удк 512.5 Thompson Subgroups and Large Abelian Unipotent Subgroups of Lie-type Groups

Vladimir M. Levchuk^{*}

Institute of Mathematics and Computer Science, Siberian Federal University, Svobodny, 79, Krasnoyarsk, 660041 Russia

Galina S. Suleimanova[†] Khakas Technical Institute, Abakan, 665017 Russia

Received 10.12.2012, received in revised form 11.12.2012, accepted 25.12.2012

Let U be a unipotent radical of a Borel subgroup of a Lie-type group over a finite field. For the classical types the Thompson subgroups and large abelian subgroups of the group U were found to the middle 1980's. We complete a solution of well-known problem of their description for the exceptional Lie-types.

Keywords: Lie-type group, unipotent subgroup, large abelian subgroup, Thompson subgroup.

Introduction

It is well-known that similarly to A.I.Mal'cev's schema from [1] the problem of enumeration of the large abelian subgroups of a Lie-type group G over a finite field is reduced to the same problem for the unipotent radical U of the Borel subgroup of G. The problem has been under active investigation since 1970's. For classical types the sets A(U) of large abelian subgroups of U were found by the middle 1980's, as well as the subsets $A_N(U)$ of normal subgroups and $A_e(U)$ of elementary abelian subgroups and, also, the Thompsons subgroups

$$J(U) = \langle A \mid A \in A(U) \rangle, \quad J_e(U) = \langle A \mid A \in A_e(U) \rangle.$$

In 1986 A.S.Kondratiev singled out in his survey [2, (1.6)] the following problem:

Problem (A): Describe the sets A(U), $A_N(U)$, $A_e(U)$ and the Thompson subgroups J(U) and $J_e(U)$ for the remaining cases of G.

The present paper summarizes the investigations of this problem, carried out by E.P.Vdovin [3,4], the authors [5–8] and G.S.Suleimanova [9–12].

1. Preliminaries

A Chevalley group $\Phi(K)$ over a field K, associated with a root system Φ , is generated by the root subgroups $X_r = x_r(K)$, $r \in \Phi$; the root subgroups taken for the positive roots $r \in \Phi^+$ generate the unipitent subgroup $U = U\Phi(K)$. A twisted group ${}^{m}\Phi(K)$ is defined as the centralizer in $\Phi(K)$ of a twisting automorphism θ of order m = 2 or 3. For a twisted group we

*vlevchuk@sfu-kras.ru †suleymanova@list.ru

[©] Siberian Federal University. All rights reserved

have $U = U^m \Phi(K) := {}^m \Phi(K) \cap U \Phi(K)$. Besides, θ is a superposition of a graph automorphism $\tau \in Aut \ \Phi(K)$ and a field automorphism $\sigma : t \to \overline{t} \ (t \in K)$, and for the only continuation $\overline{}$ on Φ of a symmetry of a Coxeter graph of order m we have $\theta(X_r) = \tau(X_r) = X_{\overline{r}} \ (r \in \Phi) \ [13, 14]$.

Given a group-theoretic property \mathcal{P} , every \mathcal{P} -subgroup of the highest order is called a *large* \mathcal{P} -subgroup. Developing the A.I.Maltsev's approach [1], E.P.Vdovin has mainly calculated [4, Concluding table] the orders $\mathbf{a}(U)$ of large abelian subgroups of finite groups U = UG(K) $(G = \Phi \text{ or } G = {}^{m}\Phi)$ and those of Thompson subgroups.

Having described the maximal normal abelian subgroups of U, the authors ([5, 6, 8]) also described the large normal abelian subgroups of finite groups U by showing that they form the set $A_N(U)$. (In general, a large normal \mathcal{P} -subgroup of a finite group is not a large \mathcal{P} -subgroup.) It allows us [8] to complete (for types G_2 , ${}^{3}D_4$ and ${}^{2}E_6$) the calculation of the orders $\mathbf{a}(U)$. In [6] the problem (A) is reduced to the question:

Describe the groups U, in which every large abelian subgroup is G(K)-conjugate to a normal subgroup of U and enumerate all the exceptional large abelian subgroups of the remaining groups U ([15, 16]).

See the exceptions in [6,9] and [12]. In [8] the authors proved

Theorem 1. Either every large abelian subgroup of U is G(K)-conjugate to a normal subgroup of U or G(K) is of type G_2 , 3D_4 , F_4 or 2E_6 .

G.S.Suleimanova described the exceptional large abelian subgroups for the type F_4 in [9, 11] and those for the type 2E_6 in Section 2 and [12]. In Section 3 we complete this description for the types G_2 and 3D_4 .

Twisted groups ${}^{m}\Phi(K)$ required further development of the methods [1]. For the types ${}^{3}D_{4}$ and ${}^{2}E_{6}$ there exists a homomorphism ζ from the lattice of the root system Φ to the lattices of the systems of types G_{2} and F_{4} respectively; the preimages of the elements of $\zeta(\Phi)$ being the – orbits in Φ .

Let ${}^{m}\Phi = \zeta(\Phi)$. For any $a \in \zeta(\Phi)$ is defined the root subgroup X_a of ${}^{m}\Phi(K)$. Similarly to [17] and [8], we have $X_a = x_a(K_{\sigma}), K_{\sigma} := \text{Ker}(1 - \sigma)$ when $\zeta^{-1}(a)$ is an $\bar{}$ -orbit of length 1; in the remaining cases $X_a = x_\alpha(K)$. Then $U = UG(K) = \langle X_r | r \in G^+ \rangle$, where $G = \Phi$ or ${}^{m}\Phi$. The standard central series is $U = U_1 \supseteq U_2 \supseteq \cdots$ [13]. Let $\{r\}^+$ be the set of all $s \in G^+$ for which the coefficients in the decomposition of s - r in $\Pi(G)$ are all nonnegative. Set

 $T(r) := \langle X_s \mid s \in \{r\}^+ \rangle, \quad Q(r) := \langle X_s \mid s \in \{r\}^+, \ s \neq r \rangle \quad (r \in G).$

If $H \subseteq T(r_1)T(r_2)\ldots T(r_m)$ and the inclusion fails under every substitution of $T(r_i)$ by $Q(r_i)$ then $\mathcal{L}(H) = \{r_1, r_2, \cdots, r_m\}$ is said to be the *set of corners* of H. Also, $\mathcal{L}_1(H)$ denotes the set of first corners for all elements of H.

We fix a regular order of the roots, compatible with the root height function [13, Lemma 5.3.1]. Each element γ of U permits a unique compatible (*canonical*) decomposition into a product of root elements $x_r(\gamma_r)$ ($r \in G^+$), [14, Lemma 18]. The coefficient γ_r is called an *r*-projection of the element γ . Obviously, the first corner of γ corresponds to the first multiplier in its canonical decomposition.

We use usual notation from [13]: $h(\chi)$ for diagonal automorphisms, n_r for monomial elements and the subgroups $U_r = \langle X_r \mid r \in G^+ \setminus \{r\} \rangle$, $r \in \Pi(G)$. For the root systems of types E_n and F_4 simple roots are denoted by $\alpha_1, \alpha_2, \cdots$, similarly to [18, Tables V-VIII].

Refining [4, Table 4], the following theorem completes the description of Thompson subgroups.

Theorem 2. Let K be a finite field and U = UG(K). Then: a) $J(U) = J_e(U) = U$ in $UG_2(K)$, |K| > 2, and in $U^3D_4(K)$, $|K_{\sigma}| > 2$; b) $J_e(U) = 1$ and J(U) = T(a) in $U^3D_4(8)$; c) $J_e(U) = 1$, $J(U) = \langle \alpha \rangle \times \langle \alpha^{n_b} \rangle$, $\alpha = x_a(1)x_{2a+b}(1)$ in $UG_2(2)$; d) $J(U) = J_e(U) = U_{\alpha_1}$ in $U^2 E_6(K)$; e) $J(U) = J_e(U) = U_{\alpha_7} \cap U_{\alpha_8}$ in $U E_8(K)$.

2. Large Abelian Subgroups of Groups U of Type ${}^{2}E_{6}$

In this section we suppose $U = U^2 E_6(K)$. For the root system Φ of type E_6 the corresponding system ${}^m \Phi = \zeta(\Phi) = G$ is of type F_4 . According to Section 1, the group U is generated by the root subgroups $X_a = x_a(K_{\sigma})$ for all long roots $a \in G^+$ (the first type) and $X_a = x_a(K)$ for all short roots $a \in G^+$. For the system of type F_4 see also the diagram of the positive roots from [17] or [8]. Use the notation *abcd* for the root $a\alpha_1 + b\alpha_2 + c\alpha_3 + d\alpha_4$ of the system of type F_4 ($\alpha_1, \alpha_2, \alpha_3, \alpha_4$ are simple roots) similarly to [18, Table VIII]. For certain maps $\tilde{}: K \to K$ and $\hat{}: K \to K$ we choose the following subgroups in the group U:

$$\{x_{1111}(t)x_{1231}(\tilde{t}) \mid t \in K\} \{x_{1121}(u)x_{1221}(\hat{u}) \mid u \in K\} \cdot T(0122), \tag{1}$$

$$X_{1111}(K_{\sigma})\{x_{1121}(t)x_{1221}(\tilde{t}) \mid t \in K\}X_{1231}(K^{1-\sigma})T(0122),$$
(2)

$$X_{1111}(K_{\sigma})X_{1121}(K_{\sigma})X_{1221}(K^{1-\sigma})X_{1231}(K^{1-\sigma})T(0122),$$
(3)

$$\{x_{1121}(t)x_{1221}(\tilde{t}) \mid t \in K\}X_{1231}T(0122),\tag{4}$$

$$\{x_{1121}(t)x_{1221}(ct) \mid t \in K_{\sigma}\}X_{1221}(K^{1-\sigma})X_{1231}T(0122), \quad c \notin K_{\sigma}, \tag{5}$$

$$T(0122)U_6,$$
 (6)

$$(T(0121) \cap E_6(K_\sigma))U_7.$$
 (7)

Let $G(K) = {}^{2}E_{6}(K)$. The aim of this section is to prove that, up to G(K)-conjugacy, the subgroups (1) - (6) for 2K = K and the subgroup (7) for 2K = 0 are all large abelian subgroups of U.

We need the following lemma [8, Lemma 4.4].

Lemma 1. If $[x_r(F), x_s(V)] \subseteq Q(r+s)$ in the group U for $F, V \subseteq K$, $FV \neq 0$, then r+s is of the first type, r and s are not of the first type, and, up to a diagonal automorphism conjugacy, $F \subseteq K_{\sigma}, V \subseteq K^{1-\sigma}$.

According to A.I. Mal'cev [1], a subset Ψ of Φ^+ is said to be abelian if $r+s \notin \Phi$ for all $r, s \in \Psi$. A subset Ψ of Φ^+ is said to be *p*-abelian (E.P. Vdovin [4]), if for all $r, s \in \Psi$ either $r+s \in \Phi$ and the structure constant C_{11rs} in the Chevalley formula is zero in characteristic p, or $r+s \notin \Phi$. The maximal 2-abelian subsets for type F_4 are listed in [4, Table 3]. The table contains 7 rows and 13 columns, so the subsets are denoted by $\Psi_{i,j}$ (*i* is the row number and *j* is the column number). In particular, $\Psi_{2,12} = \{0121\}^+ := \Psi_1$ and also $\Psi_2 = \{1111\}^+ \cup \{0122\}^+$, $\Psi_3 = \{0011, 0111, 1111, 1231\} \cup \{0122\}^+$ are $\Psi_{2,13}, \Psi_{6,10}$, respectively. Using [4] we easily obtain the following lemma.

Lemma 2. Each maximal 2-abelian subset of the root system of type F_4 either coincides with one of the sets $\Psi_{1,j}$, $\Psi_{4,j}$ $(1 \leq j \leq 13)$ of order 10, or is W-conjugate to one of the sets Ψ_i , $\bar{\Psi}_i$ of order 11 for i = 1, 2 or 3.

Let $m(x) := \mathcal{L}_1(x)$ $(x \in U)$. The following three lemmas is proved in [12].

Lemma 3. Let A be a large abelian subgroup of U of type ${}^{2}E_{6}$. Then for all $x, y \in A$, $x, y \neq 1$, the subset $\{m(x), m(y)\}$ of Φ of type F_{4} is 2-abelian and, if $m(x) + m(y) \in \Phi$, then the m(x)-projections of all elements of A with the first corner m(x) are contained in a 1-dimensional K_{σ} -module.

Lemma 4. Let A be a large abelian subgroup of U of type ${}^{2}E_{6}$, Ψ be a maximal 2-abelian subset of the root system of type F_{4} and let $\mathcal{L}_{1}(A) \subseteq \Psi$. Then:

a) if $\{r_1, r_2, r_3\} \subseteq \Psi$, $r_i + r_j \in \Phi$ and $C_{11, r_i, r_j} = \pm 2$ for all $i \neq j$ then the subset $\{r_1, r_2, r_3\}$ is contained in $\mathcal{L}_1(A)$,

b) if $r + s \in \Phi$ for the roots $r, s \in \Psi$, $C_{11,r,s} = \pm 2$, and the pair r, s is not contained in any triple from a), then $r \in \mathcal{L}_1(A)$ or $s \in \mathcal{L}_1(A)$;

c) if Ψ contains a root r such that $(r + \Psi) \cap \Phi = \emptyset$ then $r \in \mathcal{L}_1(A)$.

Lemma 5. If Ψ is a maximal 2-abelian subset of type F_4 , for which there exists a large abelian subgroup A such that $m(A) \subseteq \Psi$, then Ψ is W-conjugate to Ψ_1 when 2K = 0 or to Ψ_2 when 2K = K. Furthermore, all such sets Ψ are exhausted, respectively, by the sets

$$\begin{split} \Psi_{2,9}, \Psi_{2,12}, \Psi_{3,1}, \Psi_{3,7}, \Psi_{3,12}, \Psi_{5,1}, \Psi_{5,3}, \Psi_{5,6}, \Psi_{5,8}, \Psi_{5,9}, \Psi_{5,13}, \Psi_{6,4}, \Psi_{6,11}, \Psi_{7,1}; \\ \Psi_{2,10}, \Psi_{2,11}, \Psi_{2,13}, \Psi_{3,13}, \Psi_{5,2}, \Psi_{5,4}, \Psi_{5,5}, \Psi_{5,7}, \Psi_{6,7}, \Psi_{7,2}, \Psi_{7,3}. \end{split}$$

Now we consider a large abelian subgroup A of $U = U^2 E_6(K)$.

Lemma 6. If A has a simple corner p then $A \subseteq T(p)$ and $p \neq \alpha_1$.

Proof. In the canonical decomposition of elements of U we use the regular order of the system Φ , defined by the order $\alpha_1 < \alpha_2 < \alpha_3 < \alpha_4$ of the simple roots. Note that the inverse order is also regular.

Suppose that A has at least two simple corners p < q. None of the sets $\Psi_{i,j}$ from Lemma 5 contains α_1 , so we get $p > \alpha_1$. Suppose that $q = \alpha_4$. If we replace the regular order of Φ by the inverse order then $\mathcal{L}_1(A)$ will contain α_4 and, by Lemma 5, $\mathcal{L}_1(A)$ is contained in one of the sets $\Psi_{5,4}, \Psi_{5,5}, \Psi_{5,6}$ for 2K = K or $\Psi_{5,3}, \Psi_{5,6}, \Psi_{5,8}, \Psi_{5,9}$ for 2K = 0. Each of these sets contains the root 1242. This root is the only root in Φ^+ of height 9. By Lemma 4, c), the root 1242 is contained in $\mathcal{L}_1(A)$. It is clear, that if there exists an element in $A \cap T(r)$ with the corner r, then $r \in \mathcal{L}_1(A)$ for any regular order of Φ . Therefore, the roots α_2 and α_4 can not be corners in A simultaneously. If $q = \alpha_3$ then similarly $1242 \in \mathcal{L}_1(A)$. Therefore, the case $p = \alpha_2, q = \alpha_3$ is also impossible.

In the remaining case $p = \alpha_3$, $q = \alpha_4$, by Lemmas 5, 4 and [4, table 3], we get $1122 \in \mathcal{L}_1(A)$ for the inverse order of Φ . Therefore, for the initial order, the set $\mathcal{L}_1(A)$ contains a root of height 6. However, this root and the root α_3 can not be contained in $\mathcal{L}_1(A)$ simultaneously, by Lemma 5 and [4, table 3]. Therefore, in all cases the subgroup A can have only one simple corner.

Let A have a simple corner α_i and $A \subseteq X_{\alpha_i}U_2$. Suppose that $A \notin T(\alpha_i)$. Then A has the corner 0011 for i = 2, so A^{n_4} has the simple corners α_2 and α_3 . If i = 3 then A has the corner 1100, therefore, A^{n_1} has the corners α_2 and α_3 . If i = 4 then A has a corner $r \in \{1100, 0110, 1110, 0120, 1120, 1220\}$. In the first and second cases A^{n_2} has the corner α_1 or α_3 , respectively, and the corner α_4 . The third case is reduced to the second case by n_1 -conjugacy. In the fourth case A^{n_3} has a corner α_2 and $A^{n_3} \notin T(\alpha_2)$; this gives a contradiction with the proved above. The fifth case is reduced to the fourth case by a n_1 -conjugacy. \Box

Similarly we obtain the following two lemmas.

Lemma 7. If A has a corner r of height 2, then $A \subseteq T(r)$ and $r \neq 1100$.

Lemma 8. If A has a corner r of height 3, then: a) $A \subseteq T(r)$ for r = 0111; b) $A \subseteq T(1110)T(0120)$ for r = 0120; c) $A \subseteq T(1110)T(0122)$ for r = 1110 and $A \subseteq X_{1110}U_4$.

Lemma 9. Each large abelian subgroup of U is G(K)-conjugate to a subgroup of U_2 .

Proof. Let A be a large abelian subgroup in U and $A \notin U_2$. By Lemma 6, there exists a simple corner $p \neq \alpha_1$ in A and $A \subseteq T(p)$. If $p = \alpha_2$ then $\mathcal{L}_1(A)$ is contained in one of the sets $\Psi_{2,9}$, $\Psi_{3,1}$ for 2K = 0 or $\Psi_{2,10}$, $\Psi_{2,11}$ for 2K = K, and $1100, 1222 \in \mathcal{L}_1(A)$, by lemma 5. Therefore for arbitrary non-zero elements $t, u \in K_{\sigma}$ and suitable $t_i, u_i \in K$ there exist elements $x, y \in A$ such that

$$x = x_{1100}(t)x_{0110}(t_1)x_{1110}(t_2)x_{0120}(t_3)x_{0111}(t_4) \mod U_4, y = x_{1222}(u)x_{1232}(u_1)x_{1242}(u_2) \mod U_{10}.$$
(8)

If $t_1 \neq 0$ for all elements of the form (8) then in the inverse order we have $0110 \in \mathcal{L}_1(A)$. However, the sets $\Psi_{2,11}$ and $\Psi_{3,1}$ do not contain this root. Since

$$[x, y] = x_{1342}(ut_3 \pm (\bar{u}_1 t_1 + u_1 \bar{t}_1)) \mod U_{11},$$

we have $t_3 = 0$ for $t_1 = 0$. So, there exists an element $x' \in A$ such that

$$x' = x_{1100}(t)x_{1110}(t_2)x_{0111}(t_4) \mod U_4$$

and hence

$$x' = x_{1100}(t)x_{1110}(t_2)x_{0111}(t_4)x_{1120}(t_5)x_{1111}(t_6)x_{0121}(t_7) \mod U_5$$

for some $t_5, t_6, t_7 \in K$. We may cancel t_2 by X_{α_3} -conjugacy. Moreover,

$$\begin{aligned} (x')^{x_{\alpha_3}(y)} &= x_{1100}(t)x_{1110}(t_2 + ty)x_{0111}(t_4)x_{1120}(t_5 \pm ty\bar{y} \pm (t_2\bar{y})^{1+\sigma}) \\ x_{1111}(t_6)x_{0121}(t_7') &= \\ &= x_{1100}(t)x_{1110}(ty)x_{0111}(t_4)x_{1120}(t_5 \pm ty\bar{y})x_{1111}(t_6)x_{0121}(t_7') \mod U_5 \quad (y \in K). \end{aligned}$$

If $y \in K$ and $K^{\sharp} = \langle y \rangle$ then $K^{\sharp}_{\sigma} = \langle y \overline{y} \rangle$. Therefore we can choose y such that $ty\overline{y} = \mp t_5$. So, we can transform x' by an U-conjugacy to the form

$$x' = x_{1100}(t)x_{1110}(ty)x_{0111}(t_4)x_{1111}(t_6)x_{0121}(t_7') \mod U_5 \quad (y \in K).$$

Then

$$(x')^{n_3} = x_{1110}(ty)x_{0111}(t'_7)x_{1120}(t)x_{1111}(t'_6)x_{0121}(t_4) \mod U_5 \quad (y \in K).$$

Suppose that $t'_7 \neq 0$. Then in the inverse order we get $0111 \in \mathcal{L}_1(A^{n_3})$ and $\mathcal{L}_1(A^{n_3}) = \Psi_{3,1}$ for 2K = 0 or $\mathcal{L}_1(A^{n_3}) \subseteq \Psi_{2,10}$ for 2K = K. In the first case $1111 \in \mathcal{L}_1(A^{n_3})$. Therefore, in the initial order, the set $\mathcal{L}_1(A^{n_3}) (= \Psi_{2,9})$ must contain a root of height 4; so we get a contradiction with [4, Table 3]. In the second case, due to inclusion $0111 \in \mathcal{L}_1(A^{n_3})$ we get that the 1231-projection of the set of all elements $z \in A^{n_3}$ with m(z) = 1231 can not coincide with K, by lemma 1. Hence, in the initial order, $\mathcal{L}_1(A^{n_3})$, which is contained in $\Psi_{2,11}$, must contain the root 1111. Since in the inverse order $\mathcal{L}_1(A^{n_3}) \subseteq \Psi_{2,10}$ then the set $\Psi_{2,10}$ must contain a root of height 4, and we also get a contradiction with [4, Table 3]. Consequently,

$$(x')^{n_3} = x_{1110}(ty)x_{1120}(t)x_{1111}(t'_6)x_{0121}(t_4) \mod U_5 \quad (y \in K).$$

By U-conjugacy, we get $t'_6 = 0$ and for some $u_i \in K$ we obtain the equality

$$(x')^{n_3n_4} = x_{0120}(u_1)x_{1120}(u_2)x_{1111}(u_3)x_{0121}(u_4) \mod U_5 \quad (u_3 \neq 0).$$

We may assume that $u_1 = 0$ because otherwise $0120 \in m(A^{n_3n_4})$ and $\alpha_2 \notin \mathcal{L}_1(A^{n_3n_4})$, see [4, Table 3]. Moreover, $u_2 = 0$, since otherwise $1120 \in \mathcal{L}_1(A^{n_3n_4})$ and $\alpha_2 \notin \mathcal{L}_1(A^{n_3n_4})$. Also, $u_4 = 0$, since otherwise in the inverse order of G we have $0121 \in \mathcal{L}_1(A^{n_3n_4})$ and $\alpha_2 \notin \mathcal{L}_1(A^{n_3n_4})$. Note that $1220 \in \Psi_{2,9} \cap \Psi_{2,10} \cap \Psi_{2,11} \cap \Psi_{3,1}$. By Lemma 4, $1220 \in \mathcal{L}_1(A^{n_3n_4})$ and the 1220projection of the elements y with m(y) = 1220 coincides with K_{σ} . Thus, if $A^{n_3n_4}$ has a corner α_2 , then we may assume that the 1220-projection of $(x')^{n_3n_4}$ is zero, up to a multiplication by a suitable element y. Applying the U- and n_3 -conjugation to $(x')^{n_3n_4}$, we get an element of the form

$$x_{1121}(v_1)x_{0122}(v_2) \mod U_6 \quad (v_1 \neq 0).$$

Hence $1121 \in \mathcal{L}_1(A^{n_3n_4n_3})$. It follows $\alpha_2 \notin \mathcal{L}_1(A^{n_3n_4n_3})$ and $A^{n_3n_4n_3} \subseteq U_2$.

If $p = \alpha_3$ then we get $1231 \in \mathcal{L}_1(A)$, by Lemma 5. The relation

$$1 = [A \cap U_7, A] = [A \cap U_7, X_{\alpha_3} \cap (AU_2)] \mod U_9$$

shows that $A \cap U_7 = A \cap T(1231)$. Up to X_{α_4} -conjugacy, $A \cap (X_{1231}U_9)$ has an element γ with the corner 1231. Since $1 = [\gamma, A] \mod U_9$, we have $A \subseteq X_{\alpha_3}T(0110)$ and $A^{n_4} \subseteq U_2$. Similarly we consider the case $p = \alpha_4$.

Analogously we proved

Lemma 10. Any large abelian subgroup of U is G-conjugate to a subgroup of U_3 and even to a subgroup of U_4 .

Finally we get that either 2K = K and the subgroup A is G-conjugate to ones from (1) - (6) or 2K = 0 and A is G-conjugate to the normal subgroup (7).

Remark 1. Taking into account that (1) - (7) are abelian subgroups, we obtain the equalities $A(U) = A_e(U)$ and $J(U) = J_e(U) = U_{\alpha_1}$ for the group $U = U^2 E_6(K)$. All large abelian subgroups of the group $UF_4(K)$ are described in [9] and [11].

3. Large Abelian Subgroups of Groups U of Type G_2 and ${}^{3}D_4$

According to § 1, the root elements $x_r(t)$ of the groups U of type G_2 and 3D_4 match the roots of the system G_2 . Choosing its simple roots a and b such that |a| < |b|, we use a hypercentral automorphism ς_d $(d \in K)$ of a group U (see [17]), for which $\varsigma_d(x_b(t)) = x_b(t)x_{3a+b}(2dt)$ mod U_5 $(t \in K)$. We set

$$\alpha := x_a(1)x_{2a+b}(1), \qquad \beta_c(t) := x_{a+b}(t)x_{2a+b}(tc). \tag{9}$$

We now prove the following theorem.

Theorem 3. Each large abelian subgroup of the group $U = UG_2(K)$ is $G_2(K)$ -conjugate to one of the following subgroups:

a) a normal large abelian subgroup of U;

b) an image under some automorphism ς_d $(d \in K)$ of a subgroup, which is $(X_a n_a)$ -conjugate to U_3 or $X_{a+b}U_4$ for 6K = K;

c)
$$\{x_b(t)x_{3a+b}(t) \mid t \in K\}\beta_d(K)U_5 \quad (d \in K) \text{ for even } |K| > 2;$$
 (10)

d) $\langle \alpha, \beta_1(1) \rangle U_4$ for |K| = 4.

The proof of the theorem is based on a number of lemmas.

In [5, 7, 8], the normal large abelian subgroups of U are described as large normal abelian ones. The following lemma follows from [8].

Lemma 11. If the group U is of type G_2 then the set $A_N(U)$ consists of

Up to diagonal automorphisms, normal large abelian subgroups of the group $U^3D_4(K)$, are exhausted by the groups:

$$\begin{array}{ll} U_3 \ and \ \beta_c(K_{\sigma}) \cdot x_{2a+b}(K^{1+\sigma}) \cdot U_4 \ (c \in K_{\sigma}) \ for \ even \ |K_{\sigma}| > 2, \\ U_3 \ for \ 2K = K, \ \langle \alpha \rangle \times \langle \beta_1(1) \rangle \times x_{2a+b}(K^{1+\sigma}) \ for \ |K_{\sigma}| = 2. \end{array}$$

Corollary 1. The order $\mathbf{a}(U)$ of large abelian subgroups of the group U = UG(K) of type G_2 or ${}^{3}D_4$ equals $|U_3|$, except the cases |K| = 2 or 3K = 0 for the group $UG_2(K)$ where $\mathbf{a}(U) = |K|^4$ and the group $U^3D_4(8)$ where $\mathbf{a}(U) = 2^6$.

Due to [6, Theorem 2], the group U of type G_2 satisfies the following isomorphisms: $U/U_3 \simeq UA_2(K)$ and $U/U_4 \simeq UB_2(K)$. The following lemma is well known for the group $UA_2(K) \simeq UT(3, K)$.

Lemma 12. Let A be a maximal abelian subgroup and Z be the center of the group $U\Phi(K)$. Then $A = \{x_a(t)x_b(ct)|t \in K\}Z$ ($c \in K$) or T(b) for the type A_2 . For the type B_2 we have A = T(b) or A is B-conjugate either to X_aZ or for the cases 2K = K and 2K = 0 to the subgroup, respectively,

$$\{x_a(t)x_b(t)x_{a+b}((t^2-t)/2 \mid t \in K)\}Z, \quad \langle x_a(1)x_b(1)\rangle Z.$$
(11)

Proof. The center Z of the group U of type B_2 equals U_3 for 2K = K or U_2 for 2K = 0. If there exists an element $\gamma \in A$ having two corner, then up to B-conjugation we may suppose that $\gamma = x_a(1)x_b(1)$. Choosing an arbitrary element $\beta = x_a(t)x_b(t')x_{a+b}(t'') \mod U_3$ of A, we find

$$1 = [\beta, \gamma] = x_{a+b}(t'-t) \mod U_3, \quad t' = t \ (t \in K);$$
$$[\beta, \gamma] = [x_a(t), x_b(1)][x_b(t), x_a(1)][x_{a+b}(t''), x_a(1)] = x_{2a+b}(2t''+t-t^2).$$

(The signs of the structural constants are chosen according to [6, Theorem 2].) If 2K = 0 then $t^2 - t = 0$ and $\beta \in \langle \gamma \rangle Z$ When 2K = K we have $t'' = (t^2 - t)/2$ and hence A is the first subgroup in (11).

Setting $\pi := 1 + \sigma + \sigma^2$ for the type 3D_4 we require the following lemma.

Lemma 13. If 2K = K, then Ker $(1 + \sigma) = 0$. In the general case we have:

$$K = K^{1+\sigma} + K_{\sigma}, \ K_{\sigma} \cap K^{1+\sigma} = 2K_{\sigma}, \ K^{\pi} = K_{\sigma}, \ \text{Ker}(\pi) = K^{1-\sigma}.$$

Proof. If $\bar{v} = -v$, then $\bar{v} = -\bar{v} = v$, $v = \bar{v} \in K_{\sigma}$ and 2v = 0. If 2K = K then Ker $(1 + \sigma) = 0$. Since for any K_{σ} -linear transformation of the field K the sum of the rank and defect equals 3, the remaining statements of the lemma easily follow from relations

$$K \supseteq K^{1+\sigma} + K^{\pi} \supseteq K^{\sigma^2} = K, \qquad 0 = 1 - \sigma^3 = (1 - \sigma)\pi = \pi(1 - \sigma).$$

The order of a subgroup A of a group U = UG(K) of type G_2 or 3D_4 may be estimated using the orders of intersections of the projections A_i :

$$A \cap U_i = x_r(A_i) \mod U_{i+1}, \quad 1 < ht(r) = i \le 5;$$
 (12)

$$|A| = |A: A \cap U_2| \cdot |A_2| \cdot |A_3| \cdot |A_4| \cdot |A_5|.$$
(13)

Lemma 14. Let A be an abelian subgroup of U. Then there exist elements $d_a, d_b \in K$ and an additive subgroup $F \subset K$ such that $d_bFA_4 = 0$, and

$$A = \gamma(F) \cdot (A \cap U_2), \quad \gamma(t) = x_a(d_a t) x_b(d_b t) \mod U_2 \ (t \in F).$$

$$\tag{14}$$

For the type ${}^{3}D_{4}$ and G_{2} we have $(A_{2}A_{3})^{\pi} = 0$ and $3A_{2}A_{3} = 0$, respectively. When $d_{a}F \ni 1$ we have $A_{2}^{1+\sigma} = A_{3}^{\pi} = 0$ and $2A_{2} = 3A_{3} = 0$, respectively.

Proof. Recall that $(AU_2)/U_3$ is an abelian normal subgroup of the factor group U/U_3 , which is isomorphic to a subgroup of the unitriangular group UT(3, K). By Lemma 12 we obtain (14), where $\gamma(F)$ is the system of representatives of cosets of the subgroup $A \cap U_2$ in A. The equalities $[A \cap U_i, A \cap U_j] = 1 \mod U_{i+j+1}$ and (12) imply $d_b F A_4 = 0$ and

$$(A_2A_3)^{\pi} = 0, \quad (d_aFA_3)^{\pi} = 0, \quad (d_aFA_2)^{1+\sigma} = 0 \quad \text{for the type} \ {}^3D_4, \\ 3A_2A_3 = 0, \quad 3d_aFA_3 = 0, \quad 2d_aFA_2 = 0 \quad \text{for the type} \ G_2.$$

When $d_a F \ni 1$, we have $A_2^{1+\sigma} = A_3^{\pi} = 0$ and $2A_2 = 3A_3 = 0$ respectively.

Lemma 15. If an abelian subgroup A of U has two corners, then $|A| < \mathbf{a}(U)$.

Proof. Using the notation of lemma 14 and the representation (14) of the subgroup A, we have $F \ni 1$ and $d_a = d_b = 1$ up to a diagonal automorphism. Furthermore, $|A : A \cap U_2| = |F|$ and $A_4 = 0$.

By Lemma 14, for the type G_2 we have $2A_2 = 3A_3 = 0$. Hence, $A_2 = 0$ when 3K = 0 and if 6K = K then $A_3 = 0$ as well. In both cases, $|A| < \mathbf{a}(U)$ due to (13) and Corollary 1. Since $(AU_4)/U_4$ is an abelian subgroup of a factor group $U/U_4 \simeq UB_2(K)$, using Lemma 12 in the case 2K = 0 we have:

$$|F| = 2, \quad |A| = |F| \cdot |A_2| \cdot |U_5| \le 2 \cdot |K|^2 < \mathbf{a}(U).$$

For the type ${}^{3}D_{4}$ we have $F \subseteq K_{\sigma}$, and, by Lemma 14, $A_{2}^{1+\sigma} = A_{3}^{\pi} = (A_{2}A_{3})^{\pi} = 0$, and hence $A_{2} \subseteq \text{Ker}(1+\sigma)$. When 2K = K, using Lemma 13 we find:

$$A_2 = 0, |A_3| \leq |\operatorname{Ker}(\pi)| = |K_{\sigma}|^2, |A| = |F| \cdot |A_3| \cdot |U_5| \leq |K_{\sigma}|^4 < \mathbf{a}(U).$$

If 2K = 0 then by Lemma 13 we have $A_3 \subseteq K^{1+\sigma}$ and $A_2 \subseteq K_{\sigma}$. If $|A| \ge |U_3|$ then

$$|A| = |F| \cdot |A_2| \cdot |A_3| \cdot |K_{\sigma}| = |U_3|, \quad F = A_2 = K_{\sigma}, \quad A_3 = K^{1+\sigma}.$$

Thus, we may assume that a 2a+b-projection of $\gamma(F)$ is contained in K_{σ} . Since $[\gamma(F), A \cap U_3] = 1$, K_{σ} also contains the a + b-projection of $\gamma(F)$. Hence,

$$\langle \gamma(F) \rangle \subset U^3 D_4(K) \cap U D_4(K_{\sigma}) \simeq U G_2(K_{\sigma})$$

and, by Lemma 12 we have $|F| = 2 = |K_{\sigma}|$. Then $|A| = |U_3| = 2^5 < 2^6 = \mathbf{a}(U)$. The lemma is proved.

The following lemma easily follows from the commutator relations for U.

Lemma 16. If $\Delta_1 := X_{a+b}X_{2a+b}U_5$ and $\Delta_2 := X_bU_4$ then $T(b) = \Delta_1\Delta_2$. If U is of type G_2 and 3K = 0 then the center Z of U is $X_{2a+b}U_5$, and the centralizer $C(\Delta_1)$ is T(b); otherwise, $Z = U_5$, $C(\Delta_1) = \Delta_2$ and $C(\Delta_2) = \Delta_1$. Furthermore, if U is of type G_2 and 3K = K then $\Delta_1 \simeq \Delta_2 \simeq UT(3, K)$, else if U is of type 3D_4 then $\Delta_2 \simeq UT(3, K_{\sigma})$.

Lemma 17. A large abelian subgroup A of $UG_2(K)$ is one of the following:

a) U_2 or its $(X_a n_a \cup X_b n_b)$ -conjugates when 3K = 0;

b) a subgroup B-conjugate to $(\langle \alpha \rangle \times \langle \beta_1(1) \rangle) \cdot U_4$ for |K| = 2 or 4;

c) a subgroup B-conjugate to $M_1 \cdot M_2$ for 3K = K, |K| > 2, M_i being an arbitrary maximal abelian subgroup of Δ_i , i = 1, 2.

When 6K = K, the subgroup $M_1 \cdot M_2$ coincides with U_3 or $X_{a+b}U_4$ up to an automorphism of the form ς_d and to $(X_a n_a)$ -conjugacy, and when 2K = 0, it is G(K)-conjugate to U_3 , $\beta_d(K)U_4$ or to

$$\{x_b(t)x_{3a+b}(t) \mid t \in K\}\beta_d(K)U_5 \quad (d \in K).$$
(15)

Proof. Clearly, A contains the center Z. If $A \nsubseteq U_2$, then there exists a corner r = a or b of A and a representation (14) with $d_r = 1$ and $d_{\bar{r}} = 0$; furthermore, $r + w_{\bar{r}}(r) \in G^+$ and w_r induces a substitution \tilde{w}_r on $G^+ \setminus \{r\}$:

$$\tilde{w}_a = (b \ 3a + b)(a + b \ 2a + b)(3a + 2b), \quad \tilde{w}_b = (a \ a + b)(3a + b \ 3a + 2b)(2a + b).$$

For the type G_2 , when $i = ht(w_{\bar{r}}(r))$ and 3K = 0 we have $A_i = 0$ by lemma 14. Hence, Corollary 1, Lemma 12 and (13) give

$$T(r) \supseteq A \supseteq C(T(r)) = X_{w_r(\bar{r})} Z = X_{w_r(\bar{r})} X_{2a+b} U_5;$$

$$A = \gamma(K) X_{w_r(\bar{r})} Z, \quad \gamma(K) = \{ x_r(t) x_{w_{\bar{r}}(r)}(ct) \mid t \in K \} \mod C(T(r)).$$

Having cancelled the scalar $c \in K$ with $X_{\bar{r}}$ -conjugation, we map A into $n_{\bar{r}}^{-1}U_2n_{\bar{r}}$.

Let 3K = K. Then $(X_a U_3)/U_5 \simeq UT(3, K)$, and if 2K = K, then $T(a)/U_4 \simeq UT(3, K)$. By Lemma 14, either r = a, $A \supseteq U_4$ and $A_3 = 0 = 2A_2$, or r = b and $A_4 = A_2A_3 = 0$. When two out of three projections A_2 , A_3 and A_4 are zero, the remaining projection and F are both equal to K, since $|A| \ge |U_3|$. Hence

$$A = \gamma(K)U_4$$
 when $r = a$, $A = \gamma(K)\beta(K)U_5$ when $r = b$,

 $\beta(t)$ being the coset representatives of U_5 in $A \cap U_2$ where $\beta(t) = x_q(t) \mod Q(q)$ for the angle q of $A \cap U_2$. When r = b we define $\{q, s\} := \{a + b, 2a + b\}$. Due to Lemmas 12 and 16, there exist maps ', " and $c, d \in K$, such that

$$\begin{aligned} \gamma(t) &= x_b(t)x_s(t')x_{3a+b}(ct), \quad \beta(v) = x_q(v)x_s(dv)x_{3a+b}(v'') \in A \quad (t,v \in K), \\ 1 &= [\gamma(t),\beta(v)] = [x_b(t),x_{3a+b}(v'')][x_s(t'),x_q(v)] = x_{3a+2b}(\pm 3vt' \pm v''t), \end{aligned}$$

and hence $t' = 1' \cdot t$ and $v'' = (\pm 3 \cdot 1')v$ for a suitable choise of the signs. If q = 2a + b then d = 0and $X_{\bar{r}}$ -conjugacy cancels the scalar 1'; when q = a + b, the scalar 1' is similarly defined up to addition of squares from K. Up to B-conjugacy of A we have 1' = 0 and $A = (A \cap \Delta_1)(A \cap \Delta_2)$, $A \cap \Delta_i$ being arbitrary maximal abelian subgroups of Δ_i , i = 1, 2.

When 6K = K, the exceptional automorphism from [17, Theorem 1] of the group U cancels the scalar c in $A \cap \Delta_2$, and the U-conjugacy implies either $n_a^{-1}An_a = U_3$ or $X_{a+b}U_4$. With a glance of Lemma 12, when r = a we are able to cancel the a + b- and 2a + b-projections in $\gamma(F)$ by means of U-conjugacy; thus we transform A to the form

$$X_a U_4 = n_b^{-1} (X_{a+b} U_4) n_b = (n_a n_b)^{-1} (X_b X_{2a+b} U_5) n_a n_b.$$

If 2K = 0 then by means of diagonal $h(\chi)$ -conjugacy we achieve c = 1 (when $\chi(a) = u \in K^*$, $\chi(a) = u \in K^*$, $\chi(b) = u^{-1}$ and $\chi(3a + b) = u^2$), obtaining A in the form (15). Similarly, when r = a, we obtain a subgroup

$$\{x_a(t)x_{2a+b}(t) \mid t \in K\}U_4 = n_b^{-1}\beta_1(K)U_4n_b = (n_a n_b)^{-1}X_b\beta_1(K)U_5n_an_b.$$

Finally, we find the subgroups $A = \gamma(F)\beta_d(A_2)U_4$, where

$$\gamma(t) = x_a(t)x_{2a+b}(ct)$$
 $(t \in F), \quad A_2 \neq 0, \ 2K = 0, \ c, \ d \in K.$

The relations

$$\mathbf{l} = [\gamma(t), \beta_d(v)] = x_{3a+b}((t^2 + td)v)x_{3a+2b}((v^2 + cv)t)$$

show that for all $t \in F$ and $v \in A_2$ we have

$$(t+d)tA_2 = 0, (v+c)vF = 0, F = \{0,d\}, A_2 = \{0,c\}, |A| = 4|K|^2.$$

By corollary 1, we obtain |K| = 2 or 4. Clearly, if |K| = 2 then $A \triangleleft U$, and up to diagonal conjugacy A has the form

$$(\langle x_a(1)x_{2a+b}(1)\rangle \times \langle \beta_1(1)\rangle) \cdot U_4.$$
(16)

For the type ${}^{3}D_{4}$ the description is similar. If $A \subseteq T(a)$ and hence $T(a) \supseteq A \supseteq C(T(a)) = U_{4}$, then A has the form

$$\beta(A_2)x_{2a+b}(A_3)U_4, \quad \beta(v) := x_{a+b}(v)x_{2a+b}(\tilde{v}) \ (v \in A_2)$$
(17)

for some map $\tilde{}: A_2 \to K$. Due to Lemmas 13 and 14 the commutativity of A is equivalent to the inclusion $A_2A_3 \subseteq \text{Ker}(\pi) = K^{1-\sigma}$. Due to the maximality of A, the projections of A_2 and A_3 are both K_{σ} -modules, as well as Ker (π) . If one of the projections are zero or equals K then we have either $A = U_3$ or $A = \beta(K)U_4$ for $\tilde{}$ from $End(K^+)$; besides,

$$[\beta(t),\beta(v)] = x_{3a+2b}(\pm(t\tilde{v}-\tilde{t}v)^{\pi}), \quad (t\tilde{v}-\tilde{t}v)^{\pi} = 0 \ (t,v \in K).$$

Thus, $x_a(d)$ -conjugation transforms the subgroup $X_{a+b}U_4$ into $\beta(K)U_4$, where

$$\tilde{t} = \overline{\bar{d}t} + \overline{d\bar{t}}, \quad (t\tilde{v} - \tilde{t}v)^{\pi} = [d(\bar{t}\bar{\bar{v}} - \bar{v}\bar{\bar{t}} + \bar{v}\bar{\bar{t}} - \bar{t}\bar{\bar{v}})]^{\pi} = (d \cdot 0)^{\pi} = 0 \quad (t, v \in K)$$

When both K_{σ} -modules A_2 and A_3 are nonzero, their dimension is 1 or 2. Up to n_a - and diagonal conjugacy, the dimension of A_2 is less or equals the dimension of A_3 , and $1 \in A_2$. Therefore we may choose $s \in A_2$ such that

$$A_3 \subseteq (K_{\sigma} + K_{\sigma}s)A_3 = A_3 + sA_3 \subseteq K^{1-\sigma}.$$

If the dimension of A_3 is 2 then the inclusions turn into equalities, and multiplication by s induces a K_{σ} -linear transformation of a 2-dimensional module $K^{1-\sigma}$ with a characteristic root s. Since the field K does not contain a quadratic extension of the subfield K_{σ} , A_2 is a 1-dimensional K_{σ} -module. Hence $A_2 = K_{\sigma}$ and $A_3 = K^{1-\sigma}$. It follows that $|A| = |U_3|$ or |K| = 8 and A is B-conjugated to a normal subgroup of U. Moreover we now find the Thompson subgroups.

Lemma 18. For the group $UG_2(K)$, |K| > 2, and $U^3D_4(K)$, $|K_{\sigma}| > 2$, we have $J(U) = J_e(U) = U$. Besides, $J_e(U) = 1$ and J(U) = T(a) in $U^3D_4(8)$ and

$$J_e(U) = 1, \ J(U) = \langle \alpha \rangle \times \langle \alpha^{n_b} \rangle, \quad \alpha = x_a(1)x_{2a+b}(1) \quad in \ UG_2(2).$$

Remark 1 from § 2, [10] and Lemma 18 give Theorem 2.

The investigations are supported by the RFBR (project 12-01-00968)

References

- A.I.Mal'tsev, Commutative subalgebras in semisimple Lie algebras, *Izv. Akad. Nauk SSSR.* Ser. Mat., 9(1945), no. 4, 291–300 (in Russian).
- [2] A.S.Kondratiev, Subgroups of finite Chevalley groups, Uspekhi Mat. Nauk, 41(1986), 65–118 (in Russian).
- [3] E.P.Vdovin, Maximal orders of abelian subgroups in finite Chevalley groups, Math. Notes, 69(2001), no. 4, 475–498.
- [4] E.P.Vdovin, Large abelian unipotent subgroups of finite Chevalley groups, Algebra and Logic, 40(2001), no. 5, 292–305.

- [5] V.M.Levchuk, G.S.Suleimanova, The normal structure of unipotent subgroups in Lie-type groups and related questions, *Doklady Mathematics*, 77(2008), no. 2, 284–287.
- [6] V.M.Levchuk, G.S.Suleimanova, Automorphisms and normal structure of unipotent subgroups of finitary Chevalley groups, *Proceed. of the Steklov Inst. Math.*, Suppl. 3, 2009, 118–127.
- [7] V.M.Levchuk, G.S.Suleimanova, The normal structure of the unipotent subgroup in Lietype groups and its extremal subgroups, J. Math. Sci., 185(2012), no. 3, 448–457.
- [8] V.M.Levchuk, G.S.Suleimanova, Extremal and Maximal Normal Abelian Subgroups of a Maximal Unipotent Subgroup in Lie Type Groups, J. Algebra, 349(2012), no. 1, 98–116.
- [9] G.S.Suleimanova, On conjugacy in a Chevalley group of large abelian subgroups of the unipotent subgroup, J. Math. Sci., 169(2010), no. 5, 696–704.
- [10] G.S.Suleimanova, Conjugacy in a finite Chevalley group of type E₈ of large abelian unipotent subgoups, J. Siberian Federal Univ., Math. & Physics, 4(2011), no. 4, 536–540.
- [11] G.S.Suleimanova, Classes of conjugated in a Chevalley group of type F_4 large abelian subgroups in the unipotent subgroup, *Vladikavkaz Math. J.*, **13**(2011), no. 2, 45–55 (in Russian).
- [12] G.S.Suleimanova, Exceptional large unipotent abelian subgroups in groups of Lie type, Vestnik SibSAU, 44(2012), no. 4, 82–86 (in Russian).
- [13] R.Carter, Simple groups of Lie type, New York, Wiley and Sons, 1972.
- [14] R.Steinberg, Lections on Chevalley groups, Yale University, 1967.
- [15] V.M.Levchuk, G.S.Suleymanova, T.Yu.Voitenko, Some questions for the unipotent subgroup of the Chevalley group, Abstr. of int. conf. "Algebra and its applications", Krasnoyarsk, SibFU, 2007, 168–169.
- [16] C.K.Gupta, V.M.Levchuk, Yu.Yu.Ushakov, Hypercentral and monic automorphisms of classical algebras, rings and groups, J. Siberian Federal Univ., Math. & Physics, 1(2008), no. 4, 280–290.
- [17] V.M.Levchuk, Automorphisms of unipotent subgroups of Chevalley groups, Algebra and Logic, 29(1990), 97–112 (I), 211–224 (II).
- [18] N.Bourbaki, Groupes et algebres de Lie (Chapt. IV-VI), Hermann, Paris, 1968.

Подгруппы Томпсона и большие абелевы унипотентные подгруппы групп лиева типа

Владимир М. Левчук Галина С. Сулейманова

Пусть U — унипотентный радикал подгруппы Бореля группы лиева типа над конечным полем. Для классических типов подгруппы Томпсона и большие абелевы подгруппы групп U были описаны к середине 1980-х годов. Мы завершаем решение известной проблемы их описания для исключительных лиевых типов.

Ключевые слова: группа лиева типа, унипотнтная подгруппа, большая абелева подгруппа, подгруппа Томпсона.