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The joint unidirectional motion of three viscous liquids under the influence of thermocapillarity forces and
pressure difference has been researched. An exact stationary solution of the problem has been found. The
solution of the non — stationary problem has been obtained in the form of final analytical formulas in the
image using the method of Laplace transformation. By the numerical inversion of Laplace transformation
the evolution of the velocity fields and of the temperature perturbation to the stationary regime for specific

liquids has been obtained.
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1. Statement of the problem

Assume that there are three layers of viscous incompressible liquids with the thickness of
l1,l and I3 — I, with the interfaces y = 0,y = ls, and solid walls y = —I;,l3. Motions in the
layers are described by the system of viscous heat — conducting liquids equations in the absence
of external forces (j = 1, 2, 3)

du; 1 .
d—tj + p—ijj = v;Auy, divu; =0,
do;

where u;,p; is the vector of velocity and pressure; ©; is the deviation from the average
temperature value; p; is the density; v; is the kinematic viscosity; x; — thermal diffusivity,
d/dt = 0/0t +u; - V. We suppose that the motion is unidirectional as

Uj = (’U,j(y,t),0,0).

Then the pressure in each liquid can be represented as p; = p; f;(t)z + «;(t) with the arbitrary
fj, o, and temperature — ©; = —A;x + T;(y,t) with the constants A;. Assume that the
coefficient of the surface tension o on the interface depends on the temperature linearly: ¢;(0) =
0’? —2;(0; - @2),3@,0?,99 = const > 0, j = 1,2. After the substitution into equations (1.1)
the functions w;(y,t), T;(y, t) satisfy the equations
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Uje = Vjujyy — fi(t), (1.2)
Tjt = X Tjyy + Aju;. (1.3)

The conditions of continuity of the velocities and temperatures on the interfaces (in the
general view the conditions on the interface are shown in [1]) and give equalities

ul(O,t) = UQ(O,t), ’LLQ(lQ,t) = U3(12,t), (14)
11(0,t) = 12(0,t), Ta(l2,t) = T3(l2,1). (1.5)

Moreover the heat fluxes are equal to

k1T1y(0,t) = koT5y(0,1), koToy(l2,t) = k3Tsy(l2,1), (1.6)

and there are jumps of tangential stress

potiay(0,1) — puiy(0,t) = Aser, pausy(lo,t) — pougy(lo,t) = Ases, (1.7)

where k; are the heat conductivity coefficients, p1; = v;p; are the dynamic viscosities. In equation
(1.3) and boundary condition (1.7) A = A; = Ay = Ajz (it is a consequence of the equality of the
temperature at y = 0 and y = lo, see (1.5)). The conditions for normal stresses are reduced to
pressure equality in liquids and the kinematic conditions at y = 0, y = [, are satisfied identically.
Since the walls y = —I1, y = l3 are solid, then the conditions of sticking can be written as

ul(—ll, t) = O, U3(lg,t) =0. (18)
It is believed that the temperature gradient is constant that is
Ti(=1y,t) =0, T5(l3,t) = 0. (1.9)

It is assumed that motion arises under the influence of thermocapillarity forces and the
pressure difference from state of rest so

u;(y,0) =0, (1.10)

T;(y,0) = 0. (1.11)

The equations (1.2)—(1.11) form two logically current tasks for the velocities u; and the
temperature perturbations Tj.
Remark 1. The considered solution of equations (1.1) is invariant relatively of to a one-
parameter sub-group of continuous transformation corresponding to the operator 9/0x +

pf(£)8/0p — AD/6.

2. The solution of stationary problem

Suppose that velocity, pressure and temperature do not depend on time — stationary flow
then the initial conditions (1.10), (1.11) are not stated. Therefore u; = u?(y), T = TJQ(y), fi=
f) = const and equations (1.2), (1.3) take the form u9,, = f?/v;, T}, = —Aul/x;, j =1,2,3,

JYy Jjyy
it follows that
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7, A fO el 2
0 0 _ J 4 J .3 J, 2 3 4

T; — 2 2 : L 2.1
u; = 2, y+cy+c Xj(24l/jy+6y+2y)—|-cjy+cj (2.1)

Constants ¢}, ¢7, ¢} u ¢} are determined from boundary conditions (1.4)~(1.9) and after some

calculations find a representation for velocities in the dimensionless form

NG+ LBE+1) — L) +an(E+1), —

<EKO0
@) = NI m€ + hB(mE+1) — 1) + asé + a1, 0<

<o/l (2.2)

Niifia(l*6* + B:E —1) = 1)+ aal6 = ), B/ <€,

<
3

and temperature

_ LB L(B -1, LB 50,°
100 - Ny DB BB B ) BB S

—ﬂ(§3+3£2—2)+5—2(£+1), ~1<£<0,
2

_ _ _ _o
xumh’ 4, XamhB 3 xili(B —1) 2, b1 LB 5L
1 _
106 = Nl g Xl B WhB R ey By B8O
% by -~ _
- L<61 (a28% + 3a1€%) + 6—2(k1§ +1)+ —‘;1, 0< €<yl (2.3)
— ll l_lB (B+1) M1/L2X2 5 bg
T9 N g ey S B) — =)—
5(8) = Npmxa(35€ + =€ ) ) + b + P (7 +B) ll)
Xe2a3 .5 32 kikabs o, Xeas lo laas k1 kabo
_ _9S 2 2 202 292
e - 24 (R L A E ) e, + 22T
1 Xglgag lQ l2a2 X20a3
(X228 2 ol 4
l_12( L (2 1) — xikalo(ar + o —) A )

where & = y/li, I1 = l/ls, o =1lo/ls, = pa/po, fo = po/us, ki = ki/ks, ko = ko/ks,
X1 = X1/X2> X2 = X1/X3, M1, Ms are Marangoni numbers, N = f91;12/20? is the dimensionless
pressure gradient. As the characteristic velocities and temperature perturbations the relations
v1/ly and Aljvq/x1 are selected, respectively. Therefore

M, = A%llf Mo — A&Ql% B— —ﬂlﬂz(l — l;z) — /f1l;2 +l712

vipe 2T vipe T iyie(1 =)+ mle 4+
61 = fpin(la — 1) — finls — 11,02 = kiko(1 — l2) + kilo + 11,
1 1= _
ay = o {(12 + iz — fr2le) My + (1 — 12)/~L2M2)] = _671 [Z1M1 + mfia(le — 1)Ms |,

o5 =12 [m o+ ,zlz;>M2],
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s la B koxXila la B _ _
b= PERER () (B2 4 )+ B )+ 2 (- Db+ 5) +h(B - 1)+

ll 3 2 l1 3 2
_ _, _ L,
H1 fr2 X2 5. el ol Iy 51, xile™ ,mls o
2X2 g 4 0y HakeXal2 B)— (B+ 1)+ (g2 Xz b, g
+ 31 ( +4)+ 214 (3(2+ ) ( + ))+3( 4) 2 (3l1(2+ )+
2
+ (B - 7))7
1
—_ — _2 -
Xa2l2as o X1kala laao X2a3 | Xilo laas
by = — -1l —1 = —)(lp, — 1) — =)—
o= PG () - PR+ G 1) - 2 e+ )

From the representations of solutions (2.2), (2.3) it is seen that the influence of pressure
gradient and thermocapillarity forces is independent of each other. This is a consequence of the
problem linearity (1.2)—(1.9).

3. The solution of the non—stationary problem using
method of Laplace transformation

Apply the Laplace transformation to the problem (1.2)—(1.9). Taking into account initial
conditions (1.10), (1.11), obtain in the Laplace presentation equations for velocities U;(y, p) and
the temperature perturbations T} (y, p)

pU;(y:p) = v3Ujyy (y,9) = F5(p), 0T5(y.0) = Xi Lipp (y,9) + AU(y, p). (3.1)
Added to (3.1) are the converted conditions (1.4)—(1.9)

Hzﬁzy(O,p) - Nlﬁly(ovp) = Az /p,
11303, (o, p) — p2Usy (12, p) = Azea/p, (3.3)

U1(0,p) = Uz(0,p), Us(la,p) = Us(l2,p), (3.4)
T1(0,p) = T2(0,p), Ta(l2,p) = Ts(la, p), (3.5)
Ur(=l,p) =0, Us(ls,p) =0, (3.6)

Ty(~l1,p) = 0, Ts(ls,p) =0 (3.7)

ke Tiy(—l,p) = kaToy(—11,p), koToy(0,p) = ksT3,(0, p). (3.8)

The general solution of first equation (3.1), j = 1,2, 3 of the form

0, Clsh[(y+l)+02ch[(y+ll) 1;’ (3.9)

of the second one

T;(y,p) = Clsh ﬁy—kéf ch ﬁy—kTJ,, (3.10)
X3 X
where
P A [0 pysh [ 22— )
= z,p)sh [ (z —y)dz
J TX]’Q J ;
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is the particular solution.
The constants C}, C?, é}, ijz are defined from boundary conditions (3.2)—(3.8) and one ob-

tains (p = pl3/v1)

16,5 = “E el e+ 1) + e Ble+ 1) - 1] + [ sh Ve + O e e,

Us(¢,p) = NFl( )[Czshﬁ(gﬂwcgch\/ﬁ(gﬂ) }+

+ {(321 sh\/fﬁg+6*§ch\/ﬁﬁg}; (3.11)
Us(.p) = Nﬁ;()[clshm<s+1>+cgchm<s+1> |+

+ {C‘g sh /D1 ap€ + C2 ch \/V1V2p£:| ,

a1 = sh+/1p (12/11) + 14+ —= tanh /i1 vop(1 — [2)/i1 ch \/Dlﬁ(ig/E +1),

\F
as = ch/oip(la /1) + 1+ \ﬁtanh\/ylug (1 — 1)/l shy/mip(la /1 + 1),
1 fh2 f1o o fyfhe S| fi _
by = ———— +— ———=  by=1-chyp— —, by = ——=sh /P,
! 1Z20%) Ch\/ﬂlﬂgﬁ(l —lg)/llp 1z 2% 2 \/1; 1 3 \/Z \/]3
A=ay u—}ch Vpsh/D1p —sh/pch \/17113] + ax {sh \/Psh+\/U1p — u—} ch+/pch \/1711‘)},
Vi v
LT
Cll = Z —b; — (a2b2 + albg) Ch\/ﬁ‘i‘ (a2b3 + a1b2> sh M],
1
6'21:Z —bl(—sh\/ﬁsh\/ul + \ﬁch\/f?ch\/yl P) + az(bzsh/p — bg\ﬁchf)}
LT
2 1 — _— — e _ _
cy = A _bl(—\/ﬁ ch /psh/v1p —shy/pch/i1p) — ai(bssh/p bg—\/ﬂ sh\/fj)], (3.12)
C3 =

V2| G5 chy/mip(1+12 /1) +CF shy/Tip(1+12 /1) | chy/Titep(1+1/11) — a2 shy/D1inp(1+12/11)
Ch\/DlﬂQﬁ(l—Zg)/Zl

)

2| C5 chymip(1+12 /1) +C3 shymip(1+12 /1) shy/TiD2p(1+1/11))

pa shy/TiDap(1 412 /1) —
- Ch\/ﬂlﬁgﬁ(lfl_g)/l_l

7

q= sh \/51172]3[2/1_1 —ch AV 171172}71_2/1_1 tanh \/ﬁll?Qﬁ/l_l,
q1 = ch \/91172]3[_2/[_1 —sh \/l_/lﬂzﬁl_g/l_l tanh \/51172]3/[_1,
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) 1
Cf = —=—==x
N
afia Mz — M/ sh Tpla /Ty + qiizMy ch /orpl /Iy
Q1(7sh\/fl2/l1+ch\/ﬁlz/l1 tanh /) — ?}%Ch\/ﬁb/h_%wm&/h tanhy/pJ
v ) .
¢E +ﬁﬁ%,@:f@mmWﬁﬁm7

sh /1 lg/ll + ch+/1n lg/lltanhf)

C2=C? = Cltanh g, CL=-"L

~ Cl
C[l 1
P g \/T

Because of the complicated expressions the temperature perturbations in the Laplace repre-

M, - -
h+/v1pla/l;.
WS V1P2/1

sentation are not given here.

Using equalities (3.10)—(3.12) and performing the calculations which are long enough one

can prove limiting equalities limpﬁoij(y,p) = T]Q(y) and lim,_.o pUj(y,p) = ﬁ?(y)7 when

TJO (y),a}(y) is the stationary distribution from (2.2), (2.3). Let us apply the numerical method
of inversion of Laplace transformation to the obtained formulas (3.11), (3.12). The graphs only
for the velocities are given because it has a real physical meanings.

Figs. 1, 2, 3 present the profiles of dimensionless velocities for the system of silicon (p; =
956 kg/m?, 11 = 10.2-107°m? /s, p1 = 9.71-1073kg/(m - s), k1 = 0.133 kg - m/(s® - K), x1 =
0.0675-1075m? /s, 21 = 6.4-10%kg/(s? - K)) — water (pa = 998 kg/m3, v = 1.004-10~%m? /s,
pe = 1.002 - 107 3kg/(m - s), ko = 0.597 kg -m/(s3 - K), x2 = 0.143 - 107m?2 /s, &y = 15.14 -
107%kg/(s? - K)) — air (pg = 1.205 kg/m3, v3 = 15.11 - 10~%m? /s, u3z = 0.018 - 10~3kg/(m - 5),
ks = 0.0257 kg -m/(s3 - K), x3 = 21 -107%m?/s) at 20°C. It is seen that with increased of
the dimensionless time 7 = v;t/I3 the solution reaches a steady state, this being the fastest
in the first and third layers. The dimensional time at 7 = 10 is t = 1s, f(7) = fi(t)/f?
— the dimensionless pressure gradient in the first liquid. Fig.1 illustrates the case when

t BT
06

051

04r

Fig. 1. Velocity profiles in the layers at [ = 102 m; lb =15-10%m; I3 =2-102 m
N =0.0001; My = 2; My =3; f(r) =1+ e "cost; curve 1: 7 = 1; curve 2: 7 = 3; stationary
decision (- - -)

|N| << |a;| then thermocapillarity forces are predominating and we have almost linear profiles
of the velocities — the Couette flow. Fig.2 presents the case when |N| >> |a;| then the pressure
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Fig. 2. Velocity profiles in the layers at [; = 102 m;ly=15-102m; I3 =2-10"3 m; N = 10;
M, =2; My =3; f(r) =1+ e "cost; curve 1: 7 = 1; curve 2: 7 = 3; stationary decision (- - -)

gradients in layers become the main ones and the profiles are parabolic — the Poiseuille flow.
Fig. 3 shows the case of roughly equal contributions to the mechanism of the flow of the above
factors. At f(r) = sint the solution will not converge to a stationary one because the limit
f(7) at 7 — 0o does not exist. In Fig.4 curves 1, 2 correspond to the positive pressure gradient
and curves 3, 4 to the negative one that is the motion is reversed and the process is repeated in
T =2T7.

-1 0.5 0 0.5 1 15 2

Fig. 3. Velocity profiles in the layers at [; = 1073m;lo=15-102m; I3 =2-10"3m; N = 1;
My =2; My =3; f(r) =14 e "cosT; curve 1: 7 = 1; curve 2: 7 = 3; stationary decision (- - -)

If the dimensionless pressure gradient is

r

_ — o<

f(T) — 7_7 ) ~X ~X K
1—-5e" 77, T2=Tx,
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then liquids will move in the positive direction at first, in Fig. 5, curves 1,2, and at 7 = 7* the
pressure gradient changes its sign and the reverse flow occurs, curve 3. With the time increase
of time the motion will reach the stationary state, curves 4, 5.

Fig. 4. Velocity profiles in the layers at [; = 103m; 1y =15-102m; [3=2-10"2m; N =1,
My =2; My =3; f(r) =sinT; curve 1: 7 = 2; curve 2: 7 = 3; curve 3: 7 = 4; curve 4: 7 = 5;
stationary decision (- - -)

[

T 05 o 05 1 15

Fig. 5. Velocity profiles in the layers at [; =102 m; I, =1.5-102 m; I3 =2-10"3 m; N = 1;
My =2; My =3; curve 1: 7 =1; curve 2: 7 =2; curve 3: 7 = 3; curve 4: 7 =4; curve 5: 7 =T,
T* = 2; stationary decision (- - -)
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KombOuHUpoBaHHOE ABU>KEHUE TPEX BA3KUX TEIJIOIMPOBOIHBIX
KUJAKOCTel B MJIOCKOM CJIOe

Eaena H. JIlemenikosa

Hcceaedosaro cosmecmmoe 00HOHANPasAEHHOE d8UMCEHUE MPET 8A3KUT dHcudkocmets nod deticmeuem mep-
MOKANUAAAPHBL CUA U nepenada dasaenus. Hatideno mounoe cmayuonaproe pewenue 3adavu. Pewenue
HECTNAYUOHAPHOT 3a0a4%U NOAYHEHO 6 6UJE KOHEUWHDIT AHANUMUNECKUT HOPMYA MEMOIOM NPeobpaso-
sanus Jlanaaca 6 usobpascenuax. ITymém wucaennozo obpawenus npeobpazosanus Jlaniaca nosywena
260M10UUA NOAET cKOpOCMEL: U 603MYWEHUT TEMNEPAMYP K CTNAUUOHADHOMY DEHCUMY OAA KOHKDPETHOLT
orcudrux cpeo.

Karouesvie caosa: Kpaesas 3&6&"(,0/, npeo6pa306anue ﬂan/Laca, mepmoxanuilLAPHOCTND.
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