On Varieties of Leibniz-Poisson Algebras
 with the Identity $\{x, y\} \cdot\{z, t\}=0$

Sergey M. Ratseev*
Department of Mathematics and Information Technologies, Ulyanovsk State University, Lev Tolstoy, 42, Ulyanovsk, 432063

Russia

Received 12.11.2012, received in revised form 12.11.2012, accepted 15.11.2012
Let K be an arbitrary field and let A be a K-algebra. The polynomial identities satisfied by A can be measured through the asymptotic behavior of the sequence of codimensions of A. We study varieties of Leibniz-Poisson algebras, whose ideals of identities contain the identity $\{x, y\} \cdot\{z, t\}=0$, we study an interrelation between such varieties and varieties of Leibniz algebras. We show that from any Leibniz algebra L one can construct the Leibniz-Poisson algebra A and the properties of L are close to the properties of A. We show that if the ideal of identities of a Leibniz-Poisson variety \mathcal{V} does not contain any Leibniz polynomial identity then \mathcal{V} has overexponential growth of the codimensions. We construct a variety of Leibniz-Poisson algebras with almost exponential growth.

Keywords: Poisson algebra, Leibniz-Poisson algebra, variety of algebras, growth of a variety.

Introduction

Let A be an algebra over an arbitrary field. A natural and well established way of measuring the polynomial identities satisfied by A is through the study of the asymptotic behavior of it's sequence of codimensions $c_{n}(A), n=1,2, \ldots$. The first result on the asymptotic behavior of $c_{n}(A)$ was proved by A.Regev in [1]. He showed that if A is an associative algebra $c_{n}(A)$ is exponentially bounded. Such result was the starting point for an investigation that has given many useful and interesting results.

For associative algebras A.R.Kemer in [2] proved that the sequence $c_{n}(A)$ is either polynomially bounded or grows exponentially. Then A.Giambruno and M.V.Zaicev in [3] and [4] showed that the exponential growth of $c_{n}(A)$ is always an integer called the exponent of the algebra A.

When A is a Lie algebra, the sequence of codimensions has a much more involved behavior. I.B.Volichenko in [5] showed that a Lie algebra can have overexponential growth of the codimensions. Starting from this, V.M.Petrogradsky in [6] exhibited a whole scale of overexponential functions providing the exponential behavior of the identities of polynilpotent Lie algebras.

In this paper we study Leibniz-Poisson algebras satisfying polynomial identities. Remark that if a Leibniz-Poisson algebra A satisfies the identity $\{x, x\}=0$ then A be a Poisson algebra. Poisson algebras arise naturally in different areas of algebra, topology, theoretical physics. We study varieties of Leibniz-Poisson algebras, whose ideals of identities contain the identity $\{x, y\} \cdot\{z, t\}=0$. We show that the properties of such Leibniz-Poisson algebras are close to

[^0]the properties of Leibniz algebras. We show that Leibniz-Poisson algebra can have overexponential growth of the codimensions and construct a variety of Leibniz-Poisson algebras with almost exponential growth.

1. Preliminaries

Let $A(+, \cdot,\{\}, K$,$) be a K$-algebra with two binary multiplications • and $\{$,$\} . Let the algebra$ $A(+, \cdot, K)$ with multiplication \cdot be a commutative associative algebra with unit and let the algebra $A(+,\{\}, K$,$) be a Leibniz algebra under the multiplication \{$,$\} . The latter means that$ $A(+,\{\}, K$,$) satisfies the Leibniz identity$

$$
\{\{x, y\}, z\}=\{\{x, z\}, y\}+\{x,\{y, z\}\} .
$$

Assume that these two operations are connected by the relations $(a, b, c \in A)$

$$
\begin{aligned}
& \{a \cdot b, c\}=a \cdot\{b, c\}+\{a, c\} \cdot b \\
& \{c, a \cdot b\}=a \cdot\{c, b\}+\{c, a\} \cdot b
\end{aligned}
$$

Then the algebra $A(+, \cdot,\{\}, K$,$) is called a Leibniz-Poisson algebra.$
We make the convention that brackets in left-normed form arrangements will be omitted:

$$
\left\{\ldots\left\{\left\{x_{1}, x_{2}\right\}, x_{3}\right\}, \ldots, x_{n}\right\}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

Let $L(X)$ be a free Leibniz algebra with multiplication [,] freely generated by the countable set $X=\left\{x_{1}, x_{2}, \ldots\right\}$. Let also $F(X)$ be a free Leibniz-Poisson algebra. Denote by P_{n}^{L} and P_{n} the vector spaces in $L(X)$ and $F(X)$ accordingly, consisting of the multilinear elements of degree n in the variables x_{1}, \ldots, x_{n}.
Proposition 1 ([7]). A basis of the vector space P_{n} consists of the following elements:

$$
\begin{equation*}
x_{k_{1}} \cdot \ldots \cdot x_{k_{r}} \cdot\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\} \cdot \ldots \cdot\left\{x_{j_{1}}, \ldots, x_{j_{t}}\right\} \tag{1}
\end{equation*}
$$

where:
(i) $r \geqslant 0, k_{1}<\ldots<k_{r}$;
(ii) all elements are multilinear in the variebles x_{1}, \ldots, x_{n};
(iii) each factor $\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\}, \ldots,\left\{x_{j_{1}}, \ldots, x_{j_{t}}\right\}$ in (1) is left normed and has lenngth $\geqslant 2$;
(iv) in each product (1) the shorter factor precede the longer: $s \leqslant \ldots \leqslant t$;
(v) if two consecutive factors in (1) are brackets $\{\ldots\}$ of equal length

$$
\ldots \cdot\left\{x_{p_{1}}, \ldots, x_{p_{s}}\right\} \cdot\left\{x_{q_{1}}, \ldots, x_{q_{s}}\right\} \cdot \ldots
$$

then $p_{1}<q_{1}$.
Denote by Γ_{n} the subspace of P_{n} spanned by the elements (1) with $r=0$.
Denote by $L_{\geqslant 2}(X)$ the subspace of the free Leibniz algebra $L(X)$ spanned by the elements $\left[x_{i_{1}}, \ldots, x_{i_{n}}\right]$ with $n \geqslant 2$. Also denote by $P L_{\geqslant 2}(X)$ the subspace of $F(X)$ spanned by the elements $\left\{x_{i_{1}}, \ldots, x_{i_{n}}\right\}$ with $n \geqslant 2$. Obviously, $L_{\geqslant 2}(X) \cong P L \geqslant 2(X)$ as Leibniz algebras. We will use only the notation $L \geqslant 2(X)$ everywhere as $L \geqslant 2(X)=P L_{\geqslant 2}(X)$ up to isomorphism of Leibniz algebras.

Let \mathcal{V} be a variety of Leibniz-Poisson algebras (pertinent information on varieties of PIalgebras can be found, for instance, in [8], [9]). Let $\operatorname{Id}(\mathcal{V})$ be the ideal of identities of \mathcal{V}. Denote

$$
P_{n}(\mathcal{V})=P_{n} /\left(P_{n} \cap I d(\mathcal{V})\right), \quad c_{n}(V)=\operatorname{dim} P_{n}(\mathcal{V})
$$

For a variety of Leibniz algebras V_{L} denote

$$
P_{n}^{L}\left(\mathcal{V}_{L}\right)=P_{n}^{L} /\left(P_{n}^{L} \cap I d\left(\mathcal{V}_{L}\right)\right), \quad c_{n}^{L}\left(\mathcal{V}_{L}\right)=\operatorname{dim} P_{n}^{L}\left(\mathcal{V}_{L}\right) .
$$

Let $\operatorname{Id}(A)$ be the ideal of the free algebra $F(X)$ of polynomial identities of A.
The next proposition shows how from every Leibniz algebra one can construct a LeibnizPoisson algebra with some conditions of the source Lebniz algebra.

Proposition 2 ([7]). Let A_{L} be a nonzero Leibniz algebra with multiplication [,] over an infinite field K and let

$$
A=A_{L} \oplus K
$$

be a vector space with multiplications \cdot and $\{$,$\} defined as$

$$
\begin{gather*}
(a+\alpha) \cdot(b+\beta)=(\beta a+\alpha b)+\alpha \beta \tag{2}\\
\{a+\alpha, b+\beta\}=[a, b], \quad a, b \in A_{L}, \quad \alpha, \beta \in K .
\end{gather*}
$$

Then the algebra $(A,+, \cdot,\{ \}, K)$ is a Leibniz-Poisson algebra and the following conditions are true:
(i) $\operatorname{Id}\left(A_{L}\right)=I d(A) \cap L_{\geqslant 2}(X)$ and the algebra A satisfies the identity $\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}=0$;
(ii) for any $n \geqslant 2$

$$
\Gamma_{n}(A)=P_{n}^{L}(A)=P_{n}^{L}\left(A_{L}\right)
$$

up to isomorphism of vector spaces;
(iii) for any n the following equality holds:

$$
c_{n}(A)=1+\sum_{k=2}^{n}\binom{n}{k} \cdot \operatorname{dim} P_{k}^{L}\left(A_{L}\right) .
$$

2. Leibniz-Poisson Algebras with Identity
 $\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}=0$

Denote by $\operatorname{Id}\left(\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}\right)$ the ideal of identities of the free Leibniz-Poisson algebra $F(X)$ generated by the element $\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}$.

Theorem 1. Let \mathcal{V}_{L} be a variety of Leibniz algebras over an infinite field K defined by a system of identities

$$
\begin{equation*}
\left\{f_{i}=0 \mid f_{i} \in L_{\geqslant 2}(X), i \in I\right\} \tag{3}
\end{equation*}
$$

and let $\left\{g_{j} \in \operatorname{Id}\left(\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}\right) \mid j \in J\right\}$, where $|J|>0$, be a set of elements in the ideal $I d\left(\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}\right)$. Let \mathcal{V} be a variety of Leibniz-Poisson algebras defined by the system of identities

$$
\left\{f_{i}=0, g_{j}=0 \mid i \in I, j \in J\right\}
$$

Then:
(i) $\operatorname{Id}\left(\mathcal{V}_{L}\right)=\operatorname{Id}(\mathcal{V}) \cap L_{\geqslant 2}(X)$;
(ii) $P_{n}^{L}(\mathcal{V})=P_{n}^{L}\left(\mathcal{V}_{L}\right)$;
(iii) $c_{n}(\mathcal{V}) \geqslant 1+\sum_{k=2}^{n}\binom{n}{k} \cdot c_{k}^{L}\left(\mathcal{V}_{L}\right)$;
(iv) if $|I|=0$ then $c_{n}(\mathcal{V}) \geqslant[n!\cdot e]-n$, where $e=2.71 \ldots$, [] is an integer part of a number.

Proof. (i) Let $f \in \operatorname{Id}\left(\mathcal{V}_{L}\right)$. Then f follows from the system of identities (3). Therefore, $f \in \operatorname{Id}(\mathcal{V}) \cap L_{\geqslant 2}(X)$ and $\operatorname{Id}\left(\mathcal{V}_{L}\right) \subseteq \operatorname{Id}(\mathcal{V}) \cap L \geqslant 2(X)$. We will show that $\operatorname{Id}(\mathcal{V}) \cap L \geqslant 2(X) \subseteq \operatorname{Id}\left(\mathcal{V}_{L}\right)$.

Let \mathcal{W} be a Leibniz-Poisson variety defined by the system of identities (3) and the identity $\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}=0$. Since the element $\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}$ generates the ideal $\operatorname{Id}\left(\left\{x_{1}, x_{2}\right\} \cdot\right.$ $\left.\left\{x_{3}, x_{4}\right\}\right)$ and $|J|>0$ then $\mathcal{W} \subseteq \mathcal{V}, \operatorname{Id}(\mathcal{V}) \subseteq \operatorname{Id}(\mathcal{W})$.

Let $L\left(X, \mathcal{V}_{L}\right)$ be the relatively free algebra of the variety \mathcal{V}_{L} of countable rank. Theorem of Birkhoff implies that the algebra $L\left(X, \mathcal{V}_{L}\right)$ generates the variety \mathcal{V}_{L}. Hence $\operatorname{Id}\left(\mathcal{V}_{L}\right)=$ $\operatorname{Id}\left(L\left(X, \mathcal{V}_{L}\right)\right)$. Let $A=L\left(X, \mathcal{V}_{L}\right) \oplus K$ be a Leibniz-Poisson algebra with the multiplications (2). Proposition 2 implies that $A \in \mathcal{W}$, hence $\operatorname{Id}(\mathcal{W}) \subseteq \operatorname{Id}(A)$. Proposition 2 also implies the equality

$$
\operatorname{Id}\left(\mathcal{V}_{L}\right)=\operatorname{Id}\left(L\left(X, \mathcal{V}_{L}\right)\right)=\operatorname{Id}(A) \cap L_{\geqslant 2}(X)
$$

Since $\operatorname{Id}(\mathcal{V}) \subseteq I d(\mathcal{W}) \subseteq I d(A)$, it follows

$$
\operatorname{Id}(\mathcal{V}) \cap L_{\geqslant 2}(X) \subseteq \operatorname{Id}(\mathcal{W}) \cap L_{\geqslant 2}(X) \subseteq \operatorname{Id}(A) \cap L_{\geqslant 2}(X)=\operatorname{Id}\left(\mathcal{V}_{L}\right)
$$

(ii) Condition (i) implies that $\operatorname{Id}(\mathcal{V}) \cap P_{n}^{L}=\operatorname{Id}\left(\mathcal{V}_{L}\right) \cap P_{n}^{L}$ for any $n \geqslant 2$. Therefore,

$$
P_{n}^{L}\left(\mathcal{V}_{L}\right)=P_{n}^{L} /\left(\operatorname{Id}\left(\mathcal{V}_{L}\right) \cap P_{n}^{L}\right)=P_{n}^{L} /\left(\operatorname{Id}(\mathcal{V}) \cap P_{n}^{L}\right)=P_{n}^{L}(\mathcal{V})
$$

(iii) follows from (ii) and [7, Proposition 4].
(iv) Applying the formula

$$
n!\cdot \sum_{k=0}^{n} \frac{1}{k!}=[n!\cdot e]
$$

inequality from (iii) and $P_{n}^{L}=n$!, we obtain that

$$
\begin{gathered}
c_{n}(\mathcal{V}) \geqslant 1+\sum_{k=2}^{n}\binom{n}{k} \cdot k!=1+\sum_{k=2}^{n} \frac{n!}{(n-k)!}= \\
=/ t=n-k /=1+\sum_{t=0}^{n-2} \frac{n!}{t!}=n!\cdot \sum_{t=0}^{n} \frac{1}{t!}-n=[n!\cdot e]-n .
\end{gathered}
$$

Define the lower and upper exponents for the codimension sequence $\left\{c_{n}(\mathcal{V})\right\}_{n \geqslant 1}$ as follows:

$$
\underline{E X P}(\mathcal{V})=\underline{\lim _{n \rightarrow \infty}} \sqrt[n]{c_{n}(\mathcal{V})}, \quad \overline{E X P}(\mathcal{V})=\varlimsup_{n \rightarrow \infty} \sqrt[n]{c_{n}(\mathcal{V})}
$$

If the lower and the upper limits coincide, we use the notation $\operatorname{Exp}(\mathcal{V})$.
Theorem 2. Let \mathcal{V}_{L} be a variety of Leibniz algebras over an infinite field K defined by the system of identities (3) and let \mathcal{V} be a variety of Leibniz-Poisson algebras defined by the system of identities (3) and the identity $\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}=0$. Then:

1) For any $n \geqslant 2$

$$
\Gamma_{n}(\mathcal{V})=P_{n}^{L}(\mathcal{V})=P_{n}^{L}\left(\mathcal{V}_{L}\right)
$$

up to isomorphism of vector spaces.
2) Let

$$
\begin{equation*}
u_{s}^{n}\left(x_{1}, \ldots, x_{n}\right), s=1, \ldots, c_{n}^{L}\left(V_{L}\right) \tag{4}
\end{equation*}
$$

be a basis of the vector space $P_{n}^{L}\left(\mathcal{V}_{L}\right), n \geqslant 2$. Then $P_{n}(\mathcal{V})$ has a basis

$$
\begin{gather*}
x_{1} \cdot \ldots \cdot x_{n} \\
x_{i_{1}} \cdot \ldots \cdot x_{i_{n-k}} \cdot u_{s}^{k}\left(x_{j_{1}}, \ldots, x_{j_{k}}\right), \tag{5}
\end{gather*}
$$

$k=2, \ldots, n, \quad s=1, \ldots, c_{k}^{L}\left(\mathcal{V}_{L}\right), \quad i_{1}<\ldots<i_{n-k}, \quad j_{1}<\ldots<j_{k} ;$
3) For any n

$$
c_{n}(\mathcal{V})=1+\sum_{k=2}^{n}\binom{n}{k} \cdot \operatorname{dim} P_{k}^{L}\left(\mathcal{V}_{L}\right)
$$

4) If exponent $\operatorname{EXP}\left(\mathcal{V}_{L}\right)$ exists, then $\operatorname{EXP}(\mathcal{V})=\operatorname{EXP}\left(\mathcal{V}_{L}\right)+1$, in particular if there exist constants $d \geqslant 0, \alpha$ and β such that for all sufficiently large n the double inequality holds

$$
n^{\alpha} d^{n} \leqslant c_{n}^{L}\left(\mathcal{V}_{L}\right) \leqslant n^{\beta} d^{n}
$$

then there exist constants γ and δ such that for all sufficient large n the following double inequality holds

$$
n^{\gamma}(d+1)^{n} \leqslant c_{n}(\mathcal{V}) \leqslant n^{\delta}(d+1)^{n} .
$$

5) If some Leibniz algebra A_{L} generate the variety V_{L}, then the Leibniz-Poisson algebra $A=A_{L} \oplus K$ with multiplications (2) generates the variety V.
6) If $|I|<+\infty$ and the variety \mathcal{V}_{L} has the Specht property (i.e. all subvarieties of \mathcal{V}_{L}, including \mathcal{V}_{L} itself, are finite based), then the variety \mathcal{V} has the Specht property.
7) Let \mathcal{W} be a proper subvariety of \mathcal{V}. Then the ideal of identities $\operatorname{Id}(\mathcal{W}) \cap L_{\geqslant 2}(X)$ determines the proper subvariety of \mathcal{V}_{L}.
8) The variety \mathcal{V}_{L} is nilpotent if and only if the variety \mathcal{V} has a polynomial growth.

Proof. 1) The equality $P_{n}^{L}\left(\mathcal{V}_{L}\right)=P_{n}^{L}(\mathcal{V})$ follows from Theorem 1 . Since for any n holds equality

$$
\Gamma_{n}=P_{n}^{L} \oplus I d\left(\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}\right) \cap \Gamma_{n}
$$

then

$$
\begin{gathered}
\Gamma_{n}(\mathcal{V})=\Gamma_{n} /\left(I d(\mathcal{V}) \cap \Gamma_{n}\right)= \\
=\frac{P_{n}^{L} \oplus \operatorname{Id}\left(\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}\right) \cap \Gamma_{n}}{\operatorname{Id}(\mathcal{V}) \cap\left(P_{n}^{L} \oplus \operatorname{Id}\left(\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}\right) \cap \Gamma_{n}\right)}= \\
=\frac{P_{n}^{L} \oplus \operatorname{Id}\left(\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}\right) \cap \Gamma_{n}}{\left(\operatorname{Id}(\mathcal{V}) \cap P_{n}^{L}\right) \oplus\left(\operatorname{Id}\left(\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}\right) \cap \Gamma_{n}\right)} \cong \\
\cong P_{n}^{L} /\left(\operatorname{Id}(\mathcal{V}) \cap P_{n}^{L}\right)=P_{n}^{L}(\mathcal{V}) .
\end{gathered}
$$

2) Follows from 1) and [7, Proposition 4].
3) Follows from 2).
4) Follows from 3) and the equality $(t+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} \cdot t^{k}$.
5) Let some Leibniz algebra A_{L} generates the variety \mathcal{V}_{L}. Define the Leibniz-Poisson algebra $A=A_{L} \oplus K$ with multiplications (2). Then Proposition 2 and Theorem 1 imply such equalities

$$
\begin{equation*}
\operatorname{Id}(A) \cap L_{\geqslant 2}(X)=\operatorname{Id}\left(A_{L}\right)=\operatorname{Id}\left(\mathcal{V}_{L}\right)=\operatorname{Id}(\mathcal{V}) \cap L_{\geqslant 2}(X), \tag{6}
\end{equation*}
$$

with $\operatorname{Id}(\mathcal{V}) \subseteq \operatorname{Id}(A)$. We will show that $\operatorname{Id}(A) \subseteq \operatorname{Id}(\mathcal{V})$.
Denote by B the subspace of the free Leibniz-Poisson algebra $F(X)$ spanned by the elements

$$
\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\} \cdot \ldots \cdot\left\{x_{j_{1}}, \ldots, x_{j_{t}}\right\}, \quad s \geqslant 2, \ldots, t \geqslant 2 .
$$

In particular $\Gamma_{n}=B \cap P_{n}, n=1,2, \ldots$ Note that

$$
\begin{equation*}
B=L_{\geqslant 2}(X) \oplus B \cap I d\left(\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}\right) . \tag{7}
\end{equation*}
$$

From [7] it follows that the ideal of identities $\operatorname{Id}(A)$ is generated by the set of identities $B \cap \operatorname{Id}(A)$. Let $f \in B \cap \operatorname{Id}(A)$. Since

$$
I d\left(\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}\right) \subseteq \operatorname{Id}(A)
$$

and (7) then

$$
B \cap I d(A)=L_{\geqslant 2}(X) \cap I d(A) \oplus B \cap \operatorname{Id}\left(\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}\right) .
$$

Hence there exist unique

$$
g \in L \geqslant 2(X) \cap I d(A), \quad h \in B \cap I d\left(\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}\right),
$$

such that $f=g+h$. (6) implies that $g \in \operatorname{Id}(\mathcal{V})$. Obviously, $h \in \operatorname{Id}(\mathcal{V})$, hence $f=g+h \in \operatorname{Id}(\mathcal{V})$. Thus $I d(A)=I d(\mathcal{V})$.
6) Let $|I|<+\infty$ and the variety of Leibniz algebras \mathcal{V}_{L} has the Specht property. Let \mathcal{W} be a subvariety of the variety \mathcal{V}. Obviously, $\operatorname{Id}(\mathcal{W}) \cap L_{\geqslant 2}(X)$ is an ideal of identities of the free Leibniz algebra $L(X)$. Theorem 1 implies that

$$
\operatorname{Id}\left(\mathcal{V}_{L}\right) \subseteq \operatorname{Id}(\mathcal{W}) \cap L_{\geqslant 2}(X) .
$$

Hence the ideal of identities $\operatorname{Id}(\mathcal{W}) \cap L_{\geqslant 2}(X)$ is generated by a finite number of elements $f_{1}, \ldots, f_{k} \in L \geqslant 2(X)$.

Using the notations of 5), we have

$$
\begin{equation*}
B \cap \operatorname{Id}(\mathcal{W})=L_{\geqslant 2}(X) \cap \operatorname{Id}(\mathcal{W}) \oplus B \cap I d\left(\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}\right) \tag{8}
\end{equation*}
$$

Since $\operatorname{Id}(\mathcal{W})$ is generated by $B \cap \operatorname{Id}(\mathcal{W})$ (see [7]) then the variety \mathcal{W} is generated by the elements f_{1}, \ldots, f_{k} and $\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}$.
7) Let \mathcal{W} be a proper subvariety of \mathcal{V}. Then the strict inclusion $\operatorname{Id}(\mathcal{V}) \varsubsetneqq \operatorname{Id}(\mathcal{W})$ holds. We will show that

$$
\operatorname{Id}\left(\mathcal{V}_{L}\right) \varsubsetneqq \operatorname{Id}(\mathcal{W}) \cap L_{\geqslant 2}(X),
$$

where $\operatorname{Id}(\mathcal{W}) \cap L_{\geqslant 2}(X)$ is an ideal of identities of $L(X)$.
Since $\operatorname{Id}(\mathcal{W})$ is generated by the set $B \cap \operatorname{Id}(\mathcal{W})$ (see [7]) and $\operatorname{Id}(\mathcal{V}) \varsubsetneqq \operatorname{Id}(\mathcal{W})$, there is such element $f \in B \cap \operatorname{Id}(\mathcal{W})$ that $f \notin \operatorname{Id}(\mathcal{V})$. Equality (8) implies that there exist unique

$$
g \in L_{\geqslant 2}(X) \cap I d(\mathcal{W}), \quad h \in B \cap I d\left(\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}\right)
$$

such that $f=g+h$. Since $h \in I d(\mathcal{V})$ and $f \notin I d(\mathcal{V})$, we obtain that

$$
g \notin L_{\geqslant 2}(X) \cap I d(\mathcal{V})=I d\left(\mathcal{V}_{L}\right) .
$$

Therefore, $\operatorname{Id}\left(\mathcal{V}_{L}\right) \varsubsetneqq I d(\mathcal{W}) \cap L_{\geqslant 2}(X)$.
8) Follows from 1), 3) and [7, Theorem 1]

Corollary. Let $L(X)$ be a free Leibniz algebra over infinite field K and let $L(X) \oplus K$ be a Leibniz-Poisson algebra with multiplications (2). Then:
(i) $\operatorname{Id}(L(X) \oplus K) \cap L(X)=\{0\}$.
(ii) $\operatorname{Id}(L(X) \oplus K)=\operatorname{Id}\left(\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}\right)$, i.e. the ideal of identities of the algebra $L(X) \oplus K$ is generated by the identity $\left\{x_{1}, x_{2}\right\} \cdot\left\{x_{3}, x_{4}\right\}=0$.

Denote by $\widetilde{\mathcal{V}}_{1}$ the variety of Leibniz-Poisson algebras defined by the identity $\left\{x_{1}, x_{2}\right\}$. $\left\{x_{3}, x_{4}\right\}=0$. Theorems 1 and 2 imply that the codimension growth of $\widetilde{\mathcal{V}}_{1}$ is overexponential.

Proposition 3. For any $n \geqslant 1$ the codimension of the identities of $\widetilde{\mathcal{V}}_{1}$ satisfy

$$
c_{n}\left(\widetilde{\mathcal{V}}_{1}\right)=[n!\cdot e]-n .
$$

Proposition 4. Let ${ }_{3} \widetilde{\mathcal{N}}$ be a Leibniz-Poisson variety, defined by the identity

$$
\left\{x_{1},\left\{x_{2},\left\{x_{3}, x_{4}\right\}\right\}\right\}=0
$$

Then the variety $\widetilde{\mathcal{V}}_{1} \cap_{3} \widetilde{\mathcal{N}}$ over a field K of characteristic 0 has almost exponential growth of the codimension sequence.

Proof. [11] and [10] implies that the variety of Leibniz algebras ${ }_{3} \mathcal{N}$, defined by the identity

$$
\left[x_{1},\left[x_{2},\left[x_{3}, x_{4}\right]\right]\right]=0
$$

has almost exponential codimension growth. Therefore, by Theorem 1, the variety of LeibnizPoisson algebras $\widetilde{\mathcal{V}}_{1} \cap_{3} \widetilde{\mathcal{N}}$ has overexponential codimension growth.

Let \mathcal{W} be a proper subvariety of $\widetilde{\mathcal{V}}_{1} \cap_{3} \widetilde{\mathcal{N}}$. Condition 7) of Theorem 2 implies that the ideal of identities $\operatorname{Id}(\mathcal{W}) \cap L_{\geqslant 2}(X)$ defines the proper subvariety of ${ }_{3} \mathcal{N}$, which has exponentially bounded codimension growth. By condition 4) of Theorem 2, the sequence of codimensions of \mathcal{W} is exponentially bounded.

Denote by $\widetilde{\mathcal{N}_{s} \mathcal{A}}$ the variety of Leibniz-Poisson algebras, defined by the identity

$$
\left\{\left\{x_{1}, x_{2}\right\}, \ldots,\left\{x_{2 s+1}, x_{2 s+2}\right\}\right\}=0 .
$$

Proposition 5. Variety $\widetilde{\mathcal{V}}_{1} \cap \widetilde{\mathcal{N}_{s} \mathcal{A}}$ over a field K of characteristic 0 has the Specht property.
Proof. [12] implies that the variety of Leibniz algebras $\widetilde{\mathcal{N}_{s} \mathcal{A}}$, defined by the identity

$$
\left[\left[x_{1}, x_{2}\right], \ldots,\left[x_{2 s+1}, x_{2 s+2}\right]\right]=0
$$

has the Specht property. Therefore, by 6) of Theorem 2, $\widetilde{\mathcal{V}}_{1} \cap \widetilde{\mathcal{N}_{s} \mathcal{A}}$ has the Specht property.

References

[1] A.Regev, Existence of identities in $A \otimes B$. Israel J. Math. 11(1972), 131-152.
[2] A.R.Kemer, T-ideals with power growth of the codimensions are Specht. Sibirsk. Mat. Zh.19(1978), 54-69 (Russian).
[3] A.Giambruno, M.V.Zaicev, On codimension growth of finitely generated associative algebras. Adv. Math. 140(1998), 145-155.
[4] A.Giambruno, M.V.Zaicev, Exponential codimension growth of P.I. algebras: an exact estimate. Adv. Math. 142 (1999), 221-243.
[5] I.B.Volichenko, Varieties of Lie algebras with identity $\left[\left[X_{1}, X_{2}, X_{3}\right],\left[X_{4}, X_{5}, X_{6}\right]\right]=0$ over a field of characteristic zero. Sibirsk. Mat. Zh. 25(1984), no. 3, 40-54 (Russian).
[6] V.M.Petrogradsky, Growth of polynilpotent varieties of Lie algebras, and rapidly increasing entire functions, Mat. Sb., 188(1997), no. 6, 119-138 (in Russian).
[7] S.M.Ratseev, Commutative Leibniz-Poisson algebras of polynomial growth, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 94(2012), no. 3/1, 54-65 (in Russian).
[8] Yu.A.Bahturin, Identical relations in Lie algebras, Nauka, Moscow, 1985 (in Russian); English transl. in VNU Science Press, Utrecht, 1987.
[9] V.Drensky, Free algebras and PI-algebras, Graduate Course in Algebra, Singapore, SpringerVerlag, 2000.
[10] S.P.Mishchenko, T.V.Skoraya, Yu.Yu.Frolova, New properties of the variety of Lebniz algebras ${ }_{3} \mathbf{N}$, defined by the identity $x(y(z t)) \equiv 0$, Algebra and number theory: Modern Problems and Applications. Abstracts of VIII International conference, dedicated to the 190th anniversary of P.L.Chebyshev and 120th anniversary of I.M. Vinogradov, Saratov Gos. Univ., Saratov. 2011, 49-51 (in Russian).
[11] L.E.Abanina, S.P.Mishchenko, The variety of Leibniz algebras defined by the identity $x(y(z t)) \equiv 0$, Serdica Math. J. 29(2003), 291-300.
[12] S.M.Ratseev, On the property of having a finate basis of some varieties of Lebniz algebras, Izvestiya Vysshih uchebnyh zavedenii: Povolzhskii region, 33,(2007), no. 6, 12-16 (in Russian).

О многообразиях алгебр Лейбница-Пуассона

с тождеством $\{x, y\} \cdot\{z, t\}=0$
Сергей М. Рацеев

Abstract

В данной работе исследуются многообразия алгебр Лейбница-Пуассона, идеаль тождеств которых содержат тождество $\{x, y\} \cdot\{z, t\}=0$, исследуется взаимосвязь таких многообразий с многообразиями алгебр Лейбница. Показано, что из любой алгебры Лейбница можно построить алгебру Лейбнииа-Пуассона с похожими свойствами исходной алгебры. Показано, что если идеал тождеств многообразия алгебр Лейбница-Пуассона \mathcal{V} не содержит ни одного тождества из свободной алгебрь Лейбница, то рост многообразия \mathcal{V} является сверхэкспоненииалъным. Приводится многообразие алгебр Лейбница-Пуассона почти экспоненииального роста.

Ключевые слова: алгебра Пуассона, алгебра Лейбница-Пуассона, многообразие алгебр, рост многообразия.

[^0]: *RatseevSM@rambler.ru
 (C) Siberian Federal University. All rights reserved

