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Let U be a unipotent radical of a Borel subgroup of a Lie-type group over a finite field. For the classical

types the Thompson subgroups and large abelian subgroups of the group U were found to the middle

1980’s. We complete a solution of well-known problem of their description for the exceptional Lie-types.
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Introduction

It is well-known that similarly to A.I.Mal’cev’s schema from [1] the problem of enumeration
of the large abelian subgroups of a Lie-type group G over a finite field is reduced to the same
problem for the unipotent radical U of the Borel subgroup of G. The problem has been under
active investigation since 1970’s. For classical types the sets A(U) of large abelian subgroups
of U were found by the middle 1980’s, as well as the subsets AN (U) of normal subgroups and
Ae(U) of elementary abelian subgroups and, also, the Thompsons subgroups

J(U) = 〈A | A ∈ A(U)〉, Je(U) = 〈A | A ∈ Ae(U)〉.

In 1986 A.S.Kondratiev singled out in his survey [2, (1.6)] the following problem:

Problem (A): Describe the sets A(U), AN (U), Ae(U) and the Thompson subgroups J(U) and
Je(U) for the remaining cases of G.

The present paper summarizes the investigations of this problem, carried out by E.P.Vdovin
[3, 4], the authors [5–8] and G.S.Suleimanova [9–12].

1. Preliminaries

A Chevalley group Φ(K) over a field K, associated with a root system Φ, is generated
by the root subgroups Xr = xr(K), r ∈ Φ; the root subgroups taken for the positive roots
r ∈ Φ+ generate the unipitent subgroup U = UΦ(K). A twisted group mΦ(K) is defined as the
centralizer in Φ(K) of a twisting automorphism θ of order m = 2 or 3. For a twisted group we
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have U = UmΦ(K) := mΦ(K)∩UΦ(K). Besides, θ is a superposition of a graph automorphism
τ ∈ Aut Φ(K) and a field automorphism σ : t → t̄ (t ∈ K), and for the only continuation ¯ on
Φ of a symmetry of a Coxeter graph of order m we have θ(Xr) = τ(Xr) = Xr̄ (r ∈ Φ) [13, 14].

Given a group-theoretic property P, every P-subgroup of the highest order is called a
large P-subgroup. Developing the A.I.Maltsev’s approach [1], E.P.Vdovin has mainly calculated
[4, Concluding table] the orders a(U) of large abelian subgroups of finite groups U = UG(K)

(G = Φ or G = mΦ) and those of Thompson subgroups.
Having described the maximal normal abelian subgroups of U , the authors ( [5, 6, 8]) also

described the large normal abelian subgroups of finite groups U by showing that they form the
set AN (U). (In general, a large normal P-subgroup of a finite group is not a large P-subgroup.)
It allows us [8] to complete (for types G2,

3D4 and 2E6) the calculation of the orders a(U). In [6]
the problem (A) is reduced to the question:

Describe the groups U , in which every large abelian subgroup is G(K)-conjugate to a normal
subgroup of U and enumerate all the exceptional large abelian subgroups of the remaining groups
U ( [15,16]).

See the exceptions in [6, 9] and [12]. In [8] the authors proved

Theorem 1. Either every large abelian subgroup of U is G(K)-conjugate to a normal subgroup
of U or G(K) is of type G2,

3D4, F4 or 2E6.

G.S.Suleimanova described the exceptional large abelian subgroups for the type F4 in [9, 11]
and those for the type 2E6 in Section 2 and [12]. In Section 3 we complete this description for
the types G2 and 3D4.

Twisted groups mΦ(K) required further development of the methods [1]. For the types 3D4

and 2E6 there exists a homomorphism ζ from the lattice of the root system Φ to the lattices of
the systems of types G2 and F4 respectively; the preimages of the elements of ζ(Φ) being the ¯
-orbits in Φ.

Let mΦ = ζ(Φ). For any a ∈ ζ(Φ) is defined the root subgroup Xa of mΦ(K). Similarly
to [17] and [8], we have Xa = xa(Kσ), Kσ := Ker (1 − σ) when ζ−1(a) is an ¯-orbit of length 1;
in the remaining cases Xa = xα(K). Then U = UG(K) = 〈Xr | r ∈ G+〉, where G = Φ or mΦ.
The standard central series is U = U1 ⊇ U2 ⊇ · · · [13]. Let {r}+ be the set of all s ∈ G+ for
which the coefficients in the decomposition of s − r in Π(G) are all nonnegative. Set

T (r) := 〈Xs | s ∈ {r}+〉, Q(r) := 〈Xs | s ∈ {r}+, s 6= r〉 (r ∈ G).

If H ⊆ T (r1)T (r2) . . . T (rm) and the inclusion fails under every substitution of T (ri) by Q(ri)
then L(H) = {r1, r2, · · · , rm} is said to be the set of corners of H. Also, L1(H) denotes the set
of first corners for all elements of H.

We fix a regular order of the roots, compatible with the root height function [13, Lemma 5.3.1].
Each element γ of U permits a unique compatible (canonical) decomposition into a product of
root elements xr(γr) (r ∈ G+), [14, Lemma 18]. The coefficient γr is called an r-projection of
the element γ. Obviously, the first corner of γ corresponds to the first multiplier in its canonical
decomposition.

We use usual notation from [13]: h(χ) for diagonal automorphisms, nr for monomial elements
and the subgroups Ur = 〈Xr | r ∈ G+ \ {r}〉, r ∈ Π(G). For the root systems of types En and
F4 simple roots are denoted by α1, α2, · · · , similarly to [18, Tables V-VIII].

Refining [4, Table 4], the following theorem completes the description of Thompson subgroups.

Theorem 2. Let K be a finite field and U = UG(K). Then:
a) J(U) = Je(U) = U in UG2(K), |K| > 2, and in U3D4(K), |Kσ| > 2;
b) Je(U) = 1 and J(U) = T (a) in U3D4(8);
c) Je(U) = 1, J(U) =< α > × < αnb >,α = xa(1)x2a+b(1) in UG2(2);
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d) J(U) = Je(U) = Uα1
in U2E6(K);

e) J(U) = Je(U) = Uα7
∩ Uα8

in UE8(K).

2. Large Abelian Subgroups of Groups U of Type 2
E6

In this section we suppose U = U2E6(K). For the root system Φ of type E6 the corresponding
system mΦ = ζ(Φ) = G is of type F4. According to Section 1, the group U is generated by the
root subgroups Xa = xa(Kσ) for all long roots a ∈ G+ (the first type) and Xa = xa(K) for
all short roots a ∈ G+. For the system of type F4 see also the diagram of the positive roots
from [17] or [8]. Use the notation abcd for the root aα1 + bα2 + cα3 + dα4 of the system of type
F4 (α1, α2, α3, α4 are simple roots) similarly to [18, Table VIII]. For certain maps ˜ : K → K
and ˆ : K → K we choose the following subgroups in the group U :

{x1111(t)x1231(t̃) | t ∈ K}{x1121(u)x1221(û) | u ∈ K} · T (0122), (1)

X1111(Kσ){x1121(t)x1221(t̃) | t ∈ K}X1231(K
1−σ)T (0122), (2)

X1111(Kσ)X1121(Kσ)X1221(K
1−σ)X1231(K

1−σ)T (0122), (3)

{x1121(t)x1221(t̃) | t ∈ K}X1231T (0122), (4)

{x1121(t)x1221(ct) | t ∈ Kσ}X1221(K
1−σ)X1231T (0122), c 6∈ Kσ, (5)

T (0122)U6, (6)

(T (0121) ∩ E6(Kσ))U7. (7)

Let G(K) = 2E6(K). The aim of this section is to prove that, up to G(K)-conjugacy, the
subgroups (1) – (6) for 2K = K and the subgroup (7) for 2K = 0 are all large abelian subgroups
of U .

We need the following lemma [8, Lemma 4.4].

Lemma 1. If [xr(F ), xs(V )] ⊆ Q(r + s) in the group U for F, V ⊆ K, FV 6= 0, then r + s is of
the first type, r and s are not of the first type, and, up to a diagonal automorphism conjugacy,
F ⊆ Kσ, V ⊆ K1−σ.

According to A.I. Mal’cev [1], a subset Ψ of Φ+ is said to be abelian if r+s 6∈ Φ for all r, s ∈ Ψ.
A subset Ψ of Φ+ is said to be p-abelian (E.P. Vdovin [4]), if for all r, s ∈ Ψ either r + s ∈ Φ and
the structure constant C11rs in the Chevalley formula is zero in characteristic p, or r + s 6∈ Φ.
The maximal 2-abelian subsets for type F4 are listed in [4, Table 3]. The table contains 7 rows
and 13 columns, so the subsets are denoted by Ψi,j (i is the row number and j is the column
number). In particular, Ψ2,12 = {0121}+ := Ψ1 and also Ψ2 = {1111}+ ∪ {0122}+, Ψ3 =
{0011, 0111, 1111, 1231} ∪ {0122}+ are Ψ2,13,Ψ6,10, respectively. Using [4] we easily obtain the
following lemma.

Lemma 2. Each maximal 2-abelian subset of the root system of type F4 either coincides with
one of the sets Ψ1,j, Ψ4,j (1 6 j 6 13) of order 10, or is W -conjugate to one of the sets Ψi, Ψ̄i

of order 11 for i = 1, 2 or 3.

Let m(x) := L1(x) (x ∈ U). The following three lemmas is proved in [12].

Lemma 3. Let A be a large abelian subgroup of U of type 2E6. Then for all x, y ∈ A, x, y 6= 1,
the subset {m(x),m(y)} of Φ of type F4 is 2-abelian and, if m(x) + m(y) ∈ Φ, then the m(x)-
projections of all elements of A with the first corner m(x) are contained in a 1-dimentional
Kσ-module.
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Lemma 4. Let A be a large abelian subgroup of U of type 2E6, Ψ be a maximal 2-abelian subset
of the root system of type F4 and let L1(A) ⊆ Ψ. Then:

a) if {r1, r2, r3} ⊆ Ψ, ri + rj ∈ Φ and C11,ri,rj
= ±2 for all i 6= j then the subset {r1, r2, r3}

is contained in L1(A),
b) if r + s ∈ Φ for the roots r, s ∈ Ψ, C11,r,s = ±2, and the pair r, s is not contained in any

triple from a), then r ∈ L1(A) or s ∈ L1(A);
c) if Ψ contains a root r such that (r + Ψ) ∩ Φ = ∅ then r ∈ L1(A).

Lemma 5. If Ψ is a maximal 2-abelian subset of type F4, for which there exists a large abelian
subgroup A such that m(A) ⊆ Ψ, then Ψ is W -conjugate to Ψ1 when 2K = 0 or to Ψ2 when
2K = K. Furthermore, all such sets Ψ are exhausted, respectively, by the sets

Ψ2,9,Ψ2,12,Ψ3,1,Ψ3,7,Ψ3,12,Ψ5,1,Ψ5,3,Ψ5,6,Ψ5,8,Ψ5,9,Ψ5,13,Ψ6,4,Ψ6,11,Ψ7,1;
Ψ2,10,Ψ2,11,Ψ2,13,Ψ3,13,Ψ5,2,Ψ5,4,Ψ5,5,Ψ5,7,Ψ6,7,Ψ7,2,Ψ7,3.

Now we consider a large abelian subgroup A of U = U2E6(K).

Lemma 6. If A has a simple corner p then A ⊆ T (p) and p 6= α1.

Proof. In the canonical decomposition of elements of U we use the regular order of the system
Φ, defined by the order α1 < α2 < α3 < α4 of the simple roots. Note that the inverse order is
also regular.

Suppose that A has at least two simple corners p < q. None of the sets Ψi,j from Lemma 5
contains α1, so we get p > α1. Suppose that q = α4. If we replace the regular order of Φ by the
inverse order then L1(A) will contain α4 and, by Lemma 5, L1(A) is contained in one of the sets
Ψ5,4, Ψ5,5, Ψ5,6 for 2K = K or Ψ5,3, Ψ5,6, Ψ5,8, Ψ5,9 for 2K = 0. Each of these sets contains
the root 1242. This root is the only root in Φ+ of height 9. By Lemma 4, c), the root 1242 is
contained in L1(A). It is clear, that if there exists an element in A ∩ T (r) with the corner r,
then r ∈ L1(A) for any regular order of Φ. Therefore, the roots α2 and α4 can not be corners in
A simultaneously. If q = α3 then similarly 1242 ∈ L1(A). Therefore, the case p = α2, q = α3 is
also impossible.

In the remaining case p = α3, q = α4, by Lemmas 5, 4 and [4, table 3], we get 1122 ∈ L1(A)
for the inverse order of Φ. Therefore, for the initial order, the set L1(A) contains a root of height
6. However, this root and the root α3 can not be contained in L1(A) simultaneously, by Lemma
5 and [4, table 3]. Therefore, in all cases the subgroup A can have only one simple corner.

Let A have a simple corner αi and A ⊆ Xαi
U2. Suppose that A * T (αi). Then A has

the corner 0011 for i = 2, so An4 has the simple corners α2 and α3. If i = 3 then A has
the corner 1100, therefore, An1 has the corners α2 and α3. If i = 4 then A has a corner
r ∈ {1100, 0110, 1110, 0120, 1120, 1220}. In the first and second cases An2 has the corner α1 or
α3, respectively, and the corner α4. The third case is reduced to the second case by n1-conjugacy.
In the fourth case An3 has a corner α2 and An3 6⊆ T (α2); this gives a contradiction with the
proved above. The fifth case is reduced to the fourth case by a n1-conjugacy. The sixth case is
reduced to the fifth case by a n2-conjugacy. 2

Similarly we obtain the following two lemmas.

Lemma 7. If A has a corner r of height 2, then A ⊆ T (r) and r 6= 1100.

Lemma 8. If A has a corner r of height 3, then:
a) A ⊆ T (r) for r = 0111;
b) A ⊆ T (1110)T (0120) for r = 0120;
c) A ⊆ T (1110)T (0122) for r = 1110 and A ⊆ X1110U4.

Lemma 9. Each large abelian subgroup of U is G(K)-conjugate to a subgroup of U2.

– 66 –



Vladimir M. Levchuk, Galina S. Suleimanova Thompson Subgroups and Large Abelian Unipotent ...

Proof. Let A be a large abelian subgroup in U and A * U2. By Lemma 6, there exists a
simple corner p 6= α1 in A and A ⊆ T (p). If p = α2 then L1(A) is contained in one of the
sets Ψ2,9, Ψ3,1 for 2K = 0 or Ψ2,10, Ψ2,11 for 2K = K, and 1100, 1222 ∈ L1(A), by lemma 5.
Therefore for arbitrary non-zero elements t, u ∈ Kσ and suitable ti, ui ∈ K there exist elements
x, y ∈ A such that

x = x1100(t)x0110(t1)x1110(t2)x0120(t3)x0111(t4) mod U4,
y = x1222(u)x1232(u1)x1242(u2) mod U10.

(8)

If t1 6= 0 for all elements of the form (8) then in the inverse order we have 0110 ∈ L1(A).
However, the sets Ψ2,11 and Ψ3,1 do not contain this root. Since

[x, y] = x1342(ut3 ± (ū1t1 + u1t̄1)) mod U11,

we have t3 = 0 for t1 = 0. So, there exists an element x′ ∈ A such that

x′ = x1100(t)x1110(t2)x0111(t4) mod U4

and hence
x′ = x1100(t)x1110(t2)x0111(t4)x1120(t5)x1111(t6)x0121(t7) mod U5

for some t5, t6, t7 ∈ K. We may cancel t2 by Xα3
-conjugacy. Moreover,

(x′)xα3
(y) = x1100(t)x1110(t2 + ty)x0111(t4)x1120(t5 ± tyȳ ± (t2ȳ)1+σ)

x1111(t6)x0121(t
′

7) =
= x1100(t)x1110(ty)x0111(t4)x1120(t5 ± tyȳ)x1111(t6)x0121(t

′

7) mod U5 (y ∈ K).

If y ∈ K and K♯ = 〈y〉 then K♯
σ = 〈yȳ〉. Therefore we can choose y such that tyȳ = ∓t5. So,

we can transform x′ by an U -conjugacy to the form

x′ = x1100(t)x1110(ty)x0111(t4)x1111(t6)x0121(t
′

7) mod U5 (y ∈ K).

Then
(x′)n3 = x1110(ty)x0111(t

′

7)x1120(t)x1111(t
′

6)x0121(t4) mod U5 (y ∈ K).

Suppose that t′7 6= 0. Then in the inverse order we get 0111 ∈ L1(A
n3) and L1(A

n3) = Ψ3,1 for
2K = 0 or L1(A

n3) ⊆ Ψ2,10 for 2K = K. In the first case 1111 ∈ L1(A
n3). Therefore, in the

initial order, the set L1(A
n3) (= Ψ2,9) must contain a root of height 4; so we get a contradiction

with [4, Table 3]. In the second case, due to inclusion 0111 ∈ L1(A
n3) we get that the 1231-

projection of the set of all elements z ∈ An3 with m(z) = 1231 can not coincide with K, by
lemma 1. Hence, in the initial order, L1(A

n3), which is contained in Ψ2,11, must contain the
root 1111. Since in the inverse order L1(A

n3) ⊆ Ψ2,10 then the set Ψ2,10 must contain a root of
height 4, and we also get a contradiction with [4, Table 3]. Consequently,

(x′)n3 = x1110(ty)x1120(t)x1111(t
′

6)x0121(t4) mod U5 (y ∈ K).

By U -conjugacy, we get t′6 = 0 and for some ui ∈ K we obtain the equality

(x′)n3n4 = x0120(u1)x1120(u2)x1111(u3)x0121(u4) mod U5 (u3 6= 0).

We may assume that u1 = 0 because otherwise 0120 ∈ m(An3n4) and α2 6∈ L1(A
n3n4),

see [4, Table 3]. Moreover, u2 = 0, since otherwise 1120 ∈ L1(A
n3n4) and α2 6∈ L1(A

n3n4). Also,
u4 = 0, since otherwise in the inverse order of G we have 0121 ∈ L1(A

n3n4) and α2 6∈ L1(A
n3n4).

Note that 1220 ∈ Ψ2,9 ∩ Ψ2,10 ∩ Ψ2,11 ∩ Ψ3,1. By Lemma 4, 1220 ∈ L1(A
n3n4) and the 1220-

projection of the elements y with m(y) = 1220 coincides with Kσ. Thus, if An3n4 has a corner
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α2, then we may assume that the 1220-projection of (x′)n3n4 is zero, up to a multiplication by
a suitable element y. Applying the U - and n3-conjugation to (x′)n3n4 , we get an element of the
form

x1121(v1)x0122(v2) mod U6 (v1 6= 0).

Hence 1121 ∈ L1(A
n3n4n3). It follows α2 6∈ L1(A

n3n4n3) and An3n4n3 ⊆ U2.

If p = α3 then we get 1231 ∈ L1(A), by Lemma 5. The relation

1 = [A ∩ U7, A] = [A ∩ U7,Xα3
∩ (AU2)] mod U9

shows that A ∩ U7 = A ∩ T (1231). Up to Xα4
-conjugacy, A ∩ (X1231U9) has an element γ with

the corner 1231. Since 1 = [γ,A] mod U9, we have A ⊆ Xα3
T (0110) and An4 ⊆ U2. Similarly

we consider the case p = α4. 2

Analogously we proved

Lemma 10. Any large abelian subgroup of U is G-conjugate to a subgroup of U3 and even to a
subgroup of U4.

Finally we get that either 2K = K and the subgroup A is G-conjugate to ones from (1) - (6)
or 2K = 0 and A is G-conjugate to the normal subgroup (7).

Remark 1. Taking into account that (1) – (7) are abelian subgroups, we obtain the equalities
A(U) = Ae(U) and J(U) = Je(U) = Uα1

for the group U = U2E6(K). All large abelian
subgroups of the group UF4(K) are described in [9] and [11].

3. Large Abelian Subgroups of Groups U of Type G2 and
3
D4

According to § 1, the root elements xr(t) of the groups U of type G2 and 3D4 match the
roots of the system G2. Choosing its simple roots a and b such that |a| < |b|, we use a hyper-
central automorphism ςd (d ∈ K) of a group U (see [17]), for which ςd(xb(t)) = xb(t)x3a+b(2dt)
mod U5 (t ∈ K). We set

α := xa(1)x2a+b(1), βc(t) := xa+b(t)x2a+b(tc). (9)

We now prove the following theorem.

Theorem 3. Each large abelian subgroup of the group U = UG2(K) is G2(K)-conjugate to one
of the following subgroups:
a) a normal large abelian subgroup of U ;
b) an image under some automorphism ςd (d ∈ K) of a subgroup, which is (Xana)-conjugate to
U3 or Xa+bU4 for 6K = K;

c) {xb(t)x3a+b(t) | t ∈ K}βd(K)U5 (d ∈ K) for even |K| > 2; (10)

d) 〈α, β1(1)〉U4 for |K| = 4.

The proof of the theorem is based on a number of lemmas.
In [5, 7, 8], the normal large abelian subgroups of U are described as large normal abelian

ones. The following lemma follows from [8].

Lemma 11. If the group U is of type G2 then the set AN (U) consists of

U3 and βc(K)U4 (c ∈ K) for even |K| > 2, U3 for 6K = K,
U2 for 3K = 0, 〈α〉 × 〈β1(1)〉 for |K| = 2.
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Up to diagonal automorphisms, normal large abelian subgroups of the group U3D4(K), are ex-
hausted by the groups:

U3 and βc(Kσ) · x2a+b(K
1+σ) · U4 (c ∈ Kσ) for even |Kσ| > 2,

U3 for 2K = K, 〈α〉 × 〈β1(1)〉 × x2a+b(K
1+σ) for |Kσ| = 2.

Corollary 1. The order a(U) of large abelian subgroups of the group U = UG(K) of type G2 or
3D4 equals |U3|, except the cases |K| = 2 or 3K = 0 for the group UG2(K) where a(U) = |K|4

and the group U3D4(8) where a(U) = 26.

Due to [6, Theorem 2], the group U of type G2 satisfies the following isomorphisms: U/U3 ≃
UA2(K) and U/U4 ≃ UB2(K). The following lemma is well known for the group UA2(K) ≃
UT (3,K).

Lemma 12. Let A be a maximal abelian subgroup and Z be the center of the group UΦ(K).
Then A = {xa(t)xb(ct)|t ∈ K}Z (c ∈ K) or T (b) for the type A2. For the type B2 we have
A = T (b) or A is B-conjugate either to XaZ or for the cases 2K = K and 2K = 0 to the
subgroup, respectively,

{xa(t)xb(t)xa+b((t
2 − t)/2 | t ∈ K)}Z, 〈xa(1)xb(1)〉Z. (11)

Proof. The center Z of the group U of type B2 equals U3 for 2K = K or U2 for 2K = 0. If
there exists an element γ ∈ A having two corner, then up to B-conjugation we may suppose that
γ = xa(1)xb(1). Choosing an arbitrary element β = xa(t)xb(t

′)xa+b(t
′′) mod U3 of A, we find

1 = [β, γ] = xa+b(t
′ − t) mod U3, t′ = t (t ∈ K);

[β, γ] = [xa(t), xb(1)][xb(t), xa(1)][xa+b(t
′′), xa(1)] = x2a+b(2t

′′ + t − t2).

(The signs of the structural constants are chosen according to [6, Theorem 2].) If 2K = 0 then
t2− t = 0 and β ∈ 〈γ〉Z When 2K = K we have t′′ = (t2− t)/2 and hence A is the first subgroup
in (11). 2

Setting π := 1 + σ + σ2 for the type 3D4 we require the following lemma.

Lemma 13. If 2K = K, then Ker (1 + σ) = 0. In the general case we have:

K = K1+σ + Kσ, Kσ ∩ K1+σ = 2Kσ, Kπ = Kσ, Ker (π) = K1−σ.

Proof. If v̄ = −v, then ¯̄v = −v̄ = v, v = v̄ ∈ Kσ and 2v = 0. If 2K = K then Ker (1+σ) = 0.
Since for any Kσ-linear transformation of the field K the sum of the rank and defect equals 3,
the remaining statements of the lemma easily follow from relations

K ⊇ K1+σ + Kπ ⊇ Kσ2

= K, 0 = 1 − σ3 = (1 − σ)π = π(1 − σ). 2

The order of a subgroup A of a group U = UG(K) of type G2 or 3D4 may be estimated using
the orders of intersections of the projections Ai:

A ∩ Ui = xr(Ai) mod Ui+1, 1 < ht(r) = i 6 5; (12)

|A| = |A : A ∩ U2| · |A2| · |A3| · |A4| · |A5|. (13)

Lemma 14. Let A be an abelian subgroup of U . Then there exist elements da, db ∈ K and an
additive subgroup F ⊂ K such that dbFA4 = 0, and

A = γ(F ) · (A ∩ U2), γ(t) = xa(dat)xb(dbt) mod U2 (t ∈ F ). (14)

For the type 3D4 and G2 we have (A2A3)
π = 0 and 3A2A3 = 0, respectively. When daF ∋ 1 we

have A1+σ
2 = Aπ

3 = 0 and 2A2 = 3A3 = 0, respectively.
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Proof. Recall that (AU2)/U3 is an abelian normal subgroup of the factor group U/U3, which
is isomorphic to a subgroup of the unitriangular group UT (3,K). By Lemma 12 we obtain (14),
where γ(F ) is the system of representatives of cosets of the subgroup A∩U2 in A. The equalities
[A ∩ Ui, A ∩ Uj ] = 1 mod Ui+j+1 and (12) imply dbFA4 = 0 and

(A2A3)
π = 0, (daFA3)

π = 0, (daFA2)
1+σ = 0 for the type 3D4,

3A2A3 = 0, 3daFA3 = 0, 2daFA2 = 0 for the type G2.

When daF ∋ 1, we have A1+σ
2 = Aπ

3 = 0 and 2A2 = 3A3 = 0 respectively. 2

Lemma 15. If an abelian subgroup A of U has two corners, then |A| < a(U).

Proof. Using the notation of lemma 14 and the representation (14) of the subgroup A, we
have F ∋ 1 and da = db = 1 up to a diagonal automorphism. Furthermore, |A : A ∩ U2| = |F |
and A4 = 0.

By Lemma 14, for the type G2 we have 2A2 = 3A3 = 0. Hence, A2 = 0 when 3K = 0 and
if 6K = K then A3 = 0 as well. In both cases, |A| < a(U) due to (13) and Corollary 1. Since
(AU4)/U4 is an abelian subgroup of a factor group U/U4 ≃ UB2(K), using Lemma 12 in the
case 2K = 0 we have:

|F | = 2, |A| = |F | · |A2| · |U5| 6 2 · |K|2 < a(U).

For the type 3D4 we have F ⊆ Kσ, and, by Lemma 14, A1+σ
2 = Aπ

3 = (A2A3)
π = 0, and

hence A2 ⊆ Ker (1 + σ). When 2K = K, using Lemma 13 we find:

A2 = 0, |A3| 6 |Ker (π)| = |Kσ|
2, |A| = |F | · |A3| · |U5| 6 |Kσ|

4 < a(U).

If 2K = 0 then by Lemma 13 we have A3 ⊆ K1+σ and A2 ⊆ Kσ. If |A| > |U3| then

|A| = |F | · |A2| · |A3| · |Kσ| = |U3|, F = A2 = Kσ, A3 = K1+σ.

Thus, we may assume that a 2a+b-projection of γ(F ) is contained in Kσ. Since [γ(F ), A∩U3] = 1,
Kσ also contains the a + b-projection of γ(F ). Hence,

〈γ(F )〉 ⊂ U3D4(K) ∩ UD4(Kσ) ≃ UG2(Kσ)

and, by Lemma 12 we have |F | = 2 = |Kσ|. Then |A| = |U3| = 25 < 26 = a(U). The lemma is
proved. 2

The following lemma easily follows from the commutator relations for U .

Lemma 16. If ∆1 := Xa+bX2a+bU5 and ∆2 := XbU4 then T (b) = ∆1∆2. If U is of type G2

and 3K = 0 then the center Z of U is X2a+bU5, and the centralizer C(∆1) is T (b); otherwise,
Z = U5, C(∆1) = ∆2 and C(∆2) = ∆1. Furthermore, if U is of type G2 and 3K = K then
∆1 ≃ ∆2 ≃ UT (3,K), else if U is of type 3D4 then ∆2 ≃ UT (3,Kσ).

Lemma 17. A large abelian subgroup A of UG2(K) is one of the following:
a) U2 or its (Xana ∪ Xbnb)-conjugates when 3K = 0;
b) a subgroup B-conjugate to (〈α〉 × 〈β1(1)〉) · U4 for |K| = 2 or 4;
c) a subgroup B-conjugate to M1 · M2 for 3K = K, |K| > 2, Mi being an arbitrary maximal
abelian subgroup of ∆i, i = 1, 2.

When 6K = K, the subgroup M1 ·M2 coincides with U3 or Xa+bU4 up to an automorphism of
the form ςd and to (Xana)-conjugacy, and when 2K = 0, it is G(K)-conjugate to U3, βd(K)U4

or to
{xb(t)x3a+b(t) | t ∈ K}βd(K)U5 (d ∈ K). (15)
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Proof. Clearly, A contains the center Z. If A * U2, then there exists a corner r = a or b of A
and a representation (14) with dr = 1 and dr̄ = 0; furthermore, r + wr̄(r) ∈ G+ and wr induces
a substitution w̃r on G+ \ {r}:

w̃a = (b 3a + b)(a + b 2a + b)(3a + 2b), w̃b = (a a + b)(3a + b 3a + 2b)(2a + b).

For the type G2, when i = ht(wr̄(r)) and 3K = 0 we have Ai = 0 by lemma 14. Hence,
Corollary 1, Lemma 12 and (13) give

T (r) ⊇ A ⊇ C(T (r)) = Xwr(r̄)Z = Xwr(r̄)X2a+bU5;
A = γ(K)Xwr(r̄)Z, γ(K) = {xr(t)xwr̄(r)(ct) | t ∈ K} mod C(T (r)).

Having cancelled the scalar c ∈ K with Xr̄-conjugation, we map A into n−1
r̄ U2nr̄.

Let 3K = K. Then (XaU3)/U5 ≃ UT (3,K), and if 2K = K, then T (a)/U4 ≃ UT (3,K). By
Lemma 14, either r = a, A ⊇ U4 and A3 = 0 = 2A2, or r = b and A4 = A2A3 = 0. When two
out of three projections A2, A3 and A4 are zero, the remaining projection and F are both equal
to K, since |A| > |U3|. Hence

A = γ(K)U4 when r = a, A = γ(K)β(K)U5 when r = b,

β(t) being the coset representatives of U5 in A ∩ U2 where β(t) = xq(t) mod Q(q) for the angle
q of A ∩ U2. When r = b we define {q, s} := {a + b, 2a + b}. Due to Lemmas 12 and 16, there
exist maps ′, ′′ and c, d ∈ K, such that

γ(t) = xb(t)xs(t
′)x3a+b(ct), β(v) = xq(v)xs(dv)x3a+b(v

′′) ∈ A (t, v ∈ K),
1 = [γ(t), β(v)] = [xb(t), x3a+b(v

′′)][xs(t
′), xq(v)] = x3a+2b(±3vt′ ± v′′t),

and hence t′ = 1′ · t and v′′ = (±3 ·1′)v for a suitable choise of the signs. If q = 2a+ b then d = 0
and Xr̄-conjugacy cancels the scalar 1′; when q = a + b, the scalar 1′ is similarly defined up to
addition of squares from K. Up to B-conjugacy of A we have 1′ = 0 and A = (A∩∆1)(A∩∆2),
A ∩ ∆i being arbitrary maximal abelian subgroups of ∆i, i = 1, 2.

When 6K = K, the exceptional automorphism from [17, Theorem 1] of the group U cancels
the scalar c in A ∩ ∆2, and the U -conjugacy implies either n−1

a Ana = U3 or Xa+bU4. With a
glance of Lemma 12, when r = a we are able to cancel the a + b- and 2a + b-projections in γ(F )
by means of U -conjugacy; thus we transform A to the form

XaU4 = n−1
b (Xa+bU4)nb = (nanb)

−1(XbX2a+bU5)nanb.

If 2K = 0 then by means of diagonal h(χ)-conjugacy we achieve c = 1 (when χ(a) = u ∈ K∗,
χ(a) = u ∈ K∗, χ(b) = u−1 and χ(3a + b) = u2), obtaining A in the form (15). Similarly, when
r = a, we obtain a subgroup

{xa(t)x2a+b(t) | t ∈ K}U4 = n−1
b β1(K)U4nb = (nanb)

−1Xbβ1(K)U5nanb.

Finally, we find the subgroups A = γ(F )βd(A2)U4, where

γ(t) = xa(t)x2a+b(ct) (t ∈ F ), A2 6= 0, 2K = 0, c, d ∈ K.

The relations
1 = [γ(t), βd(v)] = x3a+b((t

2 + td)v)x3a+2b((v
2 + cv)t)

show that for all t ∈ F and v ∈ A2 we have

(t + d)tA2 = 0, (v + c)vF = 0, F = {0, d}, A2 = {0, c}, |A| = 4|K|2.
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By corollary 1, we obtain |K| = 2 or 4. Clearly, if |K| = 2 then A � U , and up to diagonal
conjugacy A has the form

(〈xa(1)x2a+b(1)〉 × 〈β1(1)〉) · U4. (16)

2

For the type 3D4 the description is similar. If A ⊆ T (a) and hence T (a) ⊇ A ⊇ C(T (a)) = U4,
then A has the form

β(A2)x2a+b(A3)U4, β(v) := xa+b(v)x2a+b(ṽ) (v ∈ A2) (17)

for some map ˜ : A2 → K. Due to Lemmas 13 and 14 the commutativity of A is equivalent to
the inclusion A2A3 ⊆ Ker (π) = K1−σ. Due to the maximality of A, the projections of A2 and
A3 are both Kσ-modules, as well as Ker (π). If one of the projections are zero or equals K then
we have either A = U3 or A = β(K)U4 for˜ from End(K+); besides,

[β(t), β(v)] = x3a+2b(±(tṽ − t̃v)π), (tṽ − t̃v)π = 0 (t, v ∈ K).

Thus, xa(d)-conjugation transforms the subgroup Xa+bU4 into β(K)U4, where

t̃ = ¯̄dt̄ + d̄¯̄t, (tṽ − t̃v)π = [d(t̄¯̄v − v̄¯̄t + v̄¯̄t − t̄¯̄v)]π = (d · 0)π = 0 (t, v ∈ K).

When both Kσ-modules A2 and A3 are nonzero, their dimension is 1 or 2. Up to na- and
diagonal conjugacy, the dimension of A2 is less or equals the dimension of A3, and 1 ∈ A2.
Therefore we may choose s ∈ A2) such that

A3 ⊆ (Kσ + Kσs)A3 = A3 + sA3 ⊆ K1−σ.

If the dimension of A3 is 2 then the inclusions turn into equalities, and multiplication by s induces
a Kσ-linear transformation of a 2-dimensional module K1−σ with a characteristic root s. Since
the field K does not contain a quadratic extension of the subfield Kσ, A2 is a 1-dimensional
Kσ-module. Hence A2 = Kσ and A3 = K1−σ. It follows that |A| = |U3| or |K| = 8 and A is
B-conjugated to a normal subgroup of U . Moreover we now find the Thompson subgroups.

Lemma 18. For the group UG2(K), |K| > 2, and U3D4(K), |Kσ| > 2, we have J(U) = Je(U) =
U . Besides, Je(U) = 1 and J(U) = T (a) in U3D4(8) and

Je(U) = 1, J(U) =< α > × < αnb >, α = xa(1)x2a+b(1) in UG2(2).

Remark 1 from § 2, [10] and Lemma 18 give Theorem 2.

The investigations are supported by the RFBR (project 12-01-00968)
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Подгруппы Томпсона и большие абелевы унипотентные
подгруппы групп лиева типа

Владимир М. Левчук

Галина С. Сулейманова

Пусть U — унипотентный радикал подгруппы Бореля группы лиева типа над конечным полем.

Для классических типов подгруппы Томпсона и большие абелевы подгруппы групп U были описаны

к середине 1980-х годов. Мы завершаем решение известной проблемы их описания для исключи-

тельных лиевых типов.

Ключевые слова: группа лиева типа, унипотнтная подгруппа, большая абелева подгруппа, под-

группа Томпсона.
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