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Let U be a unipotent radical of a Borel subgroup of a Lie-type group over a finite field. For the classical
types the Thompson subgroups and large abelian subgroups of the group U were found to the middle
1980’s. We complete a solution of well-known problem of their description for the exceptional Lie-types.
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Introduction

It is well-known that similarly to A.I.Mal’cev’s schema from [1] the problem of enumeration
of the large abelian subgroups of a Lie-type group G over a finite field is reduced to the same
problem for the unipotent radical U of the Borel subgroup of G. The problem has been under
active investigation since 1970’s. For classical types the sets A(U) of large abelian subgroups
of U were found by the middle 1980’s, as well as the subsets Ay (U) of normal subgroups and
A.(U) of elementary abelian subgroups and, also, the Thompsons subgroups

JU) = (A A€ AU)), J(U)=(A] A€ AU)).

In 1986 A.S.Kondratiev singled out in his survey [2, (1.6)] the following problem:

Problem (A): Describe the sets A(U), An(U), Ac(U) and the Thompson subgroups J(U) and
Je(U) for the remaining cases of G.

The present paper summarizes the investigations of this problem, carried out by E.P.Vdovin
[3,4], the authors [5-8] and G.S.Suleimanova [9-12].

1. Preliminaries

A Chevalley group ®(K) over a field K, associated with a root system @, is generated
by the root subgroups X, = z,.(K), r € ®; the root subgroups taken for the positive roots
r € ®T generate the unipitent subgroup U = U®(K). A twisted group ™®(K) is defined as the
centralizer in ®(K) of a twisting automorphism 6 of order m = 2 or 3. For a twisted group we
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have U = UM®(K) := "®(K)NUP(K). Besides, 6 is a superposition of a graph automorphism
7 € Aut ®(K) and a field automorphism o : ¢ — ¢ (¢t € K), and for the only continuation ~ on
® of a symmetry of a Coxeter graph of order m we have 6(X,) = 7(X,) = X7 (r € ®) [13,14].

Given a group-theoretic property P, every P-subgroup of the highest order is called a

large P-subgroup. Developing the A.I.Maltsev’s approach [1], E.P.Vdovin has mainly calculated
[4, Concluding table| the orders a(U) of large abelian subgroups of finite groups U = UG(K)
(G =® or G="®) and those of Thompson subgroups.

Having described the maximal normal abelian subgroups of U, the authors ( [5,6,8]) also
described the large normal abelian subgroups of finite groups U by showing that they form the
set Ay (U). (In general, a large normal P-subgroup of a finite group is not a large P-subgroup.)
It allows us [8] to complete (for types Gz, 3D4 and 2 Eg) the calculation of the orders a(U). In [6]
the problem (A) is reduced to the question:

Describe the groups U, in which every large abelian subgroup is G(K)-conjugate to a normal
subgroup of U and enumerate all the exceptional large abelian subgroups of the remaining groups

U ([15,16]).
See the exceptions in [6,9] and [12]. In [8] the authors proved

Theorem 1. Either every large abelian subgroup of U is G(K)-conjugate to a normal subgroup
of U or G(K) is of type G, 3Dy, Fy or 2Eg.

G.S.Suleimanova described the exceptional large abelian subgroups for the type Fy in [9,11]
and those for the type 2Fg in Section 2 and [12]. In Section 3 we complete this description for
the types Go and 3Djy.

Twisted groups ™®(K) required further development of the methods [1]. For the types 2D,
and ?Ejg there exists a homomorphism ¢ from the lattice of the root system ® to the lattices of
the systems of types G2 and Fy respectively; the preimages of the elements of ((®) being the ~
-orbits in P.

Let ™® = ((®). For any a € ((®) is defined the root subgroup X, of "™®(K). Similarly
to [17] and [8], we have X, = 2,(K,), K, := Ker (1 — ¢) when ("1(a) is an ~-orbit of length 1;
in the remaining cases X, = 24(K). Then U = UG(K) = (X, | r € GT), where G = ® or "®.
The standard central series is U = Uy 2 Uy D --- [13]. Let {r}T be the set of all s € G for
which the coefficients in the decomposition of s — r in II(G) are all nonnegative. Set

T(r)=(Xs [ s€{r}7), QU)=(Xs|se{r}, s#r) (red).

If HCT(r1)T(re)...T(ry) and the inclusion fails under every substitution of T'(r;) by Q(r;)
then £L(H) = {r1,r2,- -+ ,rm} is said to be the set of corners of H. Also, £1(H) denotes the set
of first corners for all elements of H.

We fix a regular order of the roots, compatible with the root height function [13, Lemma 5.3.1].
Each element « of U permits a unique compatible (canonical) decomposition into a product of
root elements () (r € G), [14, Lemma 18]. The coefficient -, is called an r-projection of
the element ~. Obviously, the first corner of v corresponds to the first multiplier in its canonical
decomposition.

We use usual notation from [13]: h(x) for diagonal automorphisms, n,. for monomial elements
and the subgroups U, = (X, |7 € GT \ {r}), r € II(G). For the root systems of types E,, and
F, simple roots are denoted by ay,as,- - , similarly to [18, Tables V-VIII].

Refining [4, Table 4], the following theorem completes the description of Thompson subgroups.

Theorem 2. Let K be a finite field and U = UG(K). Then:
a) J(U) = J.(U) = U in UG(K), |K| > 2, and in UDy(K),|Ky| > 2;
b) J(U) =1 and J(U) = T(a) in UDy(8);
) J.(U)=1, JU) =< a>x <a™ > a=z.1)z2.45(1) in UG2(2);
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d) J(U) = J.(U) = Ua, in UEg(K);
e) J(U) = Jo(U) = Ua, N Ua, in UEs(K).

2. Large Abelian Subgroups of Groups U of Type 2Fj

In this section we suppose U = U2 Eg(K). For the root system ® of type Fg the corresponding
system ™® = ((®) = G is of type Fy. According to Section 1, the group U is generated by the
root subgroups X, = z,(K,) for all long roots a € Gt (the first type) and X, = z,(K) for
all short roots a € GT. For the system of type F, see also the diagram of the positive roots
from [17] or [8]. Use the notation abed for the root aay + bag + cag + day of the system of type
Fy (a1, a2, a3, a4 are simple roots) similarly to [18, Table VIII]. For certain maps ~: K — K
and " : K — K we choose the following subgroups in the group U:

{$1111(t>$1231(f~) ‘ te K}{angl(u)l‘mgl(ﬂ) | u e K} . T(0122), (1)

X111 (Ko) {21121 (t)71921 () | t € K} X193 (K*79)T(0122),
X1111(Ko) X1121 (Ko) X 1221 (K 77) X131 (K'~7)T(0122),
{m1121 (H) 71221 (F) | t € K} X7123:T(0122),
{x1101 (D) 1201 (ct) | t € Ko} X190 (K 79) X193 T(0122), ¢ ¢ K,,
T(0122)Us,

(T(0121) N Eg(K,))Us.

Let G(K) = 2Eg(K). The aim of this section is to prove that, up to G(K)-conjugacy, the
subgroups (1) — (6) for 2K = K and the subgroup (7) for 2K = 0 are all large abelian subgroups
of U.

We need the following lemma |8, Lemma 4.4].

Lemma 1. If [z,.(F),zs(V)] C Q(r + s) in the group U for F,V C K, FV #0, thenr+s is of
the first type, v and s are not of the first type, and, up to a diagonal automorphism conjugacy,
FCK, VCK!'—.

According to A.I. Mal’cev [1], a subset ¥ of ®* is said to be abelian if r+s & @ for all r, s € U.
A subset U of @7 is said to be p-abelian (E.P. Vdovin [4]), if for all r, s € U either r + s € ® and
the structure constant Cii1,-s in the Chevalley formula is zero in characteristic p, or r + s &€ .
The maximal 2-abelian subsets for type Fy are listed in [4, Table 3|. The table contains 7 rows
and 13 columns, so the subsets are denoted by ¥, ; (i is the row number and j is the column
number). In particular, Ws1o = {0121} := ¥; and also ¥o = {1111}F U {0122}, U5 =
{0011,0111,1111,1231} U {0122} * are ¥s 13, U 10, respectively. Using [4] we easily obtain the
following lemma.

Lemma 2. Each mazimal 2-abelian subset of the root system of type Fy either coincides with
one of the sets Uy ;, Wa,; (1 < j<13) of order 10, or is W-conjugate to one of the sets U;, ¥,
of order 11 fori=1, 2 or 3.

Let m(z) := L1(z) (x € U). The following three lemmas is proved in [12].

Lemma 3. Let A be a large abelian subgroup of U of type 2Eg. Then for all x,y € A, x,y # 1,
the subset {m(xz),m(y)} of ® of type Fy is 2-abelian and, if m(z) + m(y) € ®, then the m(x)-
projections of all elements of A with the first corner m(x) are contained in a I-dimentional
K,-module.
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Lemma 4. Let A be a large abelian subgroup of U of type 2Es, U be a mazimal 2-abelian subset
of the root system of type Fy and let L1(A) C V. Then:

a) if {ri,r2, 3t C W, ri+1; € ® and Cuyp, r; = £2 for all i # j then the subset {r1,r2,73}
is contained in L1(A), '

b)if r+s € ® for the roots r,s € U, Ci1,,s = £2, and the pair r,s is not contained in any
triple from a), then r € L1(A) or s € L1(A);

¢) if U contains a root v such that (r + )N ® =0 then r € L1(A).

Lemma 5. If ¥ is a maximal 2-abelian subset of type Fy, for which there exists a large abelian
subgroup A such that m(A) C U, then ¥ is W-conjugate to U1 when 2K = 0 or to ¥y when
2K = K. Furthermore, all such sets U are exhausted, respectively, by the sets

Uo9,¥212,¥31,¥37, V312, P51, Y53, ¥s56, Uss, ¥s9, Vs 13, Y64, Vs 11, Pr71;
Y10, V2,11, Y213, V3,13, U552, U5.4, Us 5, ¥s5,7, Ve,7, ¥r 2, U7 3.

Now we consider a large abelian subgroup A of U = U?Eg(K).
Lemma 6. If A has a simple corner p then A C T(p) and p # a;.

Proof. In the canonical decomposition of elements of U we use the regular order of the system
®, defined by the order a; < as < a3 < a4 of the simple roots. Note that the inverse order is
also regular.

Suppose that A has at least two simple corners p < g. None of the sets ¥, ; from Lemma 5
contains o, so we get p > ay. Suppose that ¢ = . If we replace the regular order of ® by the
inverse order then £;(A) will contain ay and, by Lemma 5, £4(A) is contained in one of the sets
Us 4, Uss, W56 for 2K = K or W53, U546, Uss, W59 for 2K = 0. Each of these sets contains
the root 1242. This root is the only root in ®* of height 9. By Lemma 4, c), the root 1242 is
contained in £1(A). It is clear, that if there exists an element in A N T'(r) with the corner r,
then r € £1(A) for any regular order of ®. Therefore, the roots as and a4 can not be corners in
A simultaneously. If ¢ = a3 then similarly 1242 € £1(A). Therefore, the case p = as,q¢ = a3 is
also impossible.

In the remaining case p = as, ¢ = a4, by Lemmas 5, 4 and [4, table 3|, we get 1122 € £,(A)
for the inverse order of ®. Therefore, for the initial order, the set £4(A4) contains a root of height
6. However, this root and the root a3 can not be contained in £;(A) simultaneously, by Lemma
5 and [4, table 3|. Therefore, in all cases the subgroup A can have only one simple corner.

Let A have a simple corner o; and A C X,,Us. Suppose that A € T(a;). Then A has
the corner 0011 for i = 2, so A™ has the simple corners oy and az. If i = 3 then A has
the corner 1100, therefore, A™ has the corners o and «as. If i = 4 then A has a corner
r € {1100,0110,1110,0120, 1120, 1220}. In the first and second cases A™2 has the corner a; or
as, respectively, and the corner ay. The third case is reduced to the second case by n;-conjugacy.
In the fourth case A™ has a corner as and A™ ¢ T(as); this gives a contradiction with the
proved above. The fifth case is reduced to the fourth case by a ni-conjugacy. The sixth case is
reduced to the fifth case by a ny-conjugacy. a

Similarly we obtain the following two lemmas.

Lemma 7. If A has a corner r of height 2, then A C T(r) and r # 1100.

Lemma 8. If A has a corner r of height 3, then:

a) ACT(r) forr=0111;

b) A C T(1110)T(0120) for r = 0120;

¢) A CT(1110)T(0122) for r = 1110 and A C X1110Us.

Lemma 9. Fach large abelian subgroup of U is G(K)-conjugate to a subgroup of Us.
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Proof. Let A be a large abelian subgroup in U and A ¢ U,. By Lemma 6, there exists a
simple corner p # «; in A and A C T(p). If p = ay then £1(A) is contained in one of the
sets Uy g, U3, for 2K = 0 or Uy 19, ¥o 11 for 2K = K, and 1100,1222 € £4(A), by lemma 5.
Therefore for arbitrary non-zero elements ¢,u € K, and suitable t;,u; € K there exist elements
x,y € A such that

x = x1100(t)20110(t1)T1110(t2) 0120 (23)T0111(t4) moOd Uy, )
Y = 1222 (u) w1232 (u1)T1242(u2) mod Uyp.
If t; # 0 for all elements of the form (8) then in the inverse order we have 0110 € £;(A).
However, the sets Wy ;; and W3 ; do not contain this root. Since
[z, y] = @1342(uts £ (G1t1 +u1ty)) mod Uiy,

we have t3 = 0 for t; = 0. So, there exists an element 2’ € A such that

' = x1100(t)21110(t2) 0111 (t2) mod Uy

and hence
z' = z1100(t)T1110(t2)T0111 (t4)T1120 (t5) T 1111 (E6) 0121 (£7)  mod Us

for some t5, tg, ty € K. We may cancel t5 by X,.,-conjugacy. Moreover,

(z')%e3W) = 21100 (t)z1110(t2 + ty) o111 (ta)T1120 (t5 £ tyy £ (t27)'T7)

z1111 (t6) o121 (87) =
= 1100(t) 1110 (tY)To111 (ta) T 1120 (t5 £ tyy)x1111 (t6)T0121(t5) mod Us (y € K).

If y € K and K* = (y) then K% = (y5). Therefore we can choose y such that tyj = Ft5. So,
we can transform 2’ by an U-conjugacy to the form

&' = z1100(t) 1110 (tY) o111 (f4) 1111 (f6) 0121 (t7) mod Us  (y € K).

Then
()™ = 1110 (ty) o111 (T7) 21120 (E) 21111 (T5)T0121 (t2) moOd Us  (y € K).

Suppose that t7 # 0. Then in the inverse order we get 0111 € £4(A") and £4(A"3) = ¥3; for
2K =0 or L1(A™) C Uy 40 for 2K = K. In the first case 1111 € £1(A™). Therefore, in the
initial order, the set £1(A"#) (= W2 9) must contain a root of height 4; so we get a contradiction
with [4, Table 3]. In the second case, due to inclusion 0111 € L£1(A"3) we get that the 1231-
projection of the set of all elements z € A™ with m(z) = 1231 can not coincide with K, by
lemma 1. Hence, in the initial order, £1(A™3), which is contained in W5 i1, must contain the
root 1111. Since in the inverse order £1(A™) C Wy 19 then the set ¥y 19 must contain a root of
height 4, and we also get a contradiction with [4, Table 3]. Consequently,

(2")" = z1110(ty) T 1120 () 21111 (Eg) 0121 (t4) mod Us  (y € K).
By U-conjugacy, we get tg = 0 and for some u; € K we obtain the equality

(2")"3™ = xo120(w1) 1120 (U2)T1111 (U3)To121 (Wa) moOd Us  (uz # 0).

We may assume that u; = 0 because otherwise 0120 € m(A™™) and ay & L1(A™™),
see [4, Table 3]. Moreover, us = 0, since otherwise 1120 € £1(A™"™) and ag & L£1(A™™). Also,
ug = 0, since otherwise in the inverse order of G we have 0121 € £1(A™™) and ag & L1 (A™"4).
Note that 1220 € Uy9 N Ty 19N Po11 N P31. By Lemma 4, 1220 € £3(A™™) and the 1220-
projection of the elements y with m(y) = 1220 coincides with K. Thus, if A" has a corner
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as, then we may assume that the 1220-projection of (z')"3"4 is zero, up to a multiplication by
a suitable element y. Applying the U- and ns-conjugation to (x’)™3™*, we get an element of the
form

z1121(v1)To122(v2) mod Us (v1 #0).

Hence 1121 € L£1(A™3™4"3). Tt follows ag & L1(A™™4"3) and A™3™4"s C U,.
If p = a3 then we get 1231 € £1(A), by Lemma 5. The relation

1=[ANU7, Al =[ANU;, Xa, N (AUz)] mod Uy

shows that ANU; = ANT(1231). Up to X,,-conjugacy, AN (X1231Uy) has an element v with

the corner 1231. Since 1 = [y, A] mod Uy, we have A C X, T(0110) and A™ C Us,. Similarly

we consider the case p = ay. O
Analogously we proved

Lemma 10. Any large abelian subgroup of U is G-conjugate to a subgroup of Us and even to a
subgroup of Uy.

Finally we get that either 2K = K and the subgroup A is G-conjugate to ones from (1) - (6)
or 2K =0 and A is G-conjugate to the normal subgroup (7).

Remark 1. Taking into account that (1) — (7) are abelian subgroups, we obtain the equalities
AU) = A.(U) and J(U) = J(U) = U,, for the group U = U?Eg(K). All large abelian
subgroups of the group UFy(K) are described in [9] and [11].

3. Large Abelian Subgroups of Groups U of Type G5 and
3
D,
According to § 1, the root elements z,(t) of the groups U of type G5 and D, match the
roots of the system Gs. Choosing its simple roots a and b such that |a| < |b|, we use a hyper-

central automorphism ¢4 (d € K) of a group U (see [17]), for which ¢z(x(t)) = xp(t)x30+6(2dE)
mod Us (t € K). We set

o= 2q(1)22045(1),  Be(t) := Tats(t)T2040(tC). 9)
We now prove the following theorem.

Theorem 3. Each large abelian subgroup of the group U = UG5 (K) is G2(K)-conjugate to one
of the following subgroups:

a) a normal large abelian subgroup of U;

b) an image under some automorphism ¢q (d € K) of a subgroup, which is (X,n,)-conjugate to
Us or Xo1pUy for 6K = K;

¢) {xp(t)x3a46(t) |t € K}Ba(K)Us (d€ K) for even |K| > 2; (10)
d) <Oé,ﬁ1(1)>U4 fO’I” |K‘ =4.

The proof of the theorem is based on a number of lemmas.
In [5,7,8], the normal large abelian subgroups of U are described as large normal abelian
ones. The following lemma follows from |[§].

Lemma 11. If the group U is of type Go then the set An(U) consists of

Us and B.(K)Uy (c € K) for even |K|>2, Us for 6K =K,
Us for 3K =0, (a) x (61(1)) for |K|=2.
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Up to diagonal automorphisms, normal large abelian subgroups of the group U3D4(K), are ex-
hausted by the groups:

Us and Be(Ky) - 22q40(K1T) - Uy (c € Ky) for even |K,| > 2,
Us for 2K = K, {a) x (31(1)) X aq1(KT9) for |K,|=2.

Corollary 1. The order a(U) of large abelian subgroups of the group U = UG(K) of type Go or
3Dy equals |Us|, except the cases |K| =2 or 3K = 0 for the group UG2(K) where a(U) = |K|*
and the group U3D4(8) where a(U) = 2°.

Due to [6, Theorem 2|, the group U of type G5 satisfies the following isomorphisms: U/Us
UAy(K) and U/Uy ~ UB3(K). The following lemma is well known for the group UAs(K)
UT(3,K).

~
~

Lemma 12. Let A be a mazximal abelian subgroup and Z be the center of the group UP(K).
Then A = {z,(t)xp(ct)|t € K}Z (¢ € K) or T(b) for the type Az. For the type Ba we have
A = T(b) or A is B-conjugate either to X,Z or for the cases 2K = K and 2K = 0 to the
subgroup, respectively,

{za(Ozp(Ozars((t® = 1)/2 |t € K)}Z,  (2a(1)s(1))Z. (11)

Proof. The center Z of the group U of type Bs equals Us for 2K = K or U, for 2K = 0. If
there exists an element v € A having two corner, then up to B-conjugation we may suppose that
v = x4(1)2p(1). Choosing an arbitrary element 8 = x4 (t)xp(t')zarp(t”) mod Us of A, we find

1=[8,7] = zaqs(t' —t) mod Us, t' =t (t€K);

[8,9] = [za(®), 2o (][5 (t), (D] [Zars ("), 2a(1)] = w2ars(2t” +1 = 7).

(The signs of the structural constants are chosen according to [6, Theorem 2|.) If 2K = 0 then

t?—t=0and 3 € (y)Z When 2K = K we have ¢ = (t* —t)/2 and hence A is the first subgroup

in (11). |
Setting 7 := 1 4+ o + o2 for the type 3D, we require the following lemma.

Lemma 13. If 2K = K, then Ker (1 + o) = 0. In the general case we have:
K=K" +K, K,NK'7 =2K,, K"=K,, Ker(n)=K"".

Proof. f v = —v, then v = -0 =v, v =7 € K, and 2v = 0. If 2K = K then Ker (1+0¢) = 0.
Since for any K,-linear transformation of the field K the sum of the rank and defect equals 3,
the remaining statements of the lemma easily follow from relations

KDKW 4+ K"DK” =K, 0=1-0*=(1-0)r=n(l-o0). u]

3

The order of a subgroup A of a group U = UG(K) of type Gy or ® D, may be estimated using
the orders of intersections of the projections A;:

AN U, = zr(Ai) mod Ui+1, 1< ht(’/’) =1 < 5; (12)
Al = [A: AN Ua| - [As] - | As] - | Aa] - | As]. (13)

Lemma 14. Let A be an abelian subgroup of U. Then there exist elements d,,dy € K and an
additive subgroup F C K such that dyFFAy =0, and

A=~(F)-(ANU3), ~(t) = z4(dat)xp(dpt) mod Uy (t € F). (14)
For the type 2Dy and Go we have (A2A3)™ = 0 and 3A3 A3 = 0, respectively. When d,F > 1 we
have A%J“U =A% =0 and 245 = 3A3 = 0, respectively.
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Proof. Recall that (AUs)/Us is an abelian normal subgroup of the factor group U/Us, which
is isomorphic to a subgroup of the unitriangular group UT(3, K). By Lemma 12 we obtain (14),
where «(F) is the system of representatives of cosets of the subgroup ANU; in A. The equalities
[ANU;,ANU;] =1 mod Ui; ;41 and (12) imply dpF'/A4 = 0 and

(A2A3)7T = 0, (daFAg)ﬂ- = 07 (daFAg)lJrU =0 for the type 3D4,
3A2A3 = 0, 3daFA3 = 07 2daFA2 =0 for the type GQ.

When d,F > 1, we have A;77 = AT = 0 and 24, = 343 = 0 respectively. a
Lemma 15. If an abelian subgroup A of U has two corners, then |A| < a(U).

Proof. Using the notation of lemma 14 and the representation (14) of the subgroup A, we
have F' 5 1 and d, = d, = 1 up to a diagonal automorphism. Furthermore, |A : AN Us| = |F)|
and A4 = 0.

By Lemma 14, for the type G2 we have 24, = 3A3 = 0. Hence, As = 0 when 3K = 0 and
if 6K = K then A3 = 0 as well. In both cases, |A| < a(U) due to (13) and Corollary 1. Since
(AU,4)/Uy is an abelian subgroup of a factor group U/Uy ~ UBs(K), using Lemma 12 in the
case 2K = 0 we have:

[F| =2, |A|=|F|- |4 |Us| < 2 |K|* < a(U).

For the type Dy we have F C K,, and, by Lemma 14, A}™" = AJ = (A3A43)™ = 0, and
hence Ay C Ker (1 + 0). When 2K = K, using Lemma 13 we find:

Ay =0, [A3] < [Ker (1) = |K,|?,  |A] = [F| - |As] - |[Us| < |Ko|* < a(U).
If 2K = 0 then by Lemma 13 we have A3 C K7 and Ay C K,. If |A| > |Us| then
Al = |F|- |Ag| - |As] - |[Ko| = |Us], F=Ay=K,, Az=K"".

Thus, we may assume that a 2a+b-projection of v(F') is contained in K. Since [y(F'), ANUs] = 1,
K, also contains the a + b-projection of v(F'). Hence,

(Y(F)) C UPD4(K) NUD4(K,) ~ UGo(K,)

and, by Lemma 12 we have |F| = 2 = |K,|. Then |A| = |Us| = 2° < 26 = a(U). The lemma is
proved. O
The following lemma easily follows from the commutator relations for U.

Lemma 16. If Ay := X, 1, Xo01Us and Ag := XpUy then T'(b) = A1Aq. If U is of type Go
and 3K = 0 then the center Z of U is Xaa14Us, and the centralizer C(Aq) is T'(b); otherwise,
7Z = Us, C(A1) = Ay and C(Ag) = Ay. Furthermore, if U is of type Go and 3K = K then
Ay~ Ay ~UT(3,K), else if U is of type 2Dy then Ay ~ UT (3, K,).

Lemma 17. A large abelian subgroup A of UG2(K) is one of the following:

a) Uz or its (Xoqng U Xpnyp)-conjugates when 3K = 0;

b) a subgroup B-conjugate to ({a) x (81(1))) - Uy for |K| =2 or 4;

¢) a subgroup B-conjugate to My - My for 3K = K, |K| > 2, M; being an arbitrary mazimal
abelian subgroup of A;, 1 =1,2.

When 6 K = K, the subgroup M - My coincides with Us or Xq1pUs up to an automorphism of
the form ¢4 and to (Xang)-conjugacy, and when 2K = 0, it is G(K)-conjugate to Us, B4(K)Uy
or to

{zo(t)z3at0(t) | t € K}Ba(K)Us (d € K). (15)
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Proof. Clearly, A contains the center Z. If A ¢ Us, then there exists a corner r = a or b of A
and a representation (14) with d,, = 1 and dr = 0; furthermore, r + w(r) € G* and w, induces
a substitution w, on G\ {r}:

We = (b 3a+0b)(a+b2a+0b)(3a+2b), wp=(aa+b)(3a+0b3a+2b)(2a+Db).

For the type G2, when i = ht(ws(r)) and 3K = 0 we have A; = 0 by lemma 14. Hence,
Corollary 1, Lemma 12 and (13) give

T(r)2ADC(T(r)) = Xu,(mZ = Xu, 7)) X2a+6Us;
A=v(K) Xy, Z, YEK)=A{x()Tw,(r)(ct) |t € K} mod C(T(r)).

Having cancelled the scalar ¢ € K with Xz-conjugation, we map A into n; 'Usn;.

Let 3K = K. Then (X,U;)/Us ~UT(3,K), and if 2K = K, then T(a)/Uy ~UT(3,K). By
Lemma 14, either r = a, A D Uy and A3 = 0 =245, or r = b and Ay = AsA3 = 0. When two
out of three projections Ay, A3 and A, are zero, the remaining projection and F' are both equal
to K, since |A| > |Us|. Hence

A=~(K)Uy when r=a, A=~(K)B(K)Us when r =2,

B(t) being the coset representatives of Us in A N U, where §(t) = x4(t) mod Q(g) for the angle
q of ANUy. When r = b we define {q, s} := {a + b,2a + b}. Due to Lemmas 12 and 16, there
exist maps ’/, " and ¢,d € K, such that

Y(t) = zp(t)xs(t)x3a4b(ct), B(v) = zq(V)Ts(dv)xsep (V") € A (t,v € K),
L= [y(t), B(v)] = [26(t), 2304 (0")][zs ('), l’q(v)] = T3qq2p(E30t’ £ 0"t),

and hence ¢/ =1+t and v = (£3-1’)v for a suitable choise of the signs. If ¢ = 2a+b then d = 0
and Xjp-conjugacy cancels the scalar 1’; when ¢ = a + b, the scalar 1’ is similarly defined up to
addition of squares from K. Up to B-conjugacy of A we have I’ =0and A = (ANA;)(ANAy),
AN A; being arbitrary maximal abelian subgroups of A;, i =1, 2.

When 6K = K, the exceptional automorphism from [17, Theorem 1] of the group U cancels
the scalar ¢ in AN Ay, and the U-conjugacy implies either n,'An, = Us or X,1,Us. With a
glance of Lemma 12, when r = a we are able to cancel the a + b- and 2a + b-projections in v(F')
by means of U-conjugacy; thus we transform A to the form

XoUs = ny " (XassUs)rp = (namp) ™ (X X2a4+5Us )nane.

If 2K = 0 then by means of diagonal h(x)-conjugacy we achieve ¢ = 1 (when x(a) =u € K*,
x(a) =u € K*, x(b) = u~! and x(3a + b) = u?), obtaining A in the form (15). Similarly, when
r = a, we obtain a subgroup

{xa(t)x2a+b(t) | t e K}U4 = n;lﬂl(K)U4nb = (nanb)lebﬂl(K)Uylanb.

Finally, we find the subgroups A = v(F)84(A2)Us, where

¥(t) = zo(t)T2a+s(ct) (teF), As#0,2K=0, ¢, deK.

The relations
1= [y(t), Ba(v)] = 345 ((* + td)v)T30426((0* + cv)t)

show that for all t € F and v € A> we have

(t+d)tAy =0, (v+c)wF =0, F={0,d}, Ay =1{0,c}, |A|=4|K|>
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By corollary 1, we obtain |K| = 2 or 4. Clearly, if |K| = 2 then A < U, and up to diagonal
conjugacy A has the form

((za(D22a45(1)) x (B1(1))) - Us. (16)

O

For the type D, the description is similar. If A C T'(a) and hence T'(a) 2 A D C(T(a)) = Uy,
then A has the form

B(A2)22a45(A3)Us,  B(v) 3= Tays(0)22a45(0) (v € Ag) (17)

for some map ~ : Ay — K. Due to Lemmas 13 and 14 the commutativity of A is equivalent to
the inclusion AyA3 C Ker () = K179. Due to the maximality of A, the projections of A, and
Ajs are both K,-modules, as well as Ker (7). If one of the projections are zero or equals K then
we have either A = Uz or A = (K)U, for™ from End(K™); besides,

[B(1), B(v)] = T3as2b(£(tD — t0)™), (¢t —tv)™ =0 (t,v € K).
Thus, z,(d)-conjugation transforms the subgroup X,44,Uy into (K )Uy, where
{=di+dt, (to — tv)™ = [d(to — 0t + 0t — 10)]" = (d-0)" =0 (t,v € K).

When both K, -modules A; and A3 are nonzero, their dimension is 1 or 2. Up to n,- and
diagonal conjugacy, the dimension of As is less or equals the dimension of Az, and 1 € As.
Therefore we may choose s € Ay) such that

A3 g (KJ + KUS)Ag = A3 + 5A3 Q Klio.

If the dimension of A3 is 2 then the inclusions turn into equalities, and multiplication by s induces
a K,-linear transformation of a 2-dimensional module K1~ with a characteristic root s. Since
the field K does not contain a quadratic extension of the subfield K,, A, is a 1-dimensional
Ky,-module. Hence As = K, and A3 = K'7°. It follows that |A| = |Us] or |[K| = 8 and A is
B-conjugated to a normal subgroup of U. Moreover we now find the Thompson subgroups.

Lemma 18. For the group UGo(K),|K| > 2, and U?Dy(K),|K,| > 2, we have J(U) = J.(U) =
U. Besides, J.(U) =1 and J(U) = T(a) in U3D4(8) and

Je(U)=1, JU)=<a>x<a™> «oa=1,1)r4s(1) in UG2(2).
Remark 1 from § 2, [10] and Lemma 18 give Theorem 2.

The investigations are supported by the RFBR (project 12-01-00968)
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HOﬂprngI ToMmIiicoHa m GOHBHII/IG aGGJIeBbI YHUIIOTEHTHBIC

MOArPYNNbI TPYIII JeBa TUNA

Baagumup M. JIeBuyk
Tasmmua C. CyneiimanoBa

Hycmv U — ynunomenmuoili padukas nodepynno. Bopeas epynnuvi auesa muna Had KOHEWHBIM TOAEM.
Las xaaccuneckuxr munos nodepynne. Tomncona u boavwue abenesv, nodepynnu, epynn U bviau onucarv
% cepedune 1980-x 20006. Mui 3a6epuwaem peweHue U3BECMHOU NPOOAEMBL UL ONUCGHUA OAA UCKAOYU-
MEALHBIT AUEBHLT MUNOE.

Karoueswie crosa: epynna auesa muna, ynunomumuas nodepynna, bosvwas abesesa nodepynna, noo-
epynna Tomncona.
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