

where function Touter is defined by equations (46) or (48), and is not always known exactly. A

solution of equation (51) can be used as initial conditions.

The process of analytical (or numerical) solution of this equation is incredibly laborious.

For practical temperature measurement, it means that the shell surface temperature has

no obvious connection to the core temperature. For example, attempts to correlate the skin

temperature and rectal temperature will mostly fail.

In addition, equation (64) demonstrates that the average surface temperature is weakly de-

fined on large scale (Laplacian ∆T can be far from zero).

Nevertheless, it is possible to say that in non-extreme conditions an animal maintains more

or less constant difference between its skin temperature and temperature of the environment.

The value of this difference depends on activity level of the animal, besides some other factors

such as health conditions and stress level (i. e. depends on the current level of metabolism rate).

The higher activity level causes the bigger difference.

Evidences of linear dependency between ambient and skin surface temperatures were observed

in [21], where strong linear correlation was directly measured. Another example of the linear

dependence and high inhomogeneity of the skin temperature distribution can be found in [40].

Authors of [15] found that sheared alpacas had lower surface temperature than non-sheared.

Such effect can be explained by equation (46) that predicts surface temperature decrease with

increase of heat flow into the ambience. The heat flow from alpacas’ skin was increased because
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shearing significantly decreases thermo-insulation of the skin (in terms of Newton’s cooling, it

makes the κ figure bigger).

3.2. Newton’s law of cooling

Newton’s law of cooling is a common method to describe a convection-cooling [4, 37, 38]. It

says that “the rate of heat loss of a body is proportional to the temperature difference between

the body and its environment”. Formal expression of the law is presented by equation (48). It is

important to understand that the law is an approximation, and even rather empirical relationship.

It is not applicable always, and it’s feasibility have some implicit assumptions:

– temperature difference between the body and environment does not depend on which part

of body is selected for the temperature measurement,

– body has a large heat capacity and high thermal conductivity comparing to its environ-

ment. Thus, heat transfer rate inside of the body is significantly higher than across of

the boundary. Sometimes the body can be described as “an onion” of region of interest,

or “lumps”, but this should be true inside of any region,

– the heat transfer coefficient depends neither on temperature, nor on time.

If some of these assumptions are not valid, the law may break, as it is often observed in presence

of the free convection (where the coefficient depends on temperature), or during transition of

flow mode (e. g. from laminar to a turbulent one).

Newton’s law application in biology is a well-established and rather successful practice [3,29].

Nevertheless, it should be applied with care, see [37]. Known values of thermal properties of

animal tissues can be found in [5] and in [19, Appendix A]. They can be “averaged” and the

results are presented in the following table (the values are approximate!), where the core is

supposed to be composed from blood, muscles and bones, and the shell is built from fat and

skin.

Table 2. Thermal properties of tissues

Media Specific heat capacity
[

J
kg·K

]

Thermal conductivity
[

J
sec·m·K

]

Core 3700 0.50
Shell 3000 0.20
Air 1000 0.03
Water 4200 0.60

For terrestrial animals an assumption of high body conductivity seems to be valid due to

very low heat capacity and thermal conductivity of the air, but for aquatic animals it’s validity

can be arguable. The model proposed in this article does not require such assumptions regarding

thermal properties of the animal’s body. It uses different assumptions (see above), where one of

the most important constraints slow changes in environment for the shell could be in a steady

state.

If this assumption is valid, the model comprises Newton’s cooling as a special case (see

equations (48–50)). In the model’s framework, the Newton’s cooling law can be interpreted as

an empirical description of transient process between different steady states of the shell. For

example, if the temperature of environment is lowers then a skin surface temperature follows it

according Newton’s law of cooling with apparent characteristic time given by equation (50). The

same is true if a transition process has been initiated by the core (change in heat flow because of
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metabolism rate variation). For example, if the animal ceases an activity (i. e. breaks down the

metabolism rate), the skin surface cools down according to Newton’s law.

When the shell is in a steady state, the Newton’s law of cooling may not always be an adequate

mechanism if one wants to correlate core temperature, skin temperature, and temperature of the

ambience using measured or estimated thermal properties of the body and media.

3.3. Regulation limitations

The major claim of the model is the hypothesis about the role of blood flow in thermoreg-

ulation of animals. It is absolutely clear that thermoregulation in not a primary purpose of the

blood, and temperature regulation is not a top priority task of the blood flow control system.

The blood flow velocity lays inside a specific range, and this range fits the primary purposes

of the blood system. From the point of view of thermoregulation, this is a limitation:

vmin 6 |~v| 6 vmax . (65)

Indeed, if v = vmin already, but ∇Tc|∂S continues to increase (permanent cooling of ambience)

then it can not be compensated any more. Similar problem rises at the high limit of flow velocity

range v = vmax, see regulation equation (62).

Control mechanics may not be perfect, and if the flow velocity is set up too low (at low

ambience temperature) then shell may suffer from chilblain. A high temperature of the ambience

and corresponding high flow velocity may cause the abnormal pressure in vessels exceeding

breaking point of that later, thus haemorrhages may begin to appear in the shell. There are

researches which demonstrated that vasculature could be build in a sophisticated way to relax

this limitation. See [9, 23,29].

Another limitation of the regulation is connected to maximum shell throughput (see (56)

and (57)):

Jc 6 Jmax =
ks

L
(Tc − Touter) . (66)

This relation demonstrates that the heat flow from the core can not be set arbitrary high, and

that the upper limit depends on difference between core temperature and temperature of the

environment: the lower is the difference then the lower is the maximum acceptable value of the

heat flow Jmax, see equation (51) for more details about Touter. Some signs of this bottleneck can

be found in [40] in the data related to the areas with highest measured heat flow.

This limitation is important if an ambient temperature is high. At high temperature and

high metabolism rate (when high Jc is required), the shell may "choke" the heat flow, and the

core will be forced to use additional mechanisms of the thermoregulation where possible, and/or

lower down the metabolism rate. For example, cease chasing the pray. This “heat sink bottleneck”

problem may give additional explanation to some effects that can be observed during work or

exercises in hot environment, see [6, 7, 11,32,39].

Equation (57) means that for every Jc, and, equivalently for every metabolism rate, there is a

maximum of tolerable (operational) temperature of environment. Note that it is better to speak

about the heat flows, instead of the temperatures, because this limitation depends on thermal

properties of both the body and the media, and upper limit of the temperature in air may not

be equal to the limit in water [10].
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3.4. Adaptation to climate

Most, if not all, of the regulation mechanics and corresponding limitations depend on thermal

properties of body tissues, and some depend on dimensions of the body. The thermal properties

(ρ, C, k) form "hard" limitations. One can hardly expect significant change in heat capacity,

thermal conductivity, or density of the body in reasonable time, required for the successful

thermoregulation.

Another properties are more flexible: for instance, κ, which defines "insulation" of the body

surface can be cleverly engineered using fur, feathers, behavioural patterns (i. e. staying in shade

to reduce radiation heating, walking to the wind during hot day to increase forced convection),

etc; see, for example, [13,22,33].

Comprehensive investigation of animal’s adaptation to cold and hot environment in regard of

metabolism rate, body temperature, and temperature of the ambience can be found in [28, 30].

From the proposed model’s point of view, the adaptation can be done in some additional ways

explained below.

As the regulation equation (62) says, the "initial" value of the temperature gradient ∇Tc|∂S

can be chosen as appropriate for the expected temperature range of the environment. Thus, in

cold climate, where low Ta is quite probable, lower value of the gradient allows the blood flow

velocity to be set at higher level, preventing skin chilblain. It can be achieved by increasing

subcutaneous thickness (e. g. using thicker layer of fat) for less steepness of the temperature

change, and/or by skin thickness increase, which, according to the equation (54), results in a

growth of the inner temperature of the skin. In cold climate, thick skin and subcutaneous tissues

allow to keep high level of metabolism rate and high blood circulation rate without unnecessary

heat loss. Evidence of vascular control role in body temperature regulation in cold climate can

be found in [24,29].

In a hot climate with a high probability of high ambience temperature, this approach should

be reversed: higher ∇Tc|∂S leaves more freedom in blood flow regulation. Thinner skin also allows

to avoid the "heat flow choking" , as it can be seen from the equation (66). In hot climate the

thin skin and subcutaneous tissues are beneficial if high level of metabolism rate is required.

These adaptation and regulation mechanisms do not include mechanisms related to the core

temperature choice, metabolism rate regulation, or mechanisms that are important when ambient

temperature is far outside of the thermo neutral zone of the animal, which are neither in this

article, nor in the proposed model scope.

4. The model and beyond

Homoeothermal animals differ from any other creatures (either animals, or plants, or fungi)

with their ability to maintain the inner temperature of an organism. This ability is absolutely

crucial from the point of view of an implementation of a feasible model of thermoregulation

of a being. Endothermic animal has a core that permanently generates heat energy because of

metabolism. Thus, a model of thermoregulation must include a heat production, heat discharge,

and the ways of that latter must be optimal; this item forces a researcher to consider an entropy

production and entropy discharge, besides the heat production modelling.

The model described above implies a kind of homogeneity of a core; that latter is supposed to

remain in a (quasi)equilibrium: there are no inner heat flows, or entropy flows. From biological
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point of view, such species are the homoeotherms‡. Oppositely, some species are known for a

significant variation of the temperature of the compartments of a body; such animals are called

heterothermic ones. Since most of animals are homoeotherms their core temperature (Tc) should

be constant for optimal performance of enzymes that regulate core biochemistry. It holds true

for heterotherms also with slight modification to mostly constant.

According the the First Law of Thermodynamics this requirement leads to necessity of a heat

flow (Jc) that dissipates excessive power to the external environment. The power that should

be dissipated is proportional to current metabolism rate value. Constant Tc requirement means

constant Jc that is appropriate for a given metabolism rate.

If the core were directly exposed to the environment it would be strongly driven by ambi-

ence temperature (as well as other thermal parameters) fluctuations but would not have enough

regulation options. That is why the shell is always exists, both in a model and in reality. Ther-

modynamic parameters regulation means variable material properties (heat capacity, thermal

conductivity, density, etc). It leads to obvious difficulties if an immediate response to significant

ambience variation is required.

Under the First Law, some work may be involved to control heat gain or loose (dU = dQ +

pdV ), but this way fail to meet other constraints that are not related to the thermal balance.

For example, variable volume may involve use of some thin elastic constructions that may not

provide serious mechanical protection.

Simultaneously, a notable mass exchange (dU = dQ+pdV +µdN) may not provide a solution

of the problem: both mass and composition of the core are usually permanent, for any creature.

This conservation of course is not absolute: food/water consumption, growth, etc. make some

slight variations of those figures. Yet, the variations are too small to be effective in a (rather

quick) responding on a temperature change.

These two issues result in a shell implementation, with no ambiguity. The shell acts as a

heat buffer that reduces variations of thermal parameters of the environment as they are seen by

the core. When ambience warms up, the shell collects an excessive head coming from the body

(shell entropy increases). Reciprocally, when the ambience cools down the shell releases some

heat (shell entropy decreases) removing the burden from the core.

The shell is just another part of the same body, so the implementation of the mechanisms

for heat exchange between the shell and the core seems to be rather simple. Because the shell

temperature (Ts) is set up "automagically" by the Second Law of Thermodynamics and is not

controlled by the core, it is much easier to achieve another "design goals" (e. g. mechanical

protection), because the constraints for the thermal parameters of the skin may be broken through

(comparing to the constraints in the case of directly connected core). All mechanics described

in this article can work locally. It means, that it is possible to set Tc and Jc as it is optimal

locally, and shell will find a steady state as it is appropriate for the given Ta (more strictly, for a

given local Ja). This means that shell temperature is not required to be homogeneous over entire

surface of the animal.

The model presented here is basically aimed to describe the processes of a temperature

regulation for homoeothermic animals: it implies a linear approximation of some processes, a

significant difference between an organism and an ambience. Thus, it hardly could be extended

for the poikilothermic species, or plants, immediately. Nonetheless, there could be developed the

versions of the model for this type of organisms, while the discussion of these issues falls beyond

‡And man is among them: this fact stands behind the body temperature measurement as a diagnostically
valuable medical procedure.
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the scope of this paper.
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Модель терморегуляции у животных, основанная
на принципе производства энтропии

Михаил Ю. Захаров

Михаил Г. Садовский

Рассмотрена модель терморегуляции теплокровных животных, основанная на принципе произ-

водства энтропии.

Ключевые слова: терморегуляция, тепловыделение, температура кожи, производство энтропии,

теплокровные животные.
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