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An effective methane drainage from the coal seam is essential for safety mining operations. This 
paper describes the algorithm used for calculating trajectory of crack formed by the hydraulic 
fracturing carried out in parallel wells. The results of numerical analysis show that direction 
of crack propagation is affected by the pressure applied and surrounding rock’s stress state. 
The maximum possible distance between hydraulically fractured wells at which they linked was 
estimated. The obtained results help to design hydraulic fracture treatments in coal measure 
rocks in order to solve the problem of underground methane production or intensification of beds 
degassing.
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Introduction

One of the main challenges of underground coal mining is methane-bearing formations and 
sudden coal and gas outbursts related to them. The probability of catastrophic events of gas-dynamic 
processes increases with the depth of the coal seam. It is necessary to note that problems caused by 
high methane concentrations not only affect the safety of mining operations, but also the economic 
and environmental aspects of coal production.

Coal bed methane (CBM) extraction is complicated by low coal permeability, methane 
sorption (trapping) on the surface, water saturation, and various geological formations with 
natural or artificial fracture systems. There is a particular complexity in gas production during 
preliminary degassing. At this stage the coal bed is not affected by development, the channels for 
gas flow are not formed and the overall degassing operations are not efficient for methane removal 
from the coal measure. Due to these factors the risk of gas outbursts is still very high and the labor 
productivity is poor.

One of the main methods of CBM production stimulation is hydraulic fracturing which is used 
in wells drilled both from the surface and from the underground.
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Statement of the problem

Simultaneous propagation of several fractures and, as a result, formation of main crack that will 
link several degassing wells is one of the main condition for efficient gas recovery. To achieve the goal 
it is necessary to solve the problem of wells positioning which is strongly affected by stress condition 
of coal measure.

There is a problem of determining the relative position of simultaneous fracturing wells under a 
given stress state of the coal measure rocks at the design stage of the degassing system.

To assess the control efficiency of a synchronous propagation of cracks we have developed special 
software that implements incremental algorithm for calculating quasi-static trajectories of cracks.

Mathematical model and algorithm description

Solution to the problem based on the mathematical model which suggests propagation of N smooth 
curvilinear cracks from the boundary of the circular hole with radius R. There is a uniform field of 
compressive stresses acting at infinity with intensity p0 and q0 )( 00 qp ≥ . Let us consider the form of 
each cut Lk in local coordinate system xk Ok yk  is known and determine by parametric equation:
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where uk, vk horizontal and vertical edge displacements of the cut in the local coordinate system, v – the 
Poisson’s ratio, E – modulus of elasticity of the medium. Kernels of the integral equations are:
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where K1k, K2k are stress intensity factors for the tip of k crack, K1C is critical stress intensity factor, 

and angle 
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reaches its maximum value, and shear stresses are zero. This is also known as ϑσ  criterion [2]. 
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Thus, we can find the crack or cracks, where limit equilibrium condition is satisfied. Then 

the stepwise algorithm for building quasi-static trajectories of fracture propagation is used. It has 

been tested and described in [3-5]. 

To estimate the efficiency of simultaneous fracture propagation caused by longitudinal 

hydraulic fracturing special software based on quasi-static approximation was developed. The 

program allows to calculate the trajectory depending on several factors: 

a) the distance between centers of initial fractures d; 

b) initial fractures length l; 

c) stress state of coal bed, particularly maximum and minimum compressive stress 

components p0 and q0 respectively and their relation qdp; 

d) the angle gam between coalescence plane of adjacent cracks and maximum stress 

direction (Fig. 1). 
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d) the angle gam between coalescence plane of adjacent cracks and maximum stress direction 
(Fig. 1).

It was assumed that there are five cracks in isotropic elastic plane with half length equal to one 
located on straight line along X coordinate; p0 and q0 were compressive stress components at infinity 
(p0>q0) and the angle between maximum stress p0 and initial cracks direction is gam. The fracture 
growth is provided with pressure applied to the initial cracks (e00×p0, where e00>0).

According to the software algorithm, the count stopped when growing fractures approached 
each other closer than axcrit or one of fracture wings came out from the aycrit interval (Fig. 2). These 
critical values were obtained during auxiliary studies covered the process of fractures interaction and 
coalescence on relatively small ranges.

The limitation for axcrit can be explained due to certain features of used software: the algorithm 
is not designed for modeling of fractures intersection. That is why the value of axcrit was chosen small 
enough to consider separate cracks as a jointed system. The reason for aycrit limit is due to the fact that 
cracks do not merge during the fracturing when they are out of ±aycrit interval.

The purpose of numerical studies was to determine the maximum distance between fracturing 
wells dmax at which separate cracks merge into a single system, and to estimate the impact of various 
factors on this value.

Numerical experiments and results

Numerical experiments were carried out as follows:
a) qdp value was chosen equal to 0.5 or 0.8;
b) angle gam was chosen equal to 10, 30, 45, 60 or 80 degrees;
c) the ratio of pressure in the crack to the maximum compressive stress e00 varied in the range 

from 1.2 to 10.0;
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d) axcrit = 0.05; aycrit = 1
During experiments the desired value of dmax was determined.
Fig. 3 shows the calculated dependence of the maximum distance dmax on the e00 when qdp value 

equal to 0.8 and 0.5 respectively.
Presented graphs show that with increasing pressure in the cracks there is a growth in the distance 

dmax. According to the data obtained this growth is faster when the angle gam getting closer to the 
direction of one of the principal stresses. The total dependence of dmax(e00) is given by dmax = A×ln(e00)+B 
with high degree of approximation and correlation coefficient R2> 0.99.

When the relation qdp is decreased, the maximum distance between wells dmax becomes smaller. 
Another feature is that in the non-uniform compression field this spacing is less than in the hydrostatic 
(or uniform) condition. With decreasing angle gam from 80° to some gamcrit, the value of dmax is 
reduced, and a further decrease leads to gam value growth. Fig. 4 shows the dependence of the gamcrit 
on qdp, based on the numerical experiments results. The value of gamcrit increases linearly from 36° at 
qdp equals 0.5 to 44° with qdp equals 0.9; and approximate value for the critical angle is 45° when the 
stress state of coal measure rocks can be described as hydrostatic.

Overall, these results are consistent with the generally accepted linear fracture mechanics, which 
confirms the correctness of the algorithm and software program.

Fig. 5 shows a plot of dmax dependent on e00 at different qdp. The angle between the direction of the 
maximum principal stress and the fracture line is either equal to 1°, or close to 90°.

In this case, when the direction of cracks propagation is close to the direction of one of the 
principal stresses, the formation of a combined fracture system is performed at the greatest distances 
between fracturing wells. The maximum value of dmax is observed during the cracks propagation in 
the less energetically favourable direction (gam equal to 89°) which is corresponds to a minimum 
principal stress.

The results show a strong influence of the hydraulic fracturing pressure on the crack propagation 
stability in a given direction. At small pressures, which can be modeled by low pumping rates of fluid, 

 

 
Fig. 3. Dependence of dmax(e00) for different angles: a) qdp = 0.8 and b) qdp = 0.5 

 

Presented graphs show that with increasing pressure in the cracks there is a growth in the 

distance dmax. According to the data obtained this growth is faster when the angle gam getting closer 

to the direction of one of the principal stresses. The total dependence of dmax(e00) is given by dmax = 

A×ln(e00)+B with high degree of approximation and correlation coefficient R2> 0.99. 

When the relation qdp is decreased, the maximum distance between wells dmax becomes 

smaller. Another feature is that in the non-uniform compression field this spacing is less than in the 

hydrostatic (or uniform) condition. With decreasing angle gam from 80° to some gamcrit, the value 

of dmax is reduced, and a further decrease leads to gam value growth. Fig. 4 shows the dependence 

of the gamcrit on qdp, based on the numerical experiments results. The value of gamcrit increases 

linearly from 36° at qdp equals 0.5 to 44° with qdp equals 0.9; and approximate value for the 

critical angle is 45° when the stress state of coal measure rocks can be described as hydrostatic. 

 
Fig. 4. The gamcrit value for different qdp

 

Fig. 3. Dependence of dmax(e00) for different angles: a) qdp = 0.8 and b) qdp = 0.5



– 81 –

Andrey V. Patutin, Petr A. Martynyuk… Numerical Studies of Coal Bed Fracturing for Effective Methane Drainage

the value of dmax is approximately three times smaller than at high pressures and that is the evidence in 
favour of the pulsed nature of the fracturing. In order to achieve a high rate of fluid flow it is necessary 
to use more efficient pumps or special high-capacity hydropneumatic accumulators automatically 
switching on at time of fracture formation.

Summary

1. The algorithm for calculating the trajectory of the synchronous longitudinal hydraulic fracturing 
carried out in parallel wells and research software based on this algorithm were developed.

2. The influence of coal rocks stress state to the maximum possible distance between wells 
providing fractures linkage was determined. Also it is emphasized the desirability of pulsed fracturing 
with high rates of fluid flow in to the growing crack.

3. The obtained results help to design hydraulic fracture treatments in coal measure rocks in order 
to solve the problem of underground methane production or intensification of beds degassing.
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Численные исследования процесса  
гидроразрыва угольного пласта  
для эффективной дегазации метана

А. В. Патутин,  
П. А. Мартынюк, С. В. Сердюков 

Институт горного дела СО РАН 
Россия 630091, Новосибирск, Красный пр. 54

При проведении горных работ необходима эффективная дегазация угольных пластов. В 
статье представлен алгоритм, использующийся для расчета траектории трещины, которая 
формируется в результате проведения операции гидроразрыва в нескольких параллельных 
скважинах. Результаты численного анализа показывают, что направление распространения 
трещины зависит от приложенного к ней давления и напряженного состояния массива. Оценено 
максимальное расстояние между скважинами гидроразрыва, при котором происходит их 
сбойка. Полученные результаты могут быть использованы при проектировании гидроразрыва 
в угольных пластах с целью добычи метана либо для интенсификации дегазации углепородного 
массива.

Ключевые слова: численное моделирование, дегазация метана, управляемый гидроразрыв, 
метан угольных пластов.


