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Given any algebra over a field with a finite number of generators, we define a first order partial differential
operator acting on functions taking their values in the algebra. While being not canonical, the construction
is fairly natural. We call this differential operator Dirac operator related to the algebra, and show some
examples. Conversely, to each homogeneous first order differential operator one assigns an algebra which
absorbs formal properties of the operator.
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Introduction

In modern mathematics there are number systems with complex units, more precisely complex
numbers, quaternions, Cayley numbers, etc. By a number system is meant any division algebra
with unity. In these systems one can fix 1, 3 or 7 elements gj , respectively, which along with
unity span the number system as real vector space.

Sometimes this does not suffice. For an arbitrary integer n > 0 one looks for structures which
contain both the real numbers and elements g1, . . . , gn and where a product is defined to satisfy
certain conditions. The elements g1, . . . , gn are called generators of the algebra.

The most remarkable structures of such a type are the Clifford and Graßmann algebras.
The former algebra discovered by W.K. Clifford (1878) is of great importance in differential
geometry and quantum physics. The latter discovered by H. Graßmann (1844) has moreover
found impressive applications in partial differential equations.

Any advanced theory of functions with values in an algebra includes a basic differential
equation whose solutions fit well to the algebraic structure. Examples are given by holomorphic
functions of a complex variable which satisfy the Cauchy-Riemann equation, or quaternionic
functions satisfying the W. Hamilton equation (1843).

The main idea of this paper is quite classical and goes as far as to Dirac (1928) who wanted
to quantise the electron. As usual by a Dirac operator is meant any matrix factorisation of the
Laplace operator. In this sense all the operators mentioned above are Dirac operators, and we
continue to use this designation for abstract algebras.
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1. Dirac operator

Through this work, by an algebra A we mean an algebra over a fixed ground field K. Thus, A is
a vector space over K along with a K -bilinear mapping A×A → A which is called multiplication
and denoted by a · b or simply ab, if it does not cause any confusion. The properties “associative,”
“commutative” or “unital” are often required without any explicit explanation.

Example 1. A familiar example is the cross product in R3. This is even a Lie algebra.

The dimension of A as a K -vector space is called the rank of the algebra A. By definition,
any algebra A of a finite rank r over K possesses a basis e1, . . . , er, and multiplication in the
algebra is completely determined by multiplication of the basis elements. Since every product
ejek is again an element of A, it can be written in the form

ejek =
r∑

i=1

ai
j,kei (1)

for j, k = 1, . . . , r.
The scalars ai

j,k are called structure constants of the algebra. They define multiplication by

( r∑
j=1

yjej

)( r∑
k=1

zkek

)
=

r∑
i=1

( ∑
j=1,...,r
k=1,...,r

ai
j,ky

jzk
)
ei.

Relations (1) give a multiplication table for the algebra A. Evidently, the structure constants
can not be given arbitrarily, for they have to guarantee the associativity law and (if required)
the existence of unity.

Any function y on an open set O ⊂ Rr with values in A can be written as

y(x) =
r∑

j=1

yj(x)ej ,

with yj a function on O with values in K. In this way y can be specified within functions on O
taking their values in Kr.

The expression

D =
r∑

j=1

ej
∂

∂xj
(2)

is called the Dirac operator for the algebra A. It acts naturally on A -valued functions by

Dy =
r∑

j,k=1

( ∂

∂xj
yk
)
ejek =

r∑
i=1

r∑
k=1

( r∑
j=1

ai
j,k

∂

∂xj

)
ykei.

When thinking of y as an r -column of K -valued functions, we arrive at a matrix representation
of D,

A =
( r∑

j=1

ai
j,k

∂

∂xj

)
i=1,...,r
k=1,...,r

. (3)

The system Ay = 0 obtained this way has several peculiarities. Firstly, it is of order 1.
Secondly, the number of equations is equal to the number of unknown functions and this just
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amounts to the number of independent variables. And thirdly, the differential operator A has
constant coefficients and is homogeneous. Hence, when trying to represent an arbitrary partial
differential operator A of order > 2 which maps functions on an open set O ⊂ Rn with values in
Kk to functions on O with values in K` in the form (2), we need to get rid of these restrictions.
Firstly, any system of partial differential equations of high order can be reduced in a familiar
way to a first order system. Secondly, one can assume without loss of generality that the number
of equations ` is greater than or equal to both k and n, for if not, we add a number of trivial
equations to the system. Set r = `. Then k < r corresponds to the case when yk+1, . . . , yr are
all zero, and n < r corresponds to the case when the unknown function y is independent of
xn+1, . . . , xr. This means in practice that suitable structural constants ai

j,k vanish. And thirdly,
in the case of variable coefficients we have to deal with an algebra bundle over O rather than
with a single algebra. Moreover, a proper choice of the matrix T (x) in the equation A(Ty) = 0
enables one in many cases to transform Ay = 0 into a homogeneous system.

We now start with a given matrix of partial differential operators of the form (3). Let A be an
r -dimensional vector space over K with the basis {e1, . . . , er}. We give A the algebra structure
by (1) where ai

j,k are defined in (3). Regarding Kr -valued functions on Rr as functions with
values in A, we introduce the differential operator (2). Then the analysis above shows that the
matrix representation of this operator is exactly (3). We have thus proved

Theorem 1. For any partial differential operator A with constant coefficients on Rn there is a
finite-dimensional algebra A over K, such that A has the form (2).

The advantage of this approach lies in the fact thatA actually absorbs the algebraic properties
of A. The study of A might highlight particular symmetry properties of the space of solutions
to Ay = 0.

2. Example for Non-Associativity

For general first order partial differential operators the algebra A need not be good. Not only is
it non-commutative or non-unital but also fails to be associative in general.

Example 2. Consider the equation

∂y1

∂x1
+
∂y2

∂x2
= 0

for two unknown functions on an open set O in R2. Setting r = 2 we obtain a matrix represen-
tation (3) of the form

A =

 ∂

∂x1

∂

∂x2

0 0

 .

Hence the algebra A is uniquely determined by the table

e1e1 = e1, e1e2 = 0;
e2e1 = 0, e2e2 = e1,

whence
(y1e1 + y2e2)(z1e1 + z2e2) = (y1z1 + y2z2)e1. (4)
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One readily sees that the algebra A is commutative but neither associative nor unital. If

D = e1
∂

∂x1
+ e2

∂

∂x2
,

y = y1e1 + y2e2,

then Dy =
(∂y1

∂x1
+
∂y2

∂x2

)
e1, i.e., the genuine differential equation just amounts to Dy = 0.

3. The Cauchy-Riemann System

The last example makes it obvious that the algebra technique is not efficient for arbitrary first
order partial differential equations. Indeed, the algebra related to the divergence equation is not
associative. Still it is of considerable interest for well motivated equations.

In 1833 W.Hamilton presented a paper for the Irish Academy in which he introduced a formal
algebra of real number pairs whose rules of combinations are precisely those for complex numbers
C. It is an algebra of rank 2 over R with basis elements e, ı and multiplication table

ee = e, eı = ı;
ıe = ı, ıı = −e.

This is an associative commutative division algebra with unity element e, i.e.., C is a field. A
function y : O → C on an open set O ⊂ R2 can be written as

y(x) = y1(x)e+ y2(x)ı,

where y1 and y2 are real-valued functions on O. In this way y can be specified within functions
on O taking their values in R2.

The associated Dirac operator D is the first order partial differential operator

D = e
∂

∂x1
+ ı

∂

∂x2

whose matrix representation is Dy 7→ Ay with

Ay =

 ∂

∂x1
− ∂

∂x2

∂

∂x2

∂

∂x1

( y1

y2

)
.

This is the classical Cauchy-Riemann system which plays a crucial role in the function theory
of one complex variable.

4. Quaternions

Consider the algebra H of quaternions introduced by W.Hamilton in 1843. It is an algebra of
rank 4 over R with basis elements e, ı, , k and multiplication table

ee = e, eı = ı, e = , ek = k;
ıe = ı, ıı = −e, ı = k, ık = −;
e = , ı = −k,  = −e, k = ı;
ke = k, kı = , k = −ı, kk = −e.
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This is an associative division algebra with unity element e. A function y : O → H on an
open set O ⊂ R4 can be written as

y(x) = y1(x)e+ y2(x)ı+ y3(x)+ y4(x)k,

the components being real-valued functions on O. In this way y can be specified within functions
on O taking their values in R4.

The associated Dirac operator D is the first order partial differential operator

D = e
∂

∂x1
+ ı

∂

∂x2
+ 

∂

∂x3
+ k

∂

∂x4

whose matrix representation is Dy 7→ Ay with

Ay =



∂

∂x1
− ∂

∂x2
− ∂

∂x3
− ∂

∂x4

∂

∂x2

∂

∂x1
− ∂

∂x4

∂

∂x3

∂

∂x3

∂

∂x4

∂

∂x1
− ∂

∂x2

∂

∂x4
− ∂

∂x3

∂

∂x2

∂

∂x1




y1

y2

y3

y4

 .

5. Clifford Algebra

Elements {g1, g2, . . .} are said to be generators of an algebra A if each element A can be rep-
resented as a linear combination with coefficients in K of products of finitely many elements
gj .

The Clifford algebra Cn is known to be a unital algebra of rank r = 2n over R with n

generators g1, . . . , gn satisfying g2
j = −e for j = 1, . . . , n and gjgk = −gkgj for all j 6= k. Clifford

algebras are associative.
The first few Clifford algebras are easy to describe, these are C0 = R, C1 = C, C0 = H. The

8 -fold periodicity of the Clifford algebras, long known to algebraists, is reminiscent of the 8 -fold
periodicity of the stable homotopy groups of the orthogonal group.

Suppose we can find n real matrices g1, . . . , gn of size N ×N satisfying g2
j = −e and gjgk =

−gkgj for all j 6= k. This corresponds to a real representation of the Clifford algebra Cn. The
associated Dirac operator is the first order linear differential operator

D = e
∂

∂x0
+ g1

∂

∂x1
+ . . .+ gn

∂

∂xn
,

e being thought of as the N ×N identity matrix.
Such a differential operators on Rn+1 has a symbol obtained by replacing ∂/∂xj by a variable√
−1ξj . The Dirac operator D is readily shown to be elliptic, this means its symbol is nonsingular

for all ξ 6= 0 in Rn+1.

6. Grassmann Algebra

In 1844 German mathematician Hermann Graßmann published the work “Die Lineale Aus-
dehnungslehre” in which is formulated a symbolic algebra far surpassing Hamilton’s quaternions
in generality. Indeed, Graßmann’s algebra is nothing less than a full n -dimensional vector calcu-
lus.
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Once again we start with a vector space V = Kg1 + . . .+ Kgn. We are interested in defining
associative multiplication of vectors satisfying vv = 0 and vw = −wv for all v, w ∈ V . To this
end we first form formal products of basis vectors g1, . . . , gn in natural order gI = gi1

1 . . . gin
n ,

where I = (i1, . . . , in) and each component i1, . . . , in takes only two values 0 and 1. Any power
g0

j is defined to be e, the unity element of K.
We take these 2n products as basis elements of some vector space Λ·V . The elements of Λ·V

are thus sums

y = y0e+
n∑

j=1

yjgj +
∑

16j<k6n

yj,kgjgk + . . .+ y1,...,ng1 . . . gn, (5)

the coefficients being elements of the field K. Multiplication in Λ·V is now uniquely defined by
two requirements: it should be associative and satisfy gjgk = −gkgj for all j, k = 1, . . . , n.

A function y : O → Λ·V on an open set O ⊂ Rn can be written as

y(x) =
∑

I

yI(x)gI ,

where the sum is over all multi-indices I = (i1, . . . , in) with components 0 and 1 and yI(x) are
K -valued functions on O. In this way y can be specified within functions on O taking their values
in K2n

.
The associated Dirac operator D is the first order partial differential operator

D = g1
∂

∂x1
+ . . .+ gn

∂

∂xn
,

which is obviously nilpotent, i.e., D2 = 0.

Example 3. For n = 3, the matrix representation of the Dirac operator D is Dy 7→ Ay with

Ay =



0 0 0 0 0 0 0 0
∂

∂x1
0 0 0 0 0 0 0

∂

∂x2
0 0 0 0 0 0 0

∂

∂x3
0 0 0 0 0 0 0

0 − ∂

∂x2

∂

∂x1
0 0 0 0 0

0 − ∂

∂x3
0

∂

∂x1
0 0 0 0

0 0 − ∂

∂x3

∂

∂x2
0 0 0 0

0 0 0 0
∂

∂x3
− ∂

∂x2

∂

∂x1
0





y0

y1

y2

y3

y4

y5

y6

y7


.

For q = 0, 1, . . . , 3, we denote by ΛqV the subspace of Λ·V spanned by the q -fold products gI ,
i.e., those with |I| = q. The basis of ΛqV consists of all gI with |I| = q put in the lexicographic
order. Then Λ·V splits into the direct sum Λ0V ⊕ . . .⊕ Λ3V which implies

Ay = 0⊕∇y0 ⊕ rot

 y1

y2

y3

⊕ ( ∂

∂x3
− ∂

∂x2

∂

∂x1

) y4

y5

y6

 ,

rot being the rotation operator.
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7. Cross Product

If the dimension n of V is odd, then the dimensions of ΛqV and Λq+1V coincide provided

q =
n− 1

2
.

We are therefore led to an algebra structure on K(n
q) related to the differential operator D of the

previous section acting on functions taking their values in the space ΛqV .
For n = 3 this just corresponds to the usual cross product on K3. In fact, the operator in

question is

Ay =


− ∂

∂x2

∂

∂x1
0

− ∂

∂x3
0

∂

∂x1

0 − ∂

∂x3

∂

∂x2


 y1

y2

y3

 ,

which is due to Example 3. The related algebra is determined by the multiplication table

e1e1 = 0, e1e2 = e1, e1e3 = e2;
e2e1 = −e1, e2e2 = 0, e2e3 = e3;
e3e1 = −e2, e3e2 = −e3, e3e3 = 0.

It is easy to see that this algebra is neither commutative nor associative while the cross
product in K3 is known to be of considerable importance both in physics and geometry.

8. Lie Algebras

While Cayley’s algebra of octonions was the first nonassociative algebra to be discovered, it is
really not much more than a mathematical curiosity. The most significant type of nonassociative
algebra, now known as a Lie algebra, was introduced in 1876 by the Norwegian mathematician
Sophus Lie. This algebras were the distillation of Lie’s study of the structure of groups of spatial
transformations, which in turn involved the idea of an infinitesimal transformation in space, that
is, one which moves any point in space an infinitesimal distance. Infinitesimal transformations
may be added and multiplied by real numbers in a natural way. Given two infinitesimal trans-
formations X and Y , we may also consider their composite XY , that is, the transformation
that results by applying first Y and then X. Now XY and Y X are in general not the same,
nor indeed are they infinitesimal transformations. However, the transformation XY − Y X is
infinitesimal. It is called the commutator or Lie product of X and Y and is written [X,Y ]. If we
regard this Lie product as a multiplication operator on infinitesimal transformations, then these
form a nonassociative algebra over R. Moreover, the Lie product satisfies the laws

1) [X,X] = 0;
2) [X,Y ] = −[Y,X];
3) [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.
Equation 3) is known as the (C. J. G.) Jacobi identity. An algebra satisfying 1), 2) and

3) is called a Lie algebra. A noteworthy example of a Lie algebra is the algebra of vectors in
3 -dimensional space with multiplication given by Graßmann’s vector product.

Lie algebras of point symmetries (shortly symmetry algebras) have become a crucial tool for
classification of differential equations and construction of explicit solutions, cf. [1].
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