УДК 512.5

Thompson Subgroups and Large Abelian Unipotent Subgroups of Lie-type Groups

Vladimir M. Levchuk*
Institute of Mathematics and Computer Science, Siberian Federal University, Svobodny, 79, Krasnoyarsk, 660041
\section*{Russia}
\section*{Galina S. Suleimanova ${ }^{\dagger}$}
Khakas Technical Institute, Abakan, 665017
Russia

Received 10.12.2012, received in revised form 11.12.2012, accepted 25.12.2012
$\overline{L e t} U$ be a unipotent radical of a Borel subgroup of a Lie-type group over a finite field. For the classical types the Thompson subgroups and large abelian subgroups of the group U were found to the middle 1980's. We complete a solution of well-known problem of their description for the exceptional Lie-types.

Keywords: Lie-type group, unipotent subgroup, large abelian subgroup, Thompson subgroup.

Introduction

It is well-known that similarly to A.I.Mal'cev's schema from [1] the problem of enumeration of the large abelian subgroups of a Lie-type group G over a finite field is reduced to the same problem for the unipotent radical U of the Borel subgroup of G. The problem has been under active investigation since 1970's. For classical types the sets $A(U)$ of large abelian subgroups of U were found by the middle 1980's, as well as the subsets $A_{N}(U)$ of normal subgroups and $A_{e}(U)$ of elementary abelian subgroups and, also, the Thompsons subgroups

$$
J(U)=\langle A \mid A \in A(U)\rangle, \quad J_{e}(U)=\left\langle A \mid A \in A_{e}(U)\right\rangle .
$$

In 1986 A.S.Kondratiev singled out in his survey [2, (1.6)] the following problem:
Problem (A): Describe the sets $A(U), A_{N}(U), A_{e}(U)$ and the Thompson subgroups $J(U)$ and $J_{e}(U)$ for the remaining cases of G.

The present paper summarizes the investigations of this problem, carried out by E.P.Vdovin $[3,4]$, the authors $[5-8]$ and G.S.Suleimanova [9-12].

1. Preliminaries

A Chevalley group $\Phi(K)$ over a field K, associated with a root system Φ, is generated by the root subgroups $X_{r}=x_{r}(K), r \in \Phi$; the root subgroups taken for the positive roots $r \in \Phi^{+}$generate the unipitent subgroup $U=U \Phi(K)$. A twisted group ${ }^{m} \Phi(K)$ is defined as the centralizer in $\Phi(K)$ of a twisting automorphism θ of order $m=2$ or 3. For a twisted group we

[^0]have $U=U^{m} \Phi(K):={ }^{m} \Phi(K) \cap U \Phi(K)$. Besides, θ is a superposition of a graph automorphism $\tau \in A u t \Phi(K)$ and a field automorphism $\sigma: t \rightarrow \bar{t}(t \in K)$, and for the only continuation ${ }^{-}$on Φ of a symmetry of a Coxeter graph of order m we have $\theta\left(X_{r}\right)=\tau\left(X_{r}\right)=X_{\bar{r}}(r \in \Phi)[13,14]$.

Given a group-theoretic property \mathcal{P}, every \mathcal{P}-subgroup of the highest order is called a large \mathcal{P}-subgroup. Developing the A.I.Maltsev's approach [1], E.P.Vdovin has mainly calculated [4, Concluding table] the orders $\mathbf{a}(U)$ of large abelian subgroups of finite groups $U=U G(K)$ ($G=\Phi$ or $G={ }^{m} \Phi$) and those of Thompson subgroups.

Having described the maximal normal abelian subgroups of U, the authors ($[5,6,8]$) also described the large normal abelian subgroups of finite groups U by showing that they form the set $A_{N}(U)$. (In general, a large normal \mathcal{P}-subgroup of a finite group is not a large \mathcal{P}-subgroup.) It allows us [8] to complete (for types $G_{2},{ }^{3} D_{4}$ and ${ }^{2} E_{6}$) the calculation of the orders $\mathbf{a}(U)$. In [6] the problem (A) is reduced to the question:

Describe the groups U, in which every large abelian subgroup is $G(K)$-conjugate to a normal subgroup of U and enumerate all the exceptional large abelian subgroups of the remaining groups $U([15,16])$.

See the exceptions in $[6,9]$ and [12]. In [8] the authors proved
Theorem 1. Either every large abelian subgroup of U is $G(K)$-conjugate to a normal subgroup of U or $G(K)$ is of type $G_{2},{ }^{3} D_{4}, F_{4}$ or ${ }^{2} E_{6}$.
G.S.Suleimanova described the exceptional large abelian subgroups for the type F_{4} in $[9,11]$ and those for the type ${ }^{2} E_{6}$ in Section 2 and [12]. In Section 3 we complete this description for the types G_{2} and ${ }^{3} D_{4}$.

Twisted groups ${ }^{m} \Phi(K)$ required further development of the methods [1]. For the types ${ }^{3} D_{4}$ and ${ }^{2} E_{6}$ there exists a homomorphism ζ from the lattice of the root system Φ to the lattices of the systems of types G_{2} and F_{4} respectively; the preimages of the elements of $\zeta(\Phi)$ being the --orbits in Φ.

Let ${ }^{m} \Phi=\zeta(\Phi)$. For any $a \in \zeta(\Phi)$ is defined the root subgroup X_{a} of ${ }^{m} \Phi(K)$. Similarly to [17] and [8], we have $X_{a}=x_{a}\left(K_{\sigma}\right), K_{\sigma}:=\operatorname{Ker}(1-\sigma)$ when $\zeta^{-1}(a)$ is an ${ }^{-}$-orbit of length 1 ; in the remaining cases $X_{a}=x_{\alpha}(K)$. Then $U=U G(K)=\left\langle X_{r} \mid r \in G^{+}\right\rangle$, where $G=\Phi$ or ${ }^{m} \Phi$. The standard central series is $U=U_{1} \supseteq U_{2} \supseteq \cdots$ [13]. Let $\{r\}^{+}$be the set of all $s \in G^{+}$for which the coefficients in the decomposition of $s-r$ in $\Pi(G)$ are all nonnegative. Set

$$
T(r):=\left\langle X_{s} \mid s \in\{r\}^{+}\right\rangle, \quad Q(r):=\left\langle X_{s} \mid s \in\{r\}^{+}, s \neq r\right\rangle \quad(r \in G)
$$

If $H \subseteq T\left(r_{1}\right) T\left(r_{2}\right) \ldots T\left(r_{m}\right)$ and the inclusion fails under every substitution of $T\left(r_{i}\right)$ by $Q\left(r_{i}\right)$ then $\mathcal{L}(H)=\left\{r_{1}, r_{2}, \cdots, r_{m}\right\}$ is said to be the set of corners of H. Also, $\mathcal{L}_{1}(H)$ denotes the set of first corners for all elements of H.

We fix a regular order of the roots, compatible with the root height function [13, Lemma 5.3.1]. Each element γ of U permits a unique compatible (canonical) decomposition into a product of root elements $x_{r}\left(\gamma_{r}\right)\left(r \in G^{+}\right)$, [14, Lemma 18]. The coefficient γ_{r} is called an r-projection of the element γ. Obviously, the first corner of γ corresponds to the first multiplier in its canonical decomposition.

We use usual notation from [13]: $h(\chi)$ for diagonal automorphisms, n_{r} for monomial elements and the subgroups $U_{r}=\left\langle X_{r} \mid r \in G^{+} \backslash\{r\}\right\rangle, r \in \Pi(G)$. For the root systems of types E_{n} and F_{4} simple roots are denoted by $\alpha_{1}, \alpha_{2}, \cdots$, similarly to [18, Tables V-VIII].

Refining [4, Table 4], the following theorem completes the description of Thompson subgroups.
Theorem 2. Let K be a finite field and $U=U G(K)$. Then:
a) $J(U)=J_{e}(U)=U$ in $U G_{2}(K),|K|>2$, and in $U^{3} D_{4}(K),\left|K_{\sigma}\right|>2$;
b) $J_{e}(U)=1$ and $J(U)=T(a)$ in $U^{3} D_{4}(8)$;
c) $J_{e}(U)=1, J(U)=<\alpha>\times<\alpha^{n_{b}}>, \alpha=x_{a}(1) x_{2 a+b}(1)$ in $U G_{2}(2)$;
d) $J(U)=J_{e}(U)=U_{\alpha_{1}}$ in $U^{2} E_{6}(K)$;
e) $J(U)=J_{e}(U)=U_{\alpha_{7}} \cap U_{\alpha_{8}}$ in $U E_{8}(K)$.

2. Large Abelian Subgroups of Groups U of Type ${ }^{2} E_{6}$

In this section we suppose $U=U^{2} E_{6}(K)$. For the root system Φ of type E_{6} the corresponding system ${ }^{m} \Phi=\zeta(\Phi)=G$ is of type F_{4}. According to Section 1, the group U is generated by the root subgroups $X_{a}=x_{a}\left(K_{\sigma}\right)$ for all long roots $a \in G^{+}$(the first type) and $X_{a}=x_{a}(K)$ for all short roots $a \in G^{+}$. For the system of type F_{4} see also the diagram of the positive roots from [17] or [8]. Use the notation $a b c d$ for the root $a \alpha_{1}+b \alpha_{2}+c \alpha_{3}+d \alpha_{4}$ of the system of type $F_{4}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right.$ are simple roots) similarly to [18, Table VIII]. For certain maps ~ : $K \rightarrow K$ and ${ }^{\wedge}: K \rightarrow K$ we choose the following subgroups in the group U :

$$
\begin{gather*}
\left\{x_{1111}(t) x_{1231}(\tilde{t}) \mid t \in K\right\}\left\{x_{1121}(u) x_{1221}(\hat{u}) \mid u \in K\right\} \cdot T(0122), \tag{1}\\
X_{1111}\left(K_{\sigma}\right)\left\{x_{1121}(t) x_{1221}(\tilde{t}) \mid t \in K\right\} X_{1231}\left(K^{1-\sigma}\right) T(0122), \tag{2}\\
X_{1111}\left(K_{\sigma}\right) X_{1121}\left(K_{\sigma}\right) X_{1221}\left(K^{1-\sigma}\right) X_{1231}\left(K^{1-\sigma}\right) T(0122), \tag{3}\\
\left\{x_{1121}(t) x_{1221}(\tilde{t}) \mid t \in K\right\} X_{1231} T(0122), \tag{4}\\
\left\{x_{1121}(t) x_{1221}(c t) \mid t \in K_{\sigma}\right\} X_{1221}\left(K^{1-\sigma}\right) X_{1231} T(0122), \quad c \notin K_{\sigma}, \tag{5}\\
T(0122) U_{6}, \tag{6}\\
\left(T(0121) \cap E_{6}\left(K_{\sigma}\right)\right) U_{7} . \tag{7}
\end{gather*}
$$

Let $G(K)={ }^{2} E_{6}(K)$. The aim of this section is to prove that, up to $G(K)$-conjugacy, the subgroups (1) - (6) for $2 K=K$ and the subgroup (7) for $2 K=0$ are all large abelian subgroups of U.

We need the following lemma [8, Lemma 4.4].
Lemma 1. If $\left[x_{r}(F), x_{s}(V)\right] \subseteq Q(r+s)$ in the group U for $F, V \subseteq K, F V \neq 0$, then $r+s$ is of the first type, r and s are not of the first type, and, up to a diagonal automorphism conjugacy, $F \subseteq K_{\sigma}, V \subseteq K^{1-\sigma}$.

According to A.I. Mal'cev [1], a subset Ψ of Φ^{+}is said to be abelian if $r+s \notin \Phi$ for all $r, s \in \Psi$. A subset Ψ of Φ^{+}is said to be p-abelian (E.P. Vdovin [4]), if for all $r, s \in \Psi$ either $r+s \in \Phi$ and the structure constant $C_{11 r s}$ in the Chevalley formula is zero in characteristic p, or $r+s \notin \Phi$. The maximal 2-abelian subsets for type F_{4} are listed in [4, Table 3]. The table contains 7 rows and 13 columns, so the subsets are denoted by $\Psi_{i, j}$ (i is the row number and j is the column number). In particular, $\Psi_{2,12}=\{0121\}^{+}:=\Psi_{1}$ and also $\Psi_{2}=\{1111\}^{+} \cup\{0122\}^{+}, \quad \Psi_{3}=$ $\{0011,0111,1111,1231\} \cup\{0122\}^{+}$are $\Psi_{2,13}, \Psi_{6,10}$, respectively. Using [4] we easily obtain the following lemma.

Lemma 2. Each maximal 2-abelian subset of the root system of type F_{4} either coincides with one of the sets $\Psi_{1, j}, \Psi_{4, j}(1 \leqslant j \leqslant 13)$ of order 10 , or is W-conjugate to one of the sets $\Psi_{i}, \bar{\Psi}_{i}$ of order 11 for $i=1,2$ or 3 .

Let $m(x):=\mathcal{L}_{1}(x)(x \in U)$. The following three lemmas is proved in [12].
Lemma 3. Let A be a large abelian subgroup of U of type ${ }^{2} E_{6}$. Then for all $x, y \in A, x, y \neq 1$, the subset $\{m(x), m(y)\}$ of Φ of type F_{4} is 2-abelian and, if $m(x)+m(y) \in \Phi$, then the $m(x)$ projections of all elements of A with the first corner $m(x)$ are contained in a 1-dimentional K_{σ}-module.

Lemma 4. Let A be a large abelian subgroup of U of type ${ }^{2} E_{6}, \Psi$ be a maximal 2-abelian subset of the root system of type F_{4} and let $\mathcal{L}_{1}(A) \subseteq \Psi$. Then:
a) if $\left\{r_{1}, r_{2}, r_{3}\right\} \subseteq \Psi, r_{i}+r_{j} \in \Phi$ and $C_{11, r_{i}, r_{j}}= \pm 2$ for all $i \neq j$ then the subset $\left\{r_{1}, r_{2}, r_{3}\right\}$ is contained in $\mathcal{L}_{1}(A)$,
b) if $r+s \in \Phi$ for the roots $r, s \in \Psi, C_{11, r, s}= \pm 2$, and the pair r, s is not contained in any triple from a), then $r \in \mathcal{L}_{1}(A)$ or $s \in \mathcal{L}_{1}(A)$;
c) if Ψ contains a root r such that $(r+\Psi) \cap \Phi=\emptyset$ then $r \in \mathcal{L}_{1}(A)$.

Lemma 5. If Ψ is a maximal 2-abelian subset of type F_{4}, for which there exists a large abelian subgroup A such that $m(A) \subseteq \Psi$, then Ψ is W-conjugate to Ψ_{1} when $2 K=0$ or to Ψ_{2} when $2 K=K$. Furthermore, all such sets Ψ are exhausted, respectively, by the sets

$$
\begin{aligned}
& \Psi_{2,9}, \Psi_{2,12}, \Psi_{3,1}, \Psi_{3,7}, \Psi_{3,12}, \Psi_{5,1}, \Psi_{5,3}, \Psi_{5,6}, \Psi_{5,8}, \Psi_{5,9}, \Psi_{5,13}, \Psi_{6,4}, \Psi_{6,11}, \Psi_{7,1} \\
& \Psi_{2,10}, \Psi_{2,11}, \Psi_{2,13}, \Psi_{3,13}, \Psi_{5,2}, \Psi_{5,4}, \Psi_{5,5}, \Psi_{5,7}, \Psi_{6,7}, \Psi_{7,2}, \Psi_{7,3}
\end{aligned}
$$

Now we consider a large abelian subgroup A of $U=U^{2} E_{6}(K)$.
Lemma 6. If A has a simple corner p then $A \subseteq T(p)$ and $p \neq \alpha_{1}$.
Proof. In the canonical decomposition of elements of U we use the regular order of the system Φ, defined by the order $\alpha_{1}<\alpha_{2}<\alpha_{3}<\alpha_{4}$ of the simple roots. Note that the inverse order is also regular.

Suppose that A has at least two simple corners $p<q$. None of the sets $\Psi_{i, j}$ from Lemma 5 contains α_{1}, so we get $p>\alpha_{1}$. Suppose that $q=\alpha_{4}$. If we replace the regular order of Φ by the inverse order then $\mathcal{L}_{1}(A)$ will contain α_{4} and, by Lemma $5, \mathcal{L}_{1}(A)$ is contained in one of the sets $\Psi_{5,4}, \Psi_{5,5}, \Psi_{5,6}$ for $2 K=K$ or $\Psi_{5,3}, \Psi_{5,6}, \Psi_{5,8}, \Psi_{5,9}$ for $2 K=0$. Each of these sets contains the root 1242 . This root is the only root in Φ^{+}of height 9 . By Lemma 4, c), the root 1242 is contained in $\mathcal{L}_{1}(A)$. It is clear, that if there exists an element in $A \cap T(r)$ with the corner r, then $r \in \mathcal{L}_{1}(A)$ for any regular order of Φ. Therefore, the roots α_{2} and α_{4} can not be corners in A simultaneously. If $q=\alpha_{3}$ then similarly $1242 \in \mathcal{L}_{1}(A)$. Therefore, the case $p=\alpha_{2}, q=\alpha_{3}$ is also impossible.

In the remaining case $p=\alpha_{3}, q=\alpha_{4}$, by Lemmas 5, 4 and [4, table 3], we get $1122 \in \mathcal{L}_{1}(A)$ for the inverse order of Φ. Therefore, for the initial order, the set $\mathcal{L}_{1}(A)$ contains a root of height 6 . However, this root and the root α_{3} can not be contained in $\mathcal{L}_{1}(A)$ simultaneously, by Lemma 5 and [4, table 3]. Therefore, in all cases the subgroup A can have only one simple corner.

Let A have a simple corner α_{i} and $A \subseteq X_{\alpha_{i}} U_{2}$. Suppose that $A \nsubseteq T\left(\alpha_{i}\right)$. Then A has the corner 0011 for $i=2$, so $A^{n_{4}}$ has the simple corners α_{2} and α_{3}. If $i=3$ then A has the corner 1100 , therefore, $A^{n_{1}}$ has the corners α_{2} and α_{3}. If $i=4$ then A has a corner $r \in\{1100,0110,1110,0120,1120,1220\}$. In the first and second cases $A^{n_{2}}$ has the corner α_{1} or α_{3}, respectively, and the corner α_{4}. The third case is reduced to the second case by n_{1}-conjugacy. In the fourth case $A^{n_{3}}$ has a corner α_{2} and $A^{n_{3}} \nsubseteq T\left(\alpha_{2}\right)$; this gives a contradiction with the proved above. The fifth case is reduced to the fourth case by a n_{1}-conjugacy. The sixth case is reduced to the fifth case by a n_{2}-conjugacy.

Similarly we obtain the following two lemmas.
Lemma 7. If A has a corner r of height 2, then $A \subseteq T(r)$ and $r \neq 1100$.
Lemma 8. If A has a corner r of height 3, then:
a) $A \subseteq T(r)$ for $r=0111$;
b) $A \subseteq T(1110) T(0120)$ for $r=0120$;
c) $A \subseteq T(1110) T(0122)$ for $r=1110$ and $A \subseteq X_{1110} U_{4}$.

Lemma 9. Each large abelian subgroup of U is $G(K)$-conjugate to a subgroup of U_{2}.

Proof. Let A be a large abelian subgroup in U and $A \nsubseteq U_{2}$. By Lemma 6, there exists a simple corner $p \neq \alpha_{1}$ in A and $A \subseteq T(p)$. If $p=\alpha_{2}$ then $\mathcal{L}_{1}(A)$ is contained in one of the sets $\Psi_{2,9}, \Psi_{3,1}$ for $2 K=0$ or $\Psi_{2,10}, \Psi_{2,11}$ for $2 K=K$, and $1100,1222 \in \mathcal{L}_{1}(A)$, by lemma 5 . Therefore for arbitrary non-zero elements $t, u \in K_{\sigma}$ and suitable $t_{i}, u_{i} \in K$ there exist elements $x, y \in A$ such that

$$
\begin{gather*}
x=x_{1100}(t) x_{0110}\left(t_{1}\right) x_{1110}\left(t_{2}\right) x_{0120}\left(t_{3}\right) x_{0111}\left(t_{4}\right) \bmod U_{4}, \\
y=x_{1222}(u) x_{1232}\left(u_{1}\right) x_{1242}\left(u_{2}\right) \bmod U_{10} . \tag{8}
\end{gather*}
$$

If $t_{1} \neq 0$ for all elements of the form (8) then in the inverse order we have $0110 \in \mathcal{L}_{1}(A)$. However, the sets $\Psi_{2,11}$ and $\Psi_{3,1}$ do not contain this root. Since

$$
[x, y]=x_{1342}\left(u t_{3} \pm\left(\bar{u}_{1} t_{1}+u_{1} \bar{t}_{1}\right)\right) \quad \bmod U_{11}
$$

we have $t_{3}=0$ for $t_{1}=0$. So, there exists an element $x^{\prime} \in A$ such that

$$
x^{\prime}=x_{1100}(t) x_{1110}\left(t_{2}\right) x_{0111}\left(t_{4}\right) \quad \bmod U_{4}
$$

and hence

$$
x^{\prime}=x_{1100}(t) x_{1110}\left(t_{2}\right) x_{0111}\left(t_{4}\right) x_{1120}\left(t_{5}\right) x_{1111}\left(t_{6}\right) x_{0121}\left(t_{7}\right) \quad \bmod U_{5}
$$

for some $t_{5}, t_{6}, t_{7} \in K$. We may cancel t_{2} by $X_{\alpha_{3}}$-conjugacy. Moreover,

$$
\begin{aligned}
& \left(x^{\prime}\right)^{x_{\alpha_{3}}(y)}=x_{1100}(t) x_{1110}\left(t_{2}+t y\right) x_{0111}\left(t_{4}\right) x_{1120}\left(t_{5} \pm t y \bar{y} \pm\left(t_{2} \bar{y}\right)^{1+\sigma}\right) \\
& x_{1111}\left(t_{6}\right) x_{0121}\left(t_{7}^{\prime}\right)= \\
& \quad=x_{1100}(t) x_{1110}(t y) x_{0111}\left(t_{4}\right) x_{1120}\left(t_{5} \pm t y \bar{y}\right) x_{1111}\left(t_{6}\right) x_{0121}\left(t_{7}^{\prime}\right) \quad \bmod U_{5} \quad(y \in K)
\end{aligned}
$$

If $y \in K$ and $K^{\sharp}=\langle y\rangle$ then $K_{\sigma}^{\sharp}=\langle y \bar{y}\rangle$. Therefore we can choose y such that $t y \bar{y}=\mp t_{5}$. So, we can transform x^{\prime} by an U-conjugacy to the form

$$
x^{\prime}=x_{1100}(t) x_{1110}(t y) x_{0111}\left(t_{4}\right) x_{1111}\left(t_{6}\right) x_{0121}\left(t_{7}^{\prime}\right) \quad \bmod U_{5} \quad(y \in K)
$$

Then

$$
\left(x^{\prime}\right)^{n_{3}}=x_{1110}(t y) x_{0111}\left(t_{7}^{\prime}\right) x_{1120}(t) x_{1111}\left(t_{6}^{\prime}\right) x_{0121}\left(t_{4}\right) \quad \bmod U_{5} \quad(y \in K)
$$

Suppose that $t_{7}^{\prime} \neq 0$. Then in the inverse order we get $0111 \in \mathcal{L}_{1}\left(A^{n_{3}}\right)$ and $\mathcal{L}_{1}\left(A^{n_{3}}\right)=\Psi_{3,1}$ for $2 K=0$ or $\mathcal{L}_{1}\left(A^{n_{3}}\right) \subseteq \Psi_{2,10}$ for $2 K=K$. In the first case $1111 \in \mathcal{L}_{1}\left(A^{n_{3}}\right)$. Therefore, in the initial order, the set $\mathcal{L}_{1}\left(A^{n_{3}}\right)\left(=\Psi_{2,9}\right)$ must contain a root of height 4 ; so we get a contradiction with [4, Table 3]. In the second case, due to inclusion $0111 \in \mathcal{L}_{1}\left(A^{n_{3}}\right)$ we get that the 1231projection of the set of all elements $z \in A^{n_{3}}$ with $m(z)=1231$ can not coincide with K, by lemma 1. Hence, in the initial order, $\mathcal{L}_{1}\left(A^{n_{3}}\right)$, which is contained in $\Psi_{2,11}$, must contain the root 1111. Since in the inverse order $\mathcal{L}_{1}\left(A^{n_{3}}\right) \subseteq \Psi_{2,10}$ then the set $\Psi_{2,10}$ must contain a root of height 4, and we also get a contradiction with [4, Table 3]. Consequently,

$$
\left(x^{\prime}\right)^{n_{3}}=x_{1110}(t y) x_{1120}(t) x_{1111}\left(t_{6}^{\prime}\right) x_{0121}\left(t_{4}\right) \quad \bmod U_{5} \quad(y \in K)
$$

By U-conjugacy, we get $t_{6}^{\prime}=0$ and for some $u_{i} \in K$ we obtain the equality

$$
\left(x^{\prime}\right)^{n_{3} n_{4}}=x_{0120}\left(u_{1}\right) x_{1120}\left(u_{2}\right) x_{1111}\left(u_{3}\right) x_{0121}\left(u_{4}\right) \quad \bmod U_{5} \quad\left(u_{3} \neq 0\right)
$$

We may assume that $u_{1}=0$ because otherwise $0120 \in m\left(A^{n_{3} n_{4}}\right)$ and $\alpha_{2} \notin \mathcal{L}_{1}\left(A^{n_{3} n_{4}}\right)$, see [4, Table 3]. Moreover, $u_{2}=0$, since otherwise $1120 \in \mathcal{L}_{1}\left(A^{n_{3} n_{4}}\right)$ and $\alpha_{2} \notin \mathcal{L}_{1}\left(A^{n_{3} n_{4}}\right)$. Also, $u_{4}=0$, since otherwise in the inverse order of G we have $0121 \in \mathcal{L}_{1}\left(A^{n_{3} n_{4}}\right)$ and $\alpha_{2} \notin \mathcal{L}_{1}\left(A^{n_{3} n_{4}}\right)$. Note that $1220 \in \Psi_{2,9} \cap \Psi_{2,10} \cap \Psi_{2,11} \cap \Psi_{3,1}$. By Lemma 4, $1220 \in \mathcal{L}_{1}\left(A^{n_{3} n_{4}}\right)$ and the $1220-$ projection of the elements y with $m(y)=1220$ coincides with K_{σ}. Thus, if $A^{n_{3} n_{4}}$ has a corner
α_{2}, then we may assume that the 1220 -projection of $\left(x^{\prime}\right)^{n_{3} n_{4}}$ is zero, up to a multiplication by a suitable element y. Applying the U - and n_{3}-conjugation to $\left(x^{\prime}\right)^{n_{3} n_{4}}$, we get an element of the form

$$
x_{1121}\left(v_{1}\right) x_{0122}\left(v_{2}\right) \quad \bmod U_{6} \quad\left(v_{1} \neq 0\right)
$$

Hence $1121 \in \mathcal{L}_{1}\left(A^{n_{3} n_{4} n_{3}}\right)$. It follows $\alpha_{2} \notin \mathcal{L}_{1}\left(A^{n_{3} n_{4} n_{3}}\right)$ and $A^{n_{3} n_{4} n_{3}} \subseteq U_{2}$.
If $p=\alpha_{3}$ then we get $1231 \in \mathcal{L}_{1}(A)$, by Lemma 5 . The relation

$$
1=\left[A \cap U_{7}, A\right]=\left[A \cap U_{7}, X_{\alpha_{3}} \cap\left(A U_{2}\right)\right] \quad \bmod U_{9}
$$

shows that $A \cap U_{7}=A \cap T(1231)$. Up to $X_{\alpha_{4}}$-conjugacy, $A \cap\left(X_{1231} U_{9}\right)$ has an element γ with the corner 1231. Since $1=[\gamma, A] \bmod U_{9}$, we have $A \subseteq X_{\alpha_{3}} T(0110)$ and $A^{n_{4}} \subseteq U_{2}$. Similarly we consider the case $p=\alpha_{4}$.

Analogously we proved
Lemma 10. Any large abelian subgroup of U is G-conjugate to a subgroup of U_{3} and even to a subgroup of U_{4}.

Finally we get that either $2 K=K$ and the subgroup A is G-conjugate to ones from (1) - (6) or $2 K=0$ and A is G-conjugate to the normal subgroup (7).

Remark 1. Taking into account that (1) - (7) are abelian subgroups, we obtain the equalities $A(U)=A_{e}(U)$ and $J(U)=J_{e}(U)=U_{\alpha_{1}}$ for the group $U=U^{2} E_{6}(K)$. All large abelian subgroups of the group $U F_{4}(K)$ are described in [9] and [11].

3. Large Abelian Subgroups of Groups U of Type G_{2} and ${ }^{3} D_{4}$

According to $\S 1$, the root elements $x_{r}(t)$ of the groups U of type G_{2} and ${ }^{3} D_{4}$ match the roots of the system G_{2}. Choosing its simple roots a and b such that $|a|<|b|$, we use a hypercentral automorphism $\varsigma_{d}(d \in K)$ of a group U (see [17]), for which $\varsigma_{d}\left(x_{b}(t)\right)=x_{b}(t) x_{3 a+b}(2 d t)$ $\bmod U_{5}(t \in K)$. We set

$$
\begin{equation*}
\alpha:=x_{a}(1) x_{2 a+b}(1), \quad \beta_{c}(t):=x_{a+b}(t) x_{2 a+b}(t c) . \tag{9}
\end{equation*}
$$

We now prove the following theorem.
Theorem 3. Each large abelian subgroup of the group $U=U G_{2}(K)$ is $G_{2}(K)$-conjugate to one of the following subgroups:
a) a normal large abelian subgroup of U;
b) an image under some automorphism $\varsigma_{d}(d \in K)$ of a subgroup, which is $\left(X_{a} n_{a}\right)$-conjugate to U_{3} or $X_{a+b} U_{4}$ for $6 K=K$;
c) $\left\{x_{b}(t) x_{3 a+b}(t) \mid t \in K\right\} \beta_{d}(K) U_{5} \quad(d \in K) \quad$ for even $|K|>2 ;$
d) $\left\langle\alpha, \beta_{1}(1)\right\rangle U_{4}$ for $|K|=4$.

The proof of the theorem is based on a number of lemmas.
In $[5,7,8]$, the normal large abelian subgroups of U are described as large normal abelian ones. The following lemma follows from [8].

Lemma 11. If the group U is of type G_{2} then the set $A_{N}(U)$ consists of

$$
\begin{gathered}
U_{3} \text { and } \beta_{c}(K) U_{4}(c \in K) \text { for even }|K|>2, \quad U_{3} \text { for } 6 K=K, \\
U_{2} \text { for } 3 K=0, \quad\langle\alpha\rangle \times\left\langle\beta_{1}(1)\right\rangle \text { for }|K|=2 .
\end{gathered}
$$

Up to diagonal automorphisms, normal large abelian subgroups of the group $U^{3} D_{4}(K)$, are exhausted by the groups:

$$
\begin{aligned}
& U_{3} \text { and } \beta_{c}\left(K_{\sigma}\right) \cdot x_{2 a+b}\left(K^{1+\sigma}\right) \cdot U_{4}\left(c \in K_{\sigma}\right) \text { for even }\left|K_{\sigma}\right|>2, \\
& U_{3} \text { for } 2 K=K, \quad\langle\alpha\rangle \times\left\langle\beta_{1}(1)\right\rangle \times x_{2 a+b}\left(K^{1+\sigma}\right) \text { for }\left|K_{\sigma}\right|=2
\end{aligned}
$$

Corollary 1. The order $\mathbf{a}(U)$ of large abelian subgroups of the group $U=U G(K)$ of type G_{2} or ${ }^{3} D_{4}$ equals $\left|U_{3}\right|$, except the cases $|K|=2$ or $3 K=0$ for the group $U G_{2}(K)$ where $\mathbf{a}(U)=|K|^{4}$ and the group $U^{3} D_{4}(8)$ where $\mathbf{a}(U)=2^{6}$.

Due to [6, Theorem 2], the group U of type G_{2} satisfies the following isomorphisms: $U / U_{3} \simeq$ $U A_{2}(K)$ and $U / U_{4} \simeq U B_{2}(K)$. The following lemma is well known for the group $U A_{2}(K) \simeq$ $U T(3, K)$.
Lemma 12. Let A be a maximal abelian subgroup and Z be the center of the group $U \Phi(K)$. Then $A=\left\{x_{a}(t) x_{b}(c t) \mid t \in K\right\} Z(c \in K)$ or $T(b)$ for the type A_{2}. For the type B_{2} we have $A=T(b)$ or A is B-conjugate either to $X_{a} Z$ or for the cases $2 K=K$ and $2 K=0$ to the subgroup, respectively,

$$
\begin{equation*}
\left\{x_{a}(t) x_{b}(t) x_{a+b}\left(\left(t^{2}-t\right) / 2 \mid t \in K\right)\right\} Z, \quad\left\langle x_{a}(1) x_{b}(1)\right\rangle Z . \tag{11}
\end{equation*}
$$

Proof. The center Z of the group U of type B_{2} equals U_{3} for $2 K=K$ or U_{2} for $2 K=0$. If there exists an element $\gamma \in A$ having two corner, then up to B-conjugation we may suppose that $\gamma=x_{a}(1) x_{b}(1)$. Choosing an arbitrary element $\beta=x_{a}(t) x_{b}\left(t^{\prime}\right) x_{a+b}\left(t^{\prime \prime}\right) \bmod U_{3}$ of A, we find

$$
\begin{gathered}
1=[\beta, \gamma]=x_{a+b}\left(t^{\prime}-t\right) \quad \bmod U_{3}, \quad t^{\prime}=t(t \in K) \\
{[\beta, \gamma]=\left[x_{a}(t), x_{b}(1)\right]\left[x_{b}(t), x_{a}(1)\right]\left[x_{a+b}\left(t^{\prime \prime}\right), x_{a}(1)\right]=x_{2 a+b}\left(2 t^{\prime \prime}+t-t^{2}\right)}
\end{gathered}
$$

(The signs of the structural constants are chosen according to [6, Theorem 2].) If $2 K=0$ then $t^{2}-t=0$ and $\beta \in\langle\gamma\rangle Z$ When $2 K=K$ we have $t^{\prime \prime}=\left(t^{2}-t\right) / 2$ and hence A is the first subgroup in (11).

Setting $\pi:=1+\sigma+\sigma^{2}$ for the type ${ }^{3} D_{4}$ we require the following lemma.
Lemma 13. If $2 K=K$, then $\operatorname{Ker}(1+\sigma)=0$. In the general case we have:

$$
K=K^{1+\sigma}+K_{\sigma}, K_{\sigma} \cap K^{1+\sigma}=2 K_{\sigma}, \quad K^{\pi}=K_{\sigma}, \operatorname{Ker}(\pi)=K^{1-\sigma} .
$$

Proof. If $\bar{v}=-v$, then $\overline{\bar{v}}=-\bar{v}=v, v=\bar{v} \in K_{\sigma}$ and $2 v=0$. If $2 K=K$ then $\operatorname{Ker}(1+\sigma)=0$. Since for any K_{σ}-linear transformation of the field K the sum of the rank and defect equals 3, the remaining statements of the lemma easily follow from relations

$$
K \supseteq K^{1+\sigma}+K^{\pi} \supseteq K^{\sigma^{2}}=K, \quad 0=1-\sigma^{3}=(1-\sigma) \pi=\pi(1-\sigma)
$$

The order of a subgroup A of a group $U=U G(K)$ of type G_{2} or ${ }^{3} D_{4}$ may be estimated using the orders of intersections of the projections A_{i} :

$$
\begin{align*}
A \cap U_{i} & =x_{r}\left(A_{i}\right) \bmod U_{i+1}, \quad 1<h t(r)=i \leqslant 5 \tag{12}\\
|A| & =\left|A: A \cap U_{2}\right| \cdot\left|A_{2}\right| \cdot\left|A_{3}\right| \cdot\left|A_{4}\right| \cdot\left|A_{5}\right| \tag{13}
\end{align*}
$$

Lemma 14. Let A be an abelian subgroup of U. Then there exist elements $d_{a}, d_{b} \in K$ and an additive subgroup $F \subset K$ such that $d_{b} F A_{4}=0$, and

$$
\begin{equation*}
A=\gamma(F) \cdot\left(A \cap U_{2}\right), \quad \gamma(t)=x_{a}\left(d_{a} t\right) x_{b}\left(d_{b} t\right) \bmod U_{2}(t \in F) . \tag{14}
\end{equation*}
$$

For the type ${ }^{3} D_{4}$ and G_{2} we have $\left(A_{2} A_{3}\right)^{\pi}=0$ and $3 A_{2} A_{3}=0$, respectively. When $d_{a} F \ni 1$ we have $A_{2}^{1+\sigma}=A_{3}^{\pi}=0$ and $2 A_{2}=3 A_{3}=0$, respectively.

Proof. Recall that $\left(A U_{2}\right) / U_{3}$ is an abelian normal subgroup of the factor group U / U_{3}, which is isomorphic to a subgroup of the unitriangular group $U T(3, K)$. By Lemma 12 we obtain (14), where $\gamma(F)$ is the system of representatives of cosets of the subgroup $A \cap U_{2}$ in A. The equalities $\left[A \cap U_{i}, A \cap U_{j}\right]=1 \bmod U_{i+j+1}$ and (12) imply $d_{b} F A_{4}=0$ and

$$
\begin{gathered}
\left(A_{2} A_{3}\right)^{\pi}=0, \quad\left(d_{a} F A_{3}\right)^{\pi}=0, \quad\left(d_{a} F A_{2}\right)^{1+\sigma}=0 \quad \text { for the type }{ }^{3} D_{4}, \\
3 A_{2} A_{3}=0, \quad 3 d_{a} F A_{3}=0, \quad 2 d_{a} F A_{2}=0 \quad \text { for the type } G_{2} .
\end{gathered}
$$

When $d_{a} F \ni 1$, we have $A_{2}^{1+\sigma}=A_{3}^{\pi}=0$ and $2 A_{2}=3 A_{3}=0$ respectively.
Lemma 15. If an abelian subgroup A of U has two corners, then $|A|<\mathbf{a}(U)$.
Proof. Using the notation of lemma 14 and the representation (14) of the subgroup A, we have $F \ni 1$ and $d_{a}=d_{b}=1$ up to a diagonal automorphism. Furthermore, $\left|A: A \cap U_{2}\right|=|F|$ and $A_{4}=0$.

By Lemma 14, for the type G_{2} we have $2 A_{2}=3 A_{3}=0$. Hence, $A_{2}=0$ when $3 K=0$ and if $6 K=K$ then $A_{3}=0$ as well. In both cases, $|A|<\mathbf{a}(U)$ due to (13) and Corollary 1. Since $\left(A U_{4}\right) / U_{4}$ is an abelian subgroup of a factor group $U / U_{4} \simeq U B_{2}(K)$, using Lemma 12 in the case $2 K=0$ we have:

$$
|F|=2, \quad|A|=|F| \cdot\left|A_{2}\right| \cdot\left|U_{5}\right| \leqslant 2 \cdot|K|^{2}<\mathbf{a}(U) .
$$

For the type ${ }^{3} D_{4}$ we have $F \subseteq K_{\sigma}$, and, by Lemma $14, A_{2}^{1+\sigma}=A_{3}^{\pi}=\left(A_{2} A_{3}\right)^{\pi}=0$, and hence $A_{2} \subseteq \operatorname{Ker}(1+\sigma)$. When $2 K=K$, using Lemma 13 we find:

$$
A_{2}=0,\left|A_{3}\right| \leqslant|\operatorname{Ker}(\pi)|=\left|K_{\sigma}\right|^{2}, \quad|A|=|F| \cdot\left|A_{3}\right| \cdot\left|U_{5}\right| \leqslant\left|K_{\sigma}\right|^{4}<\mathbf{a}(U)
$$

If $2 K=0$ then by Lemma 13 we have $A_{3} \subseteq K^{1+\sigma}$ and $A_{2} \subseteq K_{\sigma}$. If $|A| \geqslant\left|U_{3}\right|$ then

$$
|A|=|F| \cdot\left|A_{2}\right| \cdot\left|A_{3}\right| \cdot\left|K_{\sigma}\right|=\left|U_{3}\right|, \quad F=A_{2}=K_{\sigma}, \quad A_{3}=K^{1+\sigma} .
$$

Thus, we may assume that a $2 a+b$-projection of $\gamma(F)$ is contained in K_{σ}. Since $\left[\gamma(F), A \cap U_{3}\right]=1$, K_{σ} also contains the $a+b$-projection of $\gamma(F)$. Hence,

$$
\langle\gamma(F)\rangle \subset U^{3} D_{4}(K) \cap U D_{4}\left(K_{\sigma}\right) \simeq U G_{2}\left(K_{\sigma}\right)
$$

and, by Lemma 12 we have $|F|=2=\left|K_{\sigma}\right|$. Then $|A|=\left|U_{3}\right|=2^{5}<2^{6}=\mathbf{a}(U)$. The lemma is proved.

The following lemma easily follows from the commutator relations for U.
Lemma 16. If $\Delta_{1}:=X_{a+b} X_{2 a+b} U_{5}$ and $\Delta_{2}:=X_{b} U_{4}$ then $T(b)=\Delta_{1} \Delta_{2}$. If U is of type G_{2} and $3 K=0$ then the center Z of U is $X_{2 a+b} U_{5}$, and the centralizer $C\left(\Delta_{1}\right)$ is $T(b)$; otherwise, $Z=U_{5}, C\left(\Delta_{1}\right)=\Delta_{2}$ and $C\left(\Delta_{2}\right)=\Delta_{1}$. Furthermore, if U is of type G_{2} and $3 K=K$ then $\Delta_{1} \simeq \Delta_{2} \simeq U T(3, K)$, else if U is of type ${ }^{3} D_{4}$ then $\Delta_{2} \simeq U T\left(3, K_{\sigma}\right)$.

Lemma 17. A large abelian subgroup A of $U G_{2}(K)$ is one of the following:
a) U_{2} or its $\left(X_{a} n_{a} \cup X_{b} n_{b}\right)$-conjugates when $3 K=0$;
b) a subgroup B-conjugate to $\left(\langle\alpha\rangle \times\left\langle\beta_{1}(1)\right\rangle\right) \cdot U_{4}$ for $|K|=2$ or 4 ;
c) a subgroup B-conjugate to $M_{1} \cdot M_{2}$ for $3 K=K,|K|>2$, M_{i} being an arbitrary maximal abelian subgroup of $\Delta_{i}, i=1,2$.

When $6 K=K$, the subgroup $M_{1} \cdot M_{2}$ coincides with U_{3} or $X_{a+b} U_{4}$ up to an automorphism of the form ς_{d} and to $\left(X_{a} n_{a}\right)$-conjugacy, and when $2 K=0$, it is $G(K)$-conjugate to $U_{3}, \beta_{d}(K) U_{4}$ or to

$$
\begin{equation*}
\left\{x_{b}(t) x_{3 a+b}(t) \mid t \in K\right\} \beta_{d}(K) U_{5} \quad(d \in K) \tag{15}
\end{equation*}
$$

Proof. Clearly, A contains the center Z. If $A \nsubseteq U_{2}$, then there exists a corner $r=a$ or b of A and a representation (14) with $d_{r}=1$ and $d_{\bar{r}}=0$; furthermore, $r+w_{\bar{r}}(r) \in G^{+}$and w_{r} induces a substitution \tilde{w}_{r} on $G^{+} \backslash\{r\}$:

$$
\tilde{w}_{a}=(b 3 a+b)(a+b 2 a+b)(3 a+2 b), \quad \tilde{w}_{b}=(a a+b)(3 a+b 3 a+2 b)(2 a+b) .
$$

For the type G_{2}, when $i=h t\left(w_{\bar{r}}(r)\right)$ and $3 K=0$ we have $A_{i}=0$ by lemma 14. Hence, Corollary 1, Lemma 12 and (13) give

$$
\begin{gathered}
T(r) \supseteq A \supseteq C(T(r))=X_{w_{r}(\bar{r})} Z=X_{w_{r}(\bar{r})} X_{2 a+b} U_{5} ; \\
A=\gamma(K) X_{w_{r}(\bar{r})} Z, \quad \gamma(K)=\left\{x_{r}(t) x_{w_{\bar{r}}(r)}(c t) \mid t \in K\right\} \bmod C(T(r)) .
\end{gathered}
$$

Having cancelled the scalar $c \in K$ with $X_{\bar{r}}$-conjugation, we map A into $n_{\bar{r}}^{-1} U_{2} n_{\bar{r}}$.
Let $3 K=K$. Then $\left(X_{a} U_{3}\right) / U_{5} \simeq U T(3, K)$, and if $2 K=K$, then $T(a) / U_{4} \simeq U T(3, K)$. By Lemma 14, either $r=a, A \supseteq U_{4}$ and $A_{3}=0=2 A_{2}$, or $r=b$ and $A_{4}=A_{2} A_{3}=0$. When two out of three projections A_{2}, A_{3} and A_{4} are zero, the remaining projection and F are both equal to K, since $|A| \geqslant\left|U_{3}\right|$. Hence

$$
A=\gamma(K) U_{4} \quad \text { when } r=a, \quad A=\gamma(K) \beta(K) U_{5} \quad \text { when } r=b,
$$

$\beta(t)$ being the coset representatives of U_{5} in $A \cap U_{2}$ where $\beta(t)=x_{q}(t) \bmod Q(q)$ for the angle q of $A \cap U_{2}$. When $r=b$ we define $\{q, s\}:=\{a+b, 2 a+b\}$. Due to Lemmas 12 and 16, there exist maps ', " and $c, d \in K$, such that

$$
\begin{gathered}
\gamma(t)=x_{b}(t) x_{s}\left(t^{\prime}\right) x_{3 a+b}(c t), \quad \beta(v)=x_{q}(v) x_{s}(d v) x_{3 a+b}\left(v^{\prime \prime}\right) \in A \quad(t, v \in K), \\
1=[\gamma(t), \beta(v)]=\left[x_{b}(t), x_{3 a+b}\left(v^{\prime \prime}\right)\right]\left[x_{s}\left(t^{\prime}\right), x_{q}(v)\right]=x_{3 a+2 b}\left(\pm 3 v t^{\prime} \pm v^{\prime \prime} t\right),
\end{gathered}
$$

and hence $t^{\prime}=1^{\prime} \cdot t$ and $v^{\prime \prime}=\left(\pm 3 \cdot 1^{\prime}\right) v$ for a suitable choise of the signs. If $q=2 a+b$ then $d=0$ and $X_{\bar{r}}$-conjugacy cancels the scalar 1^{\prime}; when $q=a+b$, the scalar 1^{\prime} is similarly defined up to addition of squares from K. Up to B-conjugacy of A we have $1^{\prime}=0$ and $A=\left(A \cap \Delta_{1}\right)\left(A \cap \Delta_{2}\right)$, $A \cap \Delta_{i}$ being arbitrary maximal abelian subgroups of $\Delta_{i}, i=1,2$.

When $6 K=K$, the exceptional automorphism from [17, Theorem 1] of the group U cancels the scalar c in $A \cap \Delta_{2}$, and the U-conjugacy implies either $n_{a}^{-1} A n_{a}=U_{3}$ or $X_{a+b} U_{4}$. With a glance of Lemma 12, when $r=a$ we are able to cancel the $a+b$ - and $2 a+b$-projections in $\gamma(F)$ by means of U-conjugacy; thus we transform A to the form

$$
X_{a} U_{4}=n_{b}^{-1}\left(X_{a+b} U_{4}\right) n_{b}=\left(n_{a} n_{b}\right)^{-1}\left(X_{b} X_{2 a+b} U_{5}\right) n_{a} n_{b}
$$

If $2 K=0$ then by means of diagonal $h(\chi)$-conjugacy we achieve $c=1$ (when $\chi(a)=u \in K^{*}$, $\chi(a)=u \in K^{*}, \chi(b)=u^{-1}$ and $\chi(3 a+b)=u^{2}$), obtaining A in the form (15). Similarly, when $r=a$, we obtain a subgroup

$$
\left\{x_{a}(t) x_{2 a+b}(t) \mid t \in K\right\} U_{4}=n_{b}^{-1} \beta_{1}(K) U_{4} n_{b}=\left(n_{a} n_{b}\right)^{-1} X_{b} \beta_{1}(K) U_{5} n_{a} n_{b}
$$

Finally, we find the subgroups $A=\gamma(F) \beta_{d}\left(A_{2}\right) U_{4}$, where

$$
\gamma(t)=x_{a}(t) x_{2 a+b}(c t) \quad(t \in F), \quad A_{2} \neq 0,2 K=0, \quad c, d \in K
$$

The relations

$$
1=\left[\gamma(t), \beta_{d}(v)\right]=x_{3 a+b}\left(\left(t^{2}+t d\right) v\right) x_{3 a+2 b}\left(\left(v^{2}+c v\right) t\right)
$$

show that for all $t \in F$ and $v \in A_{2}$ we have

$$
(t+d) t A_{2}=0, \quad(v+c) v F=0, \quad F=\{0, d\}, \quad A_{2}=\{0, c\}, \quad|A|=4|K|^{2}
$$

By corollary 1, we obtain $|K|=2$ or 4 . Clearly, if $|K|=2$ then $A \triangleleft U$, and up to diagonal conjugacy A has the form

$$
\begin{equation*}
\left(\left\langle x_{a}(1) x_{2 a+b}(1)\right\rangle \times\left\langle\beta_{1}(1)\right\rangle\right) \cdot U_{4} . \tag{16}
\end{equation*}
$$

For the type ${ }^{3} D_{4}$ the description is similar. If $A \subseteq T(a)$ and hence $T(a) \supseteq A \supseteq C(T(a))=U_{4}$, then A has the form

$$
\begin{equation*}
\beta\left(A_{2}\right) x_{2 a+b}\left(A_{3}\right) U_{4}, \quad \beta(v):=x_{a+b}(v) x_{2 a+b}(\tilde{v})\left(v \in A_{2}\right) \tag{17}
\end{equation*}
$$

for some map ~ : $A_{2} \rightarrow K$. Due to Lemmas 13 and 14 the commutativity of A is equivalent to the inclusion $A_{2} A_{3} \subseteq \operatorname{Ker}(\pi)=K^{1-\sigma}$. Due to the maximality of A, the projections of A_{2} and A_{3} are both K_{σ}-modules, as well as $\operatorname{Ker}(\pi)$. If one of the projections are zero or equals K then we have either $A=U_{3}$ or $A=\beta(K) U_{4}$ for ${ }^{\sim}$ from $\operatorname{End}\left(K^{+}\right)$; besides,

$$
[\beta(t), \beta(v)]=x_{3 a+2 b}\left(\pm(t \tilde{v}-\tilde{t} v)^{\pi}\right), \quad(t \tilde{v}-\tilde{t} v)^{\pi}=0(t, v \in K) .
$$

Thus, $x_{a}(d)$-conjugation transforms the subgroup $X_{a+b} U_{4}$ into $\beta(K) U_{4}$, where

$$
\tilde{t}=\overline{\bar{d}} \bar{t}+\overline{d \bar{t}}, \quad(t \tilde{v}-\tilde{t} v)^{\pi}=[d(\bar{t} \overline{\bar{v}}-\bar{v} \overline{\bar{t}}+\bar{v} \overline{\bar{t}}-\bar{t} \overline{\bar{v}})]^{\pi}=(d \cdot 0)^{\pi}=0 \quad(t, v \in K)
$$

When both K_{σ}-modules A_{2} and A_{3} are nonzero, their dimension is 1 or 2 . Up to $n_{a^{-}}$and diagonal conjugacy, the dimension of A_{2} is less or equals the dimension of A_{3}, and $1 \in A_{2}$. Therefore we may choose $s \in A_{2}$) such that

$$
A_{3} \subseteq\left(K_{\sigma}+K_{\sigma} s\right) A_{3}=A_{3}+s A_{3} \subseteq K^{1-\sigma}
$$

If the dimension of A_{3} is 2 then the inclusions turn into equalities, and multiplication by s induces a K_{σ}-linear transformation of a 2-dimensional module $K^{1-\sigma}$ with a characteristic root s. Since the field K does not contain a quadratic extension of the subfield K_{σ}, A_{2} is a 1-dimensional K_{σ}-module. Hence $A_{2}=K_{\sigma}$ and $A_{3}=K^{1-\sigma}$. It follows that $|A|=\left|U_{3}\right|$ or $|K|=8$ and A is B-conjugated to a normal subgroup of U. Moreover we now find the Thompson subgroups.

Lemma 18. For the group $U G_{2}(K),|K|>2$, and $U^{3} D_{4}(K),\left|K_{\sigma}\right|>2$, we have $J(U)=J_{e}(U)=$ U. Besides, $J_{e}(U)=1$ and $J(U)=T(a)$ in $U^{3} D_{4}(8)$ and

$$
J_{e}(U)=1, J(U)=<\alpha>\times<\alpha^{n_{b}}>, \quad \alpha=x_{a}(1) x_{2 a+b}(1) \text { in } U G_{2}(2) .
$$

Remark 1 from § 2, [10] and Lemma 18 give Theorem 2.
The investigations are supported by the RFBR (project 12-01-00968)

References

[1] A.I.Mal'tsev, Commutative subalgebras in semisimple Lie algebras, Izv. Akad. Nauk SSSR. Ser. Mat., 9(1945), no. 4, 291-300 (in Russian).
[2] A.S.Kondratiev, Subgroups of finite Chevalley groups, Uspekhi Mat. Nauk, 41(1986), 65-118 (in Russian).
[3] E.P.Vdovin, Maximal orders of abelian subgroups in finite Chevalley groups, Math. Notes, 69(2001), no. 4, 475-498.
[4] E.P.Vdovin, Large abelian unipotent subgroups of finite Chevalley groups, Algebra and Logic, 40(2001), no. 5, 292-305.
[5] V.M.Levchuk, G.S.Suleimanova, The normal structure of unipotent subgroups in Lie-type groups and related questions, Doklady Mathematics, 77(2008), no. 2, 284-287.
[6] V.M.Levchuk, G.S.Suleimanova, Automorphisms and normal structure of unipotent subgroups of finitary Chevalley groups, Proceed. of the Steklov Inst. Math., Suppl. 3, 2009, 118-127.
[7] V.M.Levchuk, G.S.Suleimanova, The normal structure of the unipotent subgroup in Lietype groups and its extremal subgroups, J. Math. Sci., 185(2012), no. 3, 448-457.
[8] V.M.Levchuk, G.S.Suleimanova, Extremal and Maximal Normal Abelian Subgroups of a Maximal Unipotent Subgroup in Lie Type Groups, J. Algebra, 349(2012), no. 1, 98-116.
[9] G.S.Suleimanova, On conjugacy in a Chevalley group of large abelian subgroups of the unipotent subgroup, J. Math. Sci., 169(2010), no. 5, 696-704.
[10] G.S.Suleimanova, Conjugacy in a finite Chevalley group of type E_{8} of large abelian unipotent subgoups, J. Siberian Federal Univ., Math. \& Physics, 4(2011), no. 4, 536-540.
[11] G.S.Suleimanova, Classes of conjugated in a Chevalley group of type F_{4} large abelian subgroups in the unipotent subgroup, Vladikavkaz Math. J., 13(2011), no. 2, 45-55 (in Russian).
[12] G.S.Suleimanova, Exceptional large unipotent abelian subgroups in groups of Lie type, Vestnik SibSAU, 44(2012), no. 4, 82-86 (in Russian).
[13] R.Carter, Simple groups of Lie type, New York, Wiley and Sons, 1972.
[14] R.Steinberg, Lections on Chevalley groups, Yale University, 1967.
[15] V.M.Levchuk, G.S.Suleymanova, T.Yu.Voitenko, Some questions for the unipotent subgroup of the Chevalley group, Abstr. of int. conf. "Algebra and its applications", Krasnoyarsk, SibFU, 2007, 168-169.
[16] C.K.Gupta, V.M.Levchuk,Yu.Yu.Ushakov, Hypercentral and monic automorphisms of classical algebras, rings and groups, J. Siberian Federal Univ., Math. \&Physics, 1(2008), no. 4, 280-290.
[17] V.M.Levchuk, Automorphisms of unipotent subgroups of Chevalley groups, Algebra and Logic, 29(1990), 97-112 (I), 211-224 (II).
[18] N.Bourbaki, Groupes et algebres de Lie (Chapt. IV-VI), Hermann, Paris, 1968.

Подгруппы Томпсона и большие абелевы унипотентные подгруппы групп лиева типа

Владимир М. Левчук
 Галина С. Сулейманова

[^1]
[^0]: *vlevchuk@sfu-kras.ru
 †suleymanova@list.ru
 (C) Siberian Federal University. All rights reserved

[^1]: Пусть U - унипотентный радикал подгруппъ Бореля группъ лиева типа над конечным полем. Для классических типов подгруппъ Томпсона и большие абелевы подгруппы групп U были описаны к середине 1980-х годов. Мы завершаем решение известной проблемы их описания для исключительных лиевых типов.

 Ключевые слова: группа лиева типа, унипотнтная подгруппа, большая абелева подгруппа, подгруппа Томпсона.

