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We deduce the purely time-depending Yang-Mills equations in a space with conformal torsion-free connec-

tion. Next we find three series of solutions to these equations and study which of them give the Einstein

metric or a metric conformally equivalent to it. Also, various representations of these solutions with and

without singularities are presented.
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Introduction

In the title we could omit mentioning the dimension of a manifold as the Yang-Mills equations

d ∗ Φ + Ω ∧ ∗Φ − ∗Φ ∧ Ω = 0

in a space with conformal connection make sense only in dimension 4. It is easily explained:
the Hodge operator ∗ is defined only for even dimensions 2n and maps the space of external n-
forms to itself but the curvature matrix Φ for any dimension greater than 1 consists of 2-forms.
Therefore the matrix ∗Φ can be constructed only for n = 2. In this case, for a metric with
signature (− + ++) or (+ −−−) we have ∗2 = −id while any other signature gives ∗2 = id.

This difference is crucial when one tries to find solutions to the Yang-Mills equations. Here we
investigate only the case of signature (− + ++), it is clear that our results are applicable for the
signature (+ −−−) as well.

It was shown in [1] that the Yang-Mills equations in a space with conformal torsion-free
connection may be reduced to Maxwell’s equations and equations (65)

ηmn
(

−b(ij)|mn + b(pm)R
p

(ij)n + 2b[im]b[jn]

)

− 2bb(ij) + b|(ij) − 2Qηij = 0. (1)

Here all indexes run from 1 to 4. Indexes in brackets denote symmetrization with respect to
them, that is b(ij) = bij + bji; in square brackets, skew symmetrization, that is b[ij] = bij − bji.
The indexes that follow a vertical line denote the corresponding covariant derivation. Let also
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ηij be the Minkowski metric tensor, ηmn its dual tensor; b(ij) are defined by the Ricci tensor Rij

of the quadratic form of the angular metric

ψ = ηijω
iωj (2)

according to the Einstein equations

b(ij) = Rij −
1

6
Rηij . (3)

Here Rp
ijn is the curvature tensor of the quadratic form (2), b = ηijbij =

1

2
ηijb(ij) =

1

6
R, and

Q
def
= ηijηmnbimbjn = (b11)

2
+ (b22)

2
+ (b33)

2
+ (b44)

2 −
− (b12)

2 − (b21)
2 − (b13)

2 − (b31)
2 − (b14)

2 − (b41)
2
+

+(b23)
2

+ (b32)
2

+ (b24)
2

+ (b42)
2

+ (b34)
2

+ (b43)
2

=

=
1

4
ηijηmnb(im)b(jn) +

1

4
ηijηmnb[im]b[jn].

Besides terms depending on the components of quadratic form (2), which is interpreted as
the gravitational potential, equations (1) contain terms that depend on the components b[ij]
of the electromagnetic field. They appear in the term 2ηmnb[im]b[jn] and, indirectly, in the
scalar Q. Thus in a space with conformal torsion-free connection satisfying the Yang-Mills
equations the gravitation has purely electromagnetic nature. This means that given the tensor
of electromagnetic field b[ij] we obtain the quadratic form (2) by solving 10 nonlinear differential
equations of 4-th order (1). (Note that the equations have solutions even if the electromagnetic
field vanishes.) There are only 9 independent equations in system (1) because convolution of the
left part of (1) with ηij results in identical zero.

We would like to point out here that the way the electromagnetic field generates gravitation
according to equations (1) differs from the one that is absolutely groundlessly postulated in all
treatises on general relativity. On the other hand, although equations (1) have strong logical
foundation, they are hardly realistic since they are obtained by neglecting weak interaction whose
existence is proved by numerous and convincing experiments.

The electromagnetic field tensor b[ij] satisfies Maxwell’s equations

dΦ0
0 = 0, d ∗ Φ0

0 = 0, (4)

where Φ0
0 =

1

2
b[ij]ω

j ∧ ωi. Expanding (4), we get 8 linear differential equations of 1st order with

the coefficients depending on the components of quadratic form (2). Thus, 17 equations (1) and
(4) form a closed system of differential equations on 16 unknown functions: 10 coefficients of the
quadratic form (2) and 6 components of the tensor b[ij]. Equations (1) and (4) give a complete
system of the Yang-Mills equations in a space with conformal torsion-free connection.

It is clear that to solve the system of (1) and (4) is much more difficult than the system of
the Einstein equations. In a closed form solutions can be obtained only in special cases. In this
paper we consider only the case when the coefficients of quadratic form (2) and the components
b[ij] of electromagnetic field tensor depend only on one parameter t that we interpret as time.

Remark. The left side of (1) for b[ij] = 0 is the Bach tensor that was introduced in 1921. In
the paper [2] it is shown that if b[ij] = 0 and the Einstein equations (3) are satisfied then the
Yang-Mills current (the left side of the Yang-Mills equations) is expressed only via the Bach
tensor.
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1. Equations (1) and (4) in the Purely Time-dependent
Case

We consider the angular metric

ψ = −dt2 + a2 (dx1)
2

+ b2 (dx2)
2

+ c2 (dx3)
2
, (5)

where a, b, c depend only on time t. We denote the derivative with respect to time with a dot.
Let

ω1 = dt, ω2 = adx1, ω3 = bdx2, ω4 = cdx3.

Then the Christoffel symbols are

ω2
1 =

.
a

a
ω2, ω3

1 =

.

b

b
ω3, ω4

1 =

.
c

c
ω4, ω3

2 = ω4
2 = ω4

3 = 0.

Non-vanishing components of the curvature tensor of the quadratic form (5) are

R2
112 =

..
a

a
, R3

113 =

..

b

b
, R4

114 =

..
c

c
, R3

223 = −
.
a

.

b

ab
, R4

224 = −
.
a

.
c

ac
, R4

334 = −
.
c

.

b

cb
. (6)

Then

R11 =

..
a

a
+

..

b

b
+

..
c

c
, R22 = −

..
a

a
−

.
a

.

b

ab
−

.
a

.
c

ac
,

R33 = −
..

b

b
−

.
c

.

b

cb
−

.
a

.

b

ab
, R44 = −

..
c

c
−

.
a

.
c

ac
−

.
c

.

b

cb
,

R = ηijRij = −2

(

..
a

a
+

..

b

b
+

..
c

c
+

.
a

.

b

ab
+

.
a

.
c

ac
+

.
c

.

b

cb

)

.

(7)

According to (3), we have b(ij) = 0 for i 6= j, and

b11 =
1

3

(

..
a

a
+

..

b

b
+

..
c

c

)

− 1

6

(

.
a

a

.

b

b
+

.
a

a

.
c

c
+

.
c

c

.

b

b

)

,

b22 = −1

3

(

..
a

a
+

.
a

a

.

b

b
+

.
a

a

.
c

c

)

+
1

6

( ..

b

b
+

..
c

c
+

.
c

c

.

b

b

)

,

b33 = −1

3

( ..

b

b
+

.
a

a

.

b

b
+

.
c

c

.

b

b

)

+
1

6

( ..
a

a
+

..
c

c
+

.
a

a

.
c

c

)

,

b44 = −1

3

(

..
c

c
+

.
a

a

.
c

c
+

.
c

c

.

b

b

)

+
1

6

(

..
a

a
+

..

b

b
+

.
a

a

.

b

b

)

.

(8)

Direct substitution gives the following identities

..
a

a
+

..

b

b
+

..
c

c
= 3b11 − b22 − b33 − b44, (9)

..
a

a
+

.
a

a

.

b

b
+

.
a

a

.
c

c
= b11 − 3b22 − b33 − b44, (10)

..

b

b
+

.
a

a

.

b

b
+

.
c

c

.

b

b
= b11 − b22 − 3b33 − b44, (11)

..
c

c
+

.
a

a

.
c

c
+

.
c

c

.

b

b
= b11 − b22 − b33 − 3b44, (12)

.

b22 +
.

b33 +
.

b44 = − (b11 + b22)

.
a

a
− (b11 + b33)

.

b

b
− (b11 + b44)

.
c

c
. (13)
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Now we compute covariant derivatives of b(ij): b(ii)|1 =

= 2
.

bii, b(12)|2 = −2 (b11 + b22)

.
a

a
, b(13)|3 = −2 (b11 + b33)

.

b

b
, b(14)|4 = −2 (b11 + b44)

.
c

c
,

while all the other b(ij)|k = 0. The second covariant derivatives of b(ij) are

b(11)|22 = 4 (b11 + b22)

( .
a

a

)2

− 2
.

b11

.
a

a
, b(11)|33 = 4 (b11 + b33)

( .

b

b

)2

− 2
.

b11

.

b

b
,

b(11)|44 = 4 (b11 + b44)

( .
c

c

)2

− 2
.

b11

.
c

c
,

b(22)|11 = 2
..

b22, b(22)|33 = −2
.

b22

.

b

b
, b(22)|44 = −2

.

b22

.
c

c
,

b(33)|11 = 2
..

b33, b(33)|22 = −2
.

b33

.
a

a
, b(33)|44 = −2

.

b33

.
c

c
,

b(44)|11 = 2
..

b44, b(44)|22 = −2
.

b44

.
a

a
, b(44)|33 = −2

.

b44

.

b

b
.

(14)

The components b(ii)|ii do not vanish but we do not need them since they do not appear in (1).
All the other b(ij)|kp = 0.

It follows from these computations that if i 6= j, then only the third summand in (1) does
not vanish. Therefore (1) turns into

2ηmnb[im]b[jn] = 0.

Hence if i 6= j, then only the following pairs can be different from zero: either b[12] and b[34], or
b[13] and b[24], or b[14] and b[23]. Without loss of generality, we may assume that b[12] and b[34] do
not vanish, and b[13] = b[24] = b[14] = b[23] = 0. In this case the first group of Maxwell’s equations

(4) is reduced to the only equation
.

b34 + b34

( .

b

b
+

.
c

c

)

= 0, where

b34 =
N

bc
, N = const. (15)

The second group of Maxwell’s equations (4) is also reduced to one equation

.

b12 + b12

( .

b

b
+

.
c

c

)

= 0,

where

b12 =
M

bc
, M = const. (16)

Now we will consider the case i = j. Let first i = j = 1, then, taking into account (14), (13),
and (9), equations (1) lead to

−
.
a

a

(

.

b22 + (b11 + b22)

.
a

a

)

−
.

b

b

(

.

b33 + (b11 + b33)

.

b

b

)

+ 2 (b12)
2
+

+2 (b34)
2 −

.
c

c

(

.

b44 + (b11 + b44)

.
c

c

)

+ b22

( ..
a

a
+ b22 − b11

)

+

+b33

( ..

b

b
+ b33 − b11

)

+ b44

( ..
c

c
+ b44 − b11

)

= 0.

(17)
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Similarly, when i = j = 2, i = j = 3 and i = j = 4 using identities (10)–(13) and expressions
(14) we see that

(

.

b22 + (b11 + b22)

.
a

a

).

+

(

.

b22 + (b11 + b22)

.
a

a

)

( .

b

b
+

.
c

c

)

−

−2 (b12)
2 − 2 (b34)

2
+ b11

( ..
a

a
+ b22 − b11

)

+

+b33

(

−
.
a

.

b

ab
− b33 − b22

)

+ b44

(

−
.
a

.
c

ac
− b22 − b44

)

= 0,

(18)

(

.

b33 + (b11 + b33)

.

b

b

).

+

(

.

b33 + (b11 + b33)

.

b

b

)

( .
a

a
+

.
c

c

)

+

+2 (b12)
2

+ 2 (b34)
2

+ b11

( ..

b

b
+ b33 − b11

)

+

+b22

(

−
.
a

.

b

ab
− b33 − b22

)

+ b44

(

−
.

b
.
c

bc
− b33 − b44

)

= 0,

(19)

(

.

b44 + (b11 + b44)

.
c

c

).

+

(

.

b44 + (b11 + b44)

.
c

c

)

(

.
a

a
+

.

b

b

)

+

+2 (b12)
2

+ 2 (b34)
2

+ b11

( ..
c

c
+ b44 − b11

)

+

+b22

(

−
.
a

.
c

ac
− b22 − b44

)

+ b33

(

−
.

b
.
c

bc
− b33 − b44

)

= 0.

(20)

These equations have been written down in [1] without a proof. Only three of them are inde-
pendent since summing up the last three and subtracting (17) we obtain identically zero.
Remark. To solve the system of equations (1) and (4) it is necessary to replace all the covariant
derivatives with their expressions through usual derivatives, and this is a very labour-consuming
procedure. In [1] equations (17)–(20) have been obtained using the algorithm described in [3],
which is based on differentiation of external forms. This algorithm is easier and more reliable to
use.

2. Solving Equations (17)–(20)

The system of equations (17)–(20) is rather difficult. We are able to solve it only in special
cases.

2.1. Case b = c

Since the metric (5) is defined up to a factor, we can divide it by b2. Making a change of

parameter τ =

∫

dt

b
and denoting

a

b
=
a

c
again as a, we rewrite the metric as

ψ = −dt2 + a2 (dx1)
2

+ (dx2)
2

+ (dx3)
2
. (21)

Therefore, without loss of generality, we may assume that b = c = 1 in this case; then equations

b11 =
1

3

..
a

a

def
= 4A, b22 = −1

3

..
a

a
= −4A, b33 = b44 =

1

6

..
a

a
= 2A
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follow from (8). Furthermore, the system (17)–(20) is reduced to two equations

2
.
a

a

.

A− 12A2 +K2 = 0, 2
..

A− 12A2 +K2 = 0, (22)

where K2 = M2 +N2 = const.
Integrating the difference of these equations, we find that

.

A = Pa, P = const. (23)

The first integral of the 2nd equation in (22) is

.

A
2

= 4A3 −K2A−Q, Q = const. (24)

This means that A is given by the elliptic Weierstrass ℘-function A = ℘(t,K2, Q), and according
to (23)

a =
1

P

.
℘(t,K2, Q). (25)

Formula (25) makes no sense when P = 0, and in this case we deduce directly from (23) and

(22) that A =
K√
12

. Consequently, by definition of A,

..
a

a
= 12A = K

√
12. It depends on the

sign of K which of the following three functions solves the equation:

a = C1 sin

(√

−K
√

12t+ C2

)

, (26)

a = C1e

√
K

√
12t + C2e

−
√

K
√

12t, (27)

a = C1t+ C2. (28)

Formulas (25)–(28) give the complete list of all solutions to (17)–(20) in the case b = c. These
solutions are elementary; solution (25) is also elementary for some values of K and Q. Namely,
the function ℘ is elementary if the cubic equation

4℘3 −K2℘−Q = 0 (29)

has multiple roots. A number α is a root of multiplicity 2 if it is also a root of the derivative, i.e.
the solution to the equation 12α2 −K2 = 0. We may always assume that K > 0. Substituting

α = ± K√
12

in (29), we find Q = ∓ K3

3
√

3
. For these values of Q equation (24) can be solved in

elementary functions. Let first Q =
K3

3
√

3
then equation (24) turns into

.

A
2

= 4

(

A+
K√
12

)2(

A− K√
3

)

.

Its solution is

√
2√

K 4
√

3
arctan

√

2A− 2K
√

3√
K

4
√

3
= t+ C1, where C1 = const. Therefore

A = ℘ =
K
√

3

6

(

3 tan2

√
K 4
√

3 (t+ C1)√
2

+ 2

)

.

Denoting
4
√

3
√
K√

2
= C2 we find A; substituting it in (25) we get

a =
sinC2 (t+ C1)

P cos3 C2 (t+ C1)
, C1, C2, P = const.
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Similar calculations for Q = − K3

3
√

3
give

a =
sinhC2 (t+ C1)

P cosh3 C2 (t+ C1)
, C1, C2, P = const.

If equation (29) has a root of multiplicity 3, then K2 = Q = 0. In this case equation (24)

implies A = ℘ =
1

(t+ C2)
2 and, consequently,

a =

.

A

P
=

C1

(t+ C2)
3 , C1, C2 = const. (30)

Let us find out now which metric among (25)–(28) gives the Einstein metric, i.e. Rij = κηij ,
or a metric conformally equivalent to it. As it was proved in [1, p. 445], the Einstein metric
(and a metric conformally equivalent to it) does not allow an electromagnetic field, therefore
such solutions should be among (25)–(28) with K = 0, i.e. they must be

a =
1

P

.
℘(t, 0, Q) (31)

or a = C1t+ C2.

Equalities (7) show that for b = c = 1 the Ricci tensor components are

R11 =

..
a

a
, R22 = −

..
a

a
, R33 = R44 = 0.

For that reason, solution (28) provides the Einstein metric, while solutions (31) do not.
It is known that the metrics

ψ1 = −dt2 + cos
4

3 ω ·
(

tan2 ω · (dx1)
2

+ (dx2)
2

+ (dx3)
2
)

,

ψ2 = −dt2 + sin
4

3 ω ·
(

cot2 ω · (dx1)
2

+ (dx2)
2

+ (dx3)
2
)

,
(32)

where ω =
3

2

√

κ

3
t, κ = const, κ > 0, and

ψ3 = −dt2 + cosh
4

3 ω ·
(

tanh2 ω · (dx1)
2

+ (dx2)
2

+ (dx3)
2
)

,

ψ4 = −dt2 + sinh
4

3 ω ·
(

coth2 ω · (dx1)
2

+ (dx2)
2

+ (dx3)
2
)

,
(33)

where ω =
3

2

√

−κ

3
t, κ = const, κ < 0, are the Einstein metrics [2, p. 230]. Here κ is the

Einstein curvature Rij = κηij . The coefficients at (dx2)
2

and (dx3)
2

in these metrics are equal,
therefore they are of the form (5) with b = c, which is the case we consider in this section. As it
was noted in [3, p. 73], the Einstein metrics automatically satisfy all the Yang-Mills equations.
Hence these metrics are conformally equivalent to some of the solutions (31). It remains now to
establish the parameters P and Q.

For this purpose we will rewrite the metric ψ1 in the form (5) with b = c = 1. To do that, we

divide the metric by cos
4

3 ω, change the time parameter τ =

∫

dt

cos
2

3

(

3
2

√

κ

3 t
) and let a be the

composition of functions a = tanω and ω =
3

2

√

κ

3
t (τ). Let the function

.
℘(τ, 0, Q) = Pa satisfy

the differential equation
( ..
℘
)3

=
27

2

(

( .
℘
)2

+Q
)2

,
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which follows from the equation
( .
℘
)2

= 4℘3 − Q for the Weierstrass function ℘(τ, 0, Q). This
brings us to

P =
1

4

(

κ

3

)
3

2

, Q = P 2 =
1

16

(

κ

3

)3

. (34)

The same result holds for the metric ψ2.

Analogously, for the metrics ψ3 and ψ4 we come to the similar result

P =
1

4

(

−κ

3

)
3

2

, Q = −P 2 =
1

16

(

κ

3

)3

. (35)

From this it follows that the metrics ψ3 and ψ4 are conformally equivalent. The metrics ψ1 and
ψ2 are not just conformally equivalent but isometric because we may obtain one from another

by the time parameter change t→ π

2λ
− t, λ =

3

2

√

κ

3
.

Up to an isometry, there are no other Einstein metrics of the form (5) with b = c and κ 6= 0,
except for (32) and (33).

Let us summarize this in other words. A metric in a space with conformal connection is
given up to a factor, therefore a numerical value of the parameter κ is unimportant, only its
sign matters. It follows that all the Einstein metrics of the form (5) with b = c and κ 6= 0 are
conformally equivalent to two specific (not Einstein) metrics of the form (5) with b = c = 1, and
a =

.
℘(t, 0, 1) or a =

.
℘(t, 0,−1).

There are two series of the Einstein metrics of the form (5) with b = c and κ = 0

a = α (βt+ γ)
− 1

3 , b = c = (βt+ γ)
2

3 ; (36)

a = βt+ γ, b = c = const,

where α, β, γ are const ant. All metrics in the first of these series are conformally equivalent to

the non-Einstein metric with the coefficients a =
1

t3
, b = c = 1.

Metrics in the second series are isometric to the Einstein metric with the coefficients a =
t, b = c = 1.
Remark. According to (15) and (16), for b = c = 1 we have b12 = M = const, b34 = N = const,
but this does not mean that the electromagnetic field is constant, since (4) implies that

Φ0
0 = −2Mω1 ∧ ω2 − 2Nω3 ∧ ω4 = −2Madt ∧ dx1 − 2Ndx2 ∧ dx3, (37)

and we see that the coefficient at dt ∧ dx1 depends on time.

2.2. Case a = b (or a = c)

The same reasoning as above allows us to assume a = b = 1 (or a = c = 1). It turns out that
such a metric is incompatible with the electromagnetic field with b[13] = b[24] = b[14] = b[23] = 0.
In this case we may have only solutions of the form (31) or (28) with a replaced by the function
c (or b).

2.3. Second Representation in the Case b = c

If we divide metric (2) not by b2, as in Section 2.1, but a2, change the parameter τ =

∫

dt

a
,

and denote
b

a
=
c

a
by b, then we obtain a = 1, b = c. Writing B =

.

b

b
=

.
c

c
, we rewrite system
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(17)–(20) as follows

1

3
B

..

B − 1

6

.

B
2

+
2

3
B2

.

B +
2K2

b4
= 0,

1

3

...

B +
5

3
B

..

B +
5

6

.

B
2

+ 2B2
.

B − 2K2

b4
= 0,

(38)

where K2 = M2 +N2 = const as above. This system is much more difficult to solve than (22).
It would not be clear how to proceed with solving it if we did not know that the system was

obtained from (22) by change of the unknown function b =
1

a
and the time parameter τ =

∫

dt

a
.

For us, there are two reasons to write down this system of equations. First, to illustrate how
much the choice of the gauge transformation (renormalization of the quadratic form (5) in this
case) is important to find a solution to the Yang-Mills system of equations. Second, the form of
the solution may have advantages or disadvantages, and this depends on a choice of the solution
representation. In particular, solutions (26), (28), and (30) attain the form

b = c =
1

C1
cosh

(

C1

√

−K
√

12t+ C2

)

, (39)

b = c = C2e
−C1t, (40)

b = c = C1 (t+ C2)
3

4 . (41)

In order to write down solutions (27) we first rewrite them

a = C3 cosh

(√

K
√

12t+ C4

)

, (if C1C2 > 0), (42)

a = C3 sinh

(√

K
√

12t+ C4

)

, (if C1C2 < 0), (43)

a = C1e

√
K

√
12t, (if C2 = 0), (44)

a = C2e

√
K

√
12t, (if C1 = 0). (45)

After the gauge transformation these solutions become

b = c = C1 cos

(√
K

√
12

C1

t+ C2

)

, (46)

b = c = C1 sinh

(√
K

√
12

C1

t+ C2

)

, (47)

b = c = C1 −
√

K
√

12t, (48)

b = c =

√

K
√

12t+ C2. (49)

A direct substitution easily shows that (46)–(49) and (39)–(41) are solutions to (38) (the last two
are for K = 0). The metrics of solutions (26) and (28) have singularities but the corresponding
metrics for (39) and (40) do not. On the contrary, the metrics of solutions (42), (44), and
(45) have no singularities but acquire them in the new gauge, as we see in (46), (48), and (49).
Moreover, metrics (32) and (33) are given by elementary functions but the same metrics after the
gauge transformation are given by formula (31) with conditions (34) and (35). These functions
are not elementary.
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3. Solutions of the Monomial Type

Let us now study solutions to system (17)–(20) of the form

a = tα1 , b = tα2 , c = tα3 , (50)

where α1, α2, α3 are constant; i.e.

ψ = −dt2 + t2α1 (dx1)
2

+ t2α2 (dx2)
2

+ t2α3 (dx3)
2
. (51)

Solutions (28), (30), and (41) for C1 = 1, C2 = 0 and (36) for α = β = 1, γ = 0 are of this form.
Moreover, Kasner showed that if

α1 + α2 + α3 = (α1)
2

+ (α2)
2

+ (α3)
2

= 1, (52)

then (51) is the Einstein metric [4, p. 491]. Hence all functions (50) with condition (52) are
solutions to system (17)–(20). In particular, solutions (28) and (36) satisfy this condition. It is
natural to try to find all the solutions of form (50) but it is a difficult problem. A straightforward
substitution of (50) in equations (17)–(20) leads to severe technical difficulties because the alge-
braic equations obtained in the result are too difficult, and it is impossible to see what algebraic
variety they define. We may overcome these difficulties introducing auxiliary parameters

u = (α1)
2

+ (α2)
2

+ (α3)
2 − 1, v = α1 + α2 + α3 − 1. (53)

This allows to obtain elegant and unexpected solutions, which include all the solutions mentioned
above.

Using formulas (8) we express bii via introduced parameters

b11 =
1

t2

(

5

12
u− 1

2
v − 1

12
v2

)

, b22 =
1

t2

(

−1

2
α1v +

1

12
u+

1

12
v2

)

,

b33 =
1

t2

(

−1

2
α2v +

1

12
u+

1

12
v2

)

, b44 =
1

t2

(

−1

2
α3v +

1

12
u+

1

12
v2

)

.

Then equations (17)–(20) turn into

A0 + 2K2t4−2(α2+α3) = 0, ]A1 − 2K2t4−2(α2+α3) = 0,

A2 + 2K2t4−2(α2+α3) = 0, A3 + 2K2t4−2(α2+α3) = 0,
(54)

where K2 = M2 +N2 = const, and A0, Ai are defined by

A0
def
= − 1

12
v4 +

5

12
uv2 − 1

2
u2 − 1

6
v3 +

1

3
uv +

1

6
v2 − 1

3
u,

Ai
def
= −1

6
u2 +

1

12
v4 − 1

12
uv2 +

2

3
αiuv −

1

3
αiv

3 − 1

6
v3+

+
1

3
uv − 4

3
αiu+

2

3
αiv

2 − 1

6
v2 +

1

3
u, i = 1, 2, 3.

Subtracting in (54) the 3rd equation from the 2nd and the 4th from the 3rd, we get

(

2u− v2
)

(v − 2) (α1 − α2) = 12K2t4−2(α2+α3),
(

2u− v2
)

(v − 2) (α2 − α3) = 0.
(55)

The 2nd of these equations presents three possibilities. If the 1st factor is equal to zero, that is

u =
1

2
v2, (56)
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then it is easy to check that all Ai vanish. The 1st equation of (55) yields K = 0, i.e. M = N = 0.
From (37) we deduce that Φ0

0 = 0, hence (56) gives a purely gravitational solution to the Yang-
Mills equations. We see that if Ai = 0 and K = 0, then all equations (54) become identities.
Equation (56) in parameters αi assumes form

(α1)
2

+ (α2)
2

+ (α3)
2 − 2α1α2 − 2α1α3 − 2α2α3 + 2α1 + 2α2 + 2α3 − 3 = 0. (57)

In the space of parameters α1, α2, α3 this surface of 2nd order is a cone with its apex in the
point (1, 1, 1). The circle (52) lays on this cone because its equation can be written down as
u = v = 0, which, obviously, satisfies equation (56).

If in equations (55) v = 2, then again K = 0, and the first of equations (54) becomes

A0 = −1

2
u2 + 2u− 2 = 0,

which is equivalent to u = 2. But the pair u = 2, v = 2 satisfies equality (56), therefore we get a
special case of solution (57).

Let us now put α2 = α3 in the 2nd equation of (55). From (54), for K 6= 0 it obviously
follows that α2 + α3 = 2 because all Ai and K are constant. Consequently, α2 = α3 = 1. From
(53) we have u = (α1)

2
+ 1, v = α1 + 1. For these values of u and v all equations (54) turn into

(α1 − 1)
4 − 12K2 = 0, hence α1 = 1 ±

√

K
√

12.
Thus, we get the solution

a = t1±
√

K
√

12, b = c = t. (58)

The last possibility for the 2nd equation of (55) is α2 = α3 and K = 0. The first equation
then becomes

(

2u− v2
)

(v − 2) (α1 − α2) = 0.
To derive a result different from (57), we put α1 = α2, so that α1 = α2 = α3. We have

u = 3 (α1)
2 − 1, v = 3α1 + 1.

With such u and v equations (54) are satisfied identically. Thus,

α1 = α2 = α3 (59)

and, with (50) in mind, a = b = c. This gives a new solution to the system of the Yang-Mills
equations, but it is of no interest to us since dividing the metric (5) by a2 and changing the

parameter τ =

∫

dt

a
brings us to the Minkowski metric.

Conclusion. We obtain two series of solutions of monomial type (50): one is purely gravitational
(57) and another with non-zero electromagnetic field (58). The last solution is of the form (5)
with b = c and not a new one. It is conformally equivalent to a special case of solution (27).

4. Solutions of Exponential Type

Let us study a metric of the form

ψ = −dt2 + e2α1t (dx1)
2

+ e2α2t (dx2)
2

+ e2α3t (dx3)
2
, (60)

where α1, α2, α3 are constant, that is a = eα1t, b = eα2t, qc = eα3t.

Solutions to equations (17)–(20) can be found after a suitable gauge transformation of the
given metric to a metric of monomial type. Namely, we will multiply metric (60) by e2t and
introduce the new time parameter τ = et. We get

ψ = −dτ2 + τ2(α1+1) (dx1)
2

+ τ2(α2+1) (dx2)
2

+ τ2(α3+1) (dx3)
2
,
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precisely like we have already examined. As proved above, this metric satisfies equations
(17)–(20) either if indexes α1, α2, α3 are related by the equation similar to (57)

(α1)
2

+ (α2)
2

+ (α3)
2 − 2α1α2 − 2α1α3 − 2α2α3 = 0,

or α1 = α2 = α3, or if α1, α2, α3 give a solution equivalent to (58), i.e.

α1 = ±
√

K
√

12, α2 = α3 = 0.

All metrics of the monomial type (51) have a singularity at t = 0 that can not be removed
within the framework of Riemannian geometry. However, the metrics of exponential type (60)
conformally equivalent to them have no singularities. That is why there is no sense in relating
singularities of a metric to singular states in the Universe development as it is done in numerous
cosmological models, for example, in the Kasner or Friedmann models. That is, the authors
do not agree with Landau and Lifshitz’s point of view asserting that "...the very fact of the
appearance of a singularity in the solutions of the Einstein equations (both in their cosmological
aspect and for the collapse of finite bodies) has a profound physical meaning" [4, p. 423].

Among the solutions of exponential type the Einstein metric occurs only if α1 = α2 = α3,
and the metric conformally equivalent to the Einstein metric is obtained under the conditions
that are equivalent to (52):

α1 + α2 + α3 = −2, (α1 + 1)
2

+ (α2 + 1)
2

+ (α3 + 1)
2

= 1.

5. Conformally-flat Solutions

Any conformally-flat metric automatically satisfies the Yang-Mills equations. As shown in
[1, p. 444], a conformally-flat metric does not permit an electromagnetic field. We shall now
establish conditions for the metric (5) to be conformally-flat. Dividing the metric (5) by a and
changing the time parameter, we can achieve a = 1. Hence from (8) we get

b11 =
1

3

( ..

b

b
+

..
c

c

)

− 1

6

.
c

c

.

b

b
, b22 =

1

6

( ..

b

b
+

..
c

c
+

.
c

c

.

b

b

)

,

b33 = −1

3

( ..

b

b
+

.
c

c

.

b

b

)

+
1

6

..
c

c
, b44 = −1

3

(

..
c

c
+

.
c

c

.

b

b

)

+
1

6

..

b

b
.

(61)

Since there is no electromagnetic field in this case, then all nonzero components of Pfaffian forms
ωj (j = 1, 2, 3, 4) consist of (61).

Let us calculate the external forms Φi
j , the components of conformal curvature matrix, using

the formula Φi
j = dωi

j + ωi
k ∧ ωk

j + ωi ∧ ωj + ηimηjnωm ∧ ωn:

Φ2
1 = (b22 − b11)ω

1 ∧ ω2, Φ3
1 =

( ..

b

b
+ b33 − b11

)

ω1 ∧ ω3, Φ4
1 =

( ..
c

c
+ b44 − b11

)

ω1 ∧ ω4,

Φ3
2 = (−b22 − b33)ω

2 ∧ ω3, Φ4
2 = (−b22 − b44)ω

2 ∧ ω4, Φ4
3 =

(

−b33 − b44 −
.

b

b

.
c

c

)

ω3 ∧ ω4.

The components of Φi
j form the Weyl tensor of conformal curvature of metric (5). In view of

(61), there are only three different coefficients. Setting them to zero, we get three equations

1

3

..

b

b
− 1

6

..
c

c
− 1

6

.

b
.
c

bc
= 0,

1

3

..
c

c
− 1

6

..

b

b
− 1

6

.

b
.
c

bc
= 0,

1

3

.

b
.
c

bc
− 1

6

..

b

b
− 1

6

..
c

c
= 0. Subtracting the third

– 51 –



Leonid N.Krivonosov, Vyacheslav A. Lukyanov Purely Time Solution of Yang-Mills Equations ...

equations from the first two, we obtain two equalities

..

b

b
=

.

b
.
c

bc
,

..
c

c
=

.

b
.
c

bc
, which make all three

previous equations into identical zeroes. The last system can easily be solved, and we get
two conformally-flat solutions: a = 1, b = C1 sinh (C4t+ C2) , c = C3 cosh (C4t+ C2) , and
a = 1, b = C1 sin (C4t+ C2) , c = C3 cos (C4t+ C2) .

6. The Solution Obtained in [1]

At first sight, the purely time-dependent solution obtained in [1, p. 448]

a =
2P 2

T − Lt
, b = c =

T − Lt

2P
, b12 =

M

b2
, b34 =

N

b2
, M2 +N2 =

L4

12P 4
,

is different from all the solutions of the present paper. However, the substitution
T

L
− t → t,

2P 2

L
x1 → x1,

L

2P
x2 → x2,

L

2P
x3 → x3 makes it into a special case of solution (58) for

K =
2√
3
, a = t−1, b = c = t.
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Чисто временное решение уравнений Янга-Миллса
на четырехмерном многообразии конформной связности
без кручения

Леонид Н. Кривоносов
Вячеслав А. Лукьянов

Приведен вывод чисто временных уравнений Янга-Миллса в пространстве конформной связности

без кручения. Найдены три серии решений этих уравнений, выяснено, какие из этих решений да-

ют метрику эйнштейнову или конформно эквивалентную эйнштейновой. Указаны различные

представления этих решений, отличающиеся наличием или отсутствием сингулярностей у со-

ответствующих метрик.

Ключевые слова: уравнения Янга-Миллса, уравнения Эйнштейна, уравнения Максвелла, простран-

ство конформной связности.
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