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This paper provides some generalized convolutions for the Fourier integral transforms and treats the
applications. Namely, there are six generalized convolutions with weight-function for the Fourier integral
transforms. As for applications, the normed ring structures on L1(Rd) are constructed, and the explicit
solution in L1(Rd) of the integral equations with the mixed Toeplitz-Hankel kernel are obtained.

Keywords: generalized convolution, normed ring, integral equation of convolution type.

Introduction

The Fourier transform and its inverse transform are defined as:

(Ff)(x) =
1

(2π)
d
2

∫
Rd

e−i<x,y>f(y)dy, (F−1f)(x) =
1

(2π)
d
2

∫
Rd

ei<x,y>f(y)dy,

where <x, y> denotes the scalar product of x, y ∈ Rd, and f(x) is a function (real or complex)
defined on Rd. The integral transform

(f ∗
F
g)(x) =

1

(2π)
d
2

∫
Rd

f(x− y)g(y) dy

is called the Fourier convolution of the two functions f and g, and it is applied in many fields of
mathematics.

In 1940, Churchill gave an idea of the generalized convolutions of integral transforms, and
found an application for solving boundary value problems (see Churchill [1]). In 1958, Vilenkin
formulated the convolution of the integral transforms in the specific space of integrable functions
(see Vilenkin [2]). In 1967, the designated methods for convolutions and generalized convolutions
of the integral transforms were proposed by Kakichev, and in 1990 a concept of generalized
convolutions of the linear operators was first introduced (see [3, 4]). In 1998, the generalized
convolution of the Fourier-cosine and Fourier-sine transforms was presented (see [5]).
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In recent years, many papers were devoted to the well-known integral transforms for given
convolutions, generalized convolutions, polyconvolutions and their applications (see [6]–[12]).
However, there are not so many generalized convolutions for the integral transforms. Generally
speaking, each of convolutions is a new transform which can become an object of study. In
our view, the generalized convolutions and their applications deserve the interestthat they have
attracted.

The main purpose of this paper is to construct some generalized convolutions with weight for
the Fourier integral transforms.

The paper is divided into three sections and organized as follows.
In Section 1, there are six generalized convolutions with the weight being one of the functions

e−i<x,h>, ei<x,h>, cosxh, sinxh for the Fourier integral transforms. We call h the shift in the
convolution transform. One interesting fact possessed by the factorization identities of those
convolutions is that the shift in the convolution expression is only moved into the weight-function
in the right-hand-side. We think this is the main reason for the solvability of the integral equations
with different shifts as equation (2.2).

In Subsection 2.1, the linear space L1(Rd), equipped with each of the convolution multi-
plications, becomes the normed ring. In Subsection 2.2, using the convolutions in Section 1 we
investigate the integral equations with the mixed Toeplitz-Hankel kernel having shifts and obtain
explicit solutions in L1(Rd) of those equations.

1. Generalized Convolutions

The concept of generalized convolutions with weight is a nice idea focusing on the so-called
factorization identity. We now deal with this concept.

Let U1, U2, U3 be linear spaces over the field of scalars K, and let V be a commutative algebra
over K. Suppose that K1 ∈ L(U1, V ), K2 ∈ L(U2, V ), K3 ∈ L(U3, V ) are linear operators from
U1, U2, U3 to V respectively. Let θ denote an element in algebra V. The following definition is a
formulation of the idea of convolutions and generalized convolutions (see [5]).

Definition 1.1. A bilinear map ∗ : U1 × U2 :−→ U3 is called convolution with weight-element
θ for K3,K1,K2 (that in order) if K3(∗(f, g)) = θK1(f)K2(g) for any f ∈ U1, g ∈ U2. We call
K3(∗(f, g)) = θK1(f)K2(g) the factorization identity of the convolution.

The image ∗(f, g) is denoted by f
θ∗

K3,K1,K2
g. If θ is the unit of V, we say briefly the convolution

for K3,K1,K2. If U1 = U2 = U3 and K1 = K2 = K3, the convolution is denoted simply f
θ∗
K1
g,

and f ∗
K1

g if θ is the unit of V . We think the factorization identity plays the key role in the

convolution.

In what follows, we write F̌ = F−1. For any h ∈ Rd, put α(x) = e−i<x,h>, β(x) =
ei<x,h>, γ(x) = cosxh, δ(x) = sinxh. Note that (Ff)(x) = (F̌ f̌)(x) = (F f̌)(−x).
Theorem 1.1 presents some generalized convolutions with weight-function for the Fourier integral
transforms F, F̌ .

Theorem 1.1. If f, g ∈ L1(Rd), then each of the integral transforms (1.1), (1.2), (1.3), (1.4),
(1.5), (1.6) below defines the generalized convolution followed by its factorization identity:

(f
α∗
F
g)(x) =

1

(2π)
d
2

∫
Rd

f(x− y − h)g(y)dy, (1.1)
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F (f
α∗
F
g)(x) = α(x)(Ff)(x)(Fg)(x).

(f
β
∗̌
F
g)(x) =

1

(2π)
d
2

∫
Rd

f(x− y − h)g(y)dy, (1.2)

F̌ (f
β
∗̌
F
g)(x) = β(x)(F̌ f)(x)(F̌ g)(x).

(f
α∗

F,F,F̌
g)(x) =

1

(2π)
d
2

∫
Rd

f(x+ y − h)g(y)dy, (1.3)

F (f
α∗

F,F,F̌
g)(x) = α(x)(Ff)(x)(F̌ g)(x).

(f
β
∗

F̌ ,F̌ ,F
g)(x) =

1

(2π)
d
2

∫
Rd

f(x+ y − h)g(y)dy, (1.4)

F̌ (f
β
∗

F̌ ,F̌ ,F
g)(x) = β(x)(F̌ f)(x)(Fg)(x).

(f
γ
∗
F
g)(x) =

1

2(2π)
d
2

∫
Rd

[f(x− y − h) + f(x− y + h)]g(y)dy, (1.5)

F (f
γ
∗
F
g)(x) = γ(x)(Ff)(x)(Fg)(x).

(f
δ∗
F
g)(x) =

i

2(2π)
d
2

∫
Rd

[f(x− y − h)− f(x− y + h)]g(y)dy, (1.6)

F (f
δ∗
F
g)(x) = δ(x)(Ff)(x)(Fg)(x).

Proof of convolution (1.1). Obviously, the integral transform (1.1) is Fourier convolution taken
at point x− h. Since, f α∗

F
g ∈ L1(Rd). We now prove the factorization identity. We have

α(x)(Ff)(x)(Fg)(x) =
e−i<x,h>

(2π)d

∫
Rd

∫
Rd

e−i<x,u>e−i<x,v>f(u)g(v)dudv =

=
1

(2π)d

∫
Rd

∫
Rd

e−i<x,u+v+h>f(u)g(v)dudv =

=
1

(2π)d

∫
Rd

∫
Rd

e−i<x,t>f(t− y − h)g(y)dtdy = F (f
α∗
F
g)(x).

It is easy to see that the convolutions (1.2), (1.3), (1.4) are the immediate consequences of
the convolution (1.1).

Proof of convolution (1.5). We prove f
γ
∗
F
g ∈ L1(Rd). We have∫

Rd

|(f
γ
∗
F
g)(x)|dx ≤ 1

2(2π)
d
2

∫
Rd

∫
Rd

|g(u)|
[
|f(x− u− h)|+ |f(x− u+ h)|

]
dudx =

=
1

2(2π)
d
2

∫
Rd

|g(u)|du
[∫
Rd

|f(x− u− h)|dx+
∫
Rd

|f(x− u+ h)|dx
]

=

=
1

(2π)
d
2

∫
Rd

|g(u)|du
∫
Rd

|f(x)|dx < +∞.
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We prove the factorization identity. We have

γ(x)(Ff)(x)(Fg)(x) =
cosxh
(2π)d

∫
Rd

∫
Rd

e−i<x,u>e−i<x,v>f(u)g(v)dudv =

=
1

2(2π)d

∫
Rd

∫
Rd

[e−i<x,u+v−h> + e−i<x,u+v+h>]f(u)g(v)dudv =

=
1

2(2π)d

∫
Rd

∫
Rd

e−i<x,t>[f(t− y − h) + f(t− y + h)]g(y)dtdy = F (f
γ
∗
F
g)(x).

Proof of convolution (1.6). The proof of f
δ∗
F
g ∈ L1(Rd) is similar to that of convolution (1.5).

So, we prove the factorization identity. We have

δ(x)(Ff)(x)(Fg)(x) =
sinxh
(2π)d

∫
Rd

∫
Rd

e−i<x,u>e−i<x,v>f(u)g(v)dudv =

=
i

2(2π)d

∫
Rd

∫
Rd

[e−i<x,u+v+h> − e−i<x,u+v−h>]f(u)g(v)dudv =

=
i

2(2π)d

∫
Rd

∫
Rd

e−i<x,t>[f(t− y − h)− f(t− y + h)]g(y)dtdy =

= F (f
δ∗
F
g)(x).

2

Example. Let d = 1. Put u(x) := 1/πx. It is well-known that the Hilbert transform of a function
(or signal) v(x) is given by

(Hv)(x) = p.v.

+∞∫
−∞

u(x− y)v(y)dy,

provided that this integral exists as Cauchy’s principal value. This is precisely the convolution
of v with the tempered distribution p.v. u(x).

Now we put r(x) :=
x√

2π(x2 − h2)
, s(x) :=

h√
2π(x2 − h2)

. By the convolution transforms

(1.5) and (1.6) we have the informal identities:

1
2
√

2π

+∞∫
−∞

[ 1
x− y − h

+
1

x− y + h

]
g(y)dy = p.v.

+∞∫
−∞

r(x− y)g(y)dy,

1
2
√

2π

+∞∫
−∞

[ 1
x− y − h

− 1
x− y + h

]
g(y)dy = p.v.

+∞∫
−∞

s(x− y)g(y)dy.

2. Application

2.1. Normed Ring Structures on L1(Rd)

Definition 2.1 (see Naimark [13]). A vector space V with a ring structure and a vector norm
is called the normed ring if ‖vw‖ ≤ ‖v‖‖w‖, for all v, w ∈ V.
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If V has a multiplicative unit element e, it is also required that ‖e‖ = 1.

Let X denote the linear space L1(Rd). Now we define norms for f ∈ X. For each of all
convolutions in Section 1, the norm is chosen as

‖f‖ =
1

(2π)
d
2

∫
Rd

|f(x)|dx.

Theorem 2.1. The space X, equipped with each of the convolution multiplications, becomes a
normed ring with no unit.

Proof. The proof is divided into two steps.
Step 1. X has a normed ring structure. It is clear that X, equipped with each of the convo-

lution multiplications listed above, has the ring structure. We have to prove the multiplicative
inequality. We now prove that for convolution (1.5), the proof that for the others is similar. We
have

1

(2π)
d
2

∫
Rd

|f
γ
∗
F
g|(x)dx ≤ 1

2(2π)d

∫
Rd

∫
Rd

|f(x− u+ h)||g(u)|dxdu+

+
1

2(2π)d

∫
Rd

∫
Rd

|f(x− u− h)||g(u)|dxdu =

=
1

(2π)
d
2

∫
Rd

|f(x+ u− h)|dx

 1

(2π)
d
2

∫
Rd

|g(u)|du

 = ‖f‖‖g‖.

Hence ‖f
γ
∗
F
g‖ 6 ‖f‖.‖g‖.

Step 2. The space X has no unit. For briefness of our proof, let us use the common symbols:
∗ for the convolutions and γ0 for the weight function of α, β, γ, δ. Suppose that there exists an
e ∈ X such that f = f ∗ e = e ∗ f for every f ∈ X. Choose δ(x) := e−

1
2 |x|

2 ∈ L1(Rd). We then
have (Fδ)(x) = (F̌ δ)(x) = δ(x) (see [14, Theorem 7.6]). By δ = δ ∗ e = e∗ δ and the factorization
identities of the convolutions, we have

Fj(δ) = γ0Fk(δ)F`(e), (2.1)

where Fj ,Fk,F` ∈ {F, F̌} (note that it may be Fj = Fk = F` = F, etc.).
By (2.1) we have δ = γ0δF`(e). Due to δ(x) 6= 0 for every x ∈ Rd, γ0(x)(F` e)(x) = 1 for

every x ∈ Rd. Since |γ0(x)| ≤ 1, the last identity contradicts the Riemann-Lebesgue lemma:
lim
x→∞

(F` e)(x) = 0 (see Rudin [14, Theorem 7.5]). Hence, X has no unit. 2

2.2. Integral Equations of the Convolution Type

Consider the integral equation with the mixed Toeplitz-Hankel kernel having shifts

λϕ(x) +
1

(2π)
d
2

∫
Rd

[k1(x+ y − h1) + k2(x− y − h2)]ϕ(y)dy = p(x), (2.2)

where λ ∈ C is predetermined, k1, k2, p are given, the shifts h1, h2 ∈ Rd, and ϕ(x) is to be
determined.
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Since the convolutions in Section 1 are considered in L1(Rd), given functions are assumed
to be elements of L1(Rd), and unknown function will be determined there. In what follows, the
function identity f(x) = g(x) means that it is valid for almost every x ∈ Rd. However, if both
functions f, g are continuous, the identity f(x) = g(x) must be valid for every x ∈ Rd.

For any f ∈ L1(Rd), we write f̌(x) := f(−x). Put

γ1(x) = e−i<x,h1>, γ2(x) = e−i<x,h2>,

A(x) : = λ+ γ2(x)(Fk2)(x), B(x) := γ1(x)(Fk1)(x), (2.3)

DF,F̌ (x) : = λ2 + λ[γ2(x)(Fk2)(x) + γ̌2(x)(F̌ k2)(x)]+

+ γ̌2(x)F [k2
γ2∗

F,F,F̌
k2)](x)− γ̌1(x)F [k1

γ1∗
F,F,F̌

k1)](x), (2.4)

DF (x) : = λ(Fp)(x) + F [(p
γ̌2∗

F,F,F̌
k2)− (k1

γ1∗
F,F,F̌

p)](x), (2.5)

DF̌ (x) : = λ(F̌ p)(x) + F [(k2
γ2∗

F,F,F̌
p)− (p

γ̌1∗
F,F,F̌

k1)](x). (2.6)

Actually,

DF,F̌ (x) := λ2 + λ[γ2(x)(Fk2)(x) + γ2(−x)(Fk2)(−x)]+

+ (Fk2)(x)(Fk2)(−x)− (Fk1)(x)(Fk1)(−x), (2.7)

DF (x) := λ(Fp)(x) + γ2(−x)(Fk2)(−x)(Fp)(x)−
− γ1(x)(Fk1)(x)(Fp)(−x), (2.8)

DF̌ (x) := λ(Fp)(−x) + γ2(x)(Fk2)(x)(Fp)(−x)−
− γ1(−x)(Fk1)(−x)(Fp)(x). (2.9)

Theorem 2.2. Assume that the following conditions are fulfilled: DF,F̌ (x) 6= 0 for every x ∈

Rd, and
DF

DF,F̌

∈ L1(Rd). Then the equation (2.2) has a solution in L1(Rd) if and only if

F−1

(
DF

DF,F̌

)
∈ L1(Rd). (2.10)

If (2.10) is satisfied, then its solution can be obtained in the explicit form

ϕ(x) = F−1

(
DF

DF,F̌

)
(x).

Proof. Note that the shift h in the convolutions (1.1), (1.2), (1.3), (1.4) is separate. Thus from
those convolutions it follows that

1

(2π)
d
2

∫
Rd

f(x+ y − h1)g(y)dy = (f
γ1∗

F,F,F̌
g)(x) = (f

γ̌1∗
F̌ ,F̌ ,F

g)(x),

1

(2π)
d
2

∫
Rd

f(x− y − h2)g(y)dy = (f
γ2∗
F
g)(x) = (f

γ̌2∗̌
F
g)(x).
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By the factorization identities of those convolutions we get

F

 1

(2π)
d
2

∫
Rd

f(x+ y − h1)g(y)dy

 = γ1(x)Ff(x)F̌ g(x), (2.11)

F

 1

(2π)
d
2

∫
Rd

f(x− y − h2)g(y)dy

 = γ2(x)Ff(x)Fg(x), (2.12)

F̌

 1

(2π)
d
2

∫
Rd

f(x+ y − h1)g(y)dy

 = γ̌1(x)F̌ f(x)Fg(x), (2.13)

and

F̌

 1

(2π)
d
2

∫
Rd

f(x− y − h2)g(y)dy

 = γ̌2(x)F̌ f(x)F̌ g(x), (2.14)

for any f, g ∈ L1(Rd).
Necessity. Suppose that the equation (2.2) has a solution ϕ ∈ L1(Rd), i.e.,

λϕ(x) +
1

(2π)
d
2

∫
Rd

[k1(x+ y − h1) + k2(x− y − h2)]ϕ(y)dy = p(x).

Applying each of the transforms F and F̌ in turn to both sides of this identity and using (2.11),
(2.12), (2.13), (2.14), we obtain the system of two linear equations{

A(x)(Fϕ)(x) +B(x)(F̌ϕ)(x) = (Fp)(x),

B(−x)(Fϕ)(x) +A(−x)(F̌ϕ)(x) = (F̌ p)(x),
(2.15)

where A(x), B(x) are defined by (2.3), and (Fϕ)(x), (F̌ϕ)(x) are unknown functions. The deter-
minants of (2.15) denoted byDF,F̌ (x), DF (x), DF̌ (x) are defined by (2.4), (2.5), (2.6) respectively.
Due to DF,F̌ (x) 6= 0 for every x ∈ Rd we get

Fϕ(x) =
DF (x)
DF,F̌ (x)

, and F̌ϕ(x) =
DF̌ (x)
DF,F̌ (x)

.

As
DF (x)
DF,F̌ (x)

∈ L1(Rd), we can apply the inversion theorem of the Fourier transform (see [14,

Theorem 7.7]) to obtain ϕ(x) = F−1

(
DF

DF,F̌

)
(x). The necessity is proved.

Sufficiency. From (2.7), (2.8), (2.9) it follows that DF,F̌ (x) ≡ DF,F̌ (−x), and DF (x) ≡
DF̌ (−x). It is easy to see that

F−1

(
DF

DF,F̌

)
(x) ≡ F

(
DF̌

DF,F̌

)
(x).

Consider the function ϕ(x) = F−1

(
DF

DF,F̌

)
(x) = F

(
DF̌

DF,F̌

)
(x). This implies that ϕ ∈

L1(Rd). We apply the inversion theorem of the Fourier integral transform to get (Fϕ)(x) =
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DF (x)
DF,F̌ (x)

, and (F̌ϕ)(x) =
DF̌ (x)
DF,F̌ (x)

. We can see that the two functions (Fϕ)(x) and (F̌ϕ)(x)

satisfy (2.15). Thus
A(x)(Fϕ)(x) +B(x)(F̌ϕ)(x) = (Fp)(x).

Using the factorization identities of convolutions (1.1), (1.3) we get

F
[
λϕ+ (k1

γ1∗
F,F,F̌

ϕ) + (k2
γ2∗
F
ϕ)
]
(x) = (Fp)(x).

Equivalently,

F
[
λϕ(x) +

1

(2π)
d
2

∫
Rd

[k1(x+ y − h1) + k2(x− y − h2)]ϕ(y)dy
]

= (Fp)(x).

By the inversion theorem of the Fourier transform, we conclude that ϕ(x) satisfies the equation
(2.2) for almost every x ∈ Rd. 2

Let S denote the space of rapidly decreasing functions on Rd (see [14]).

Proposition 2.1. Let λ 6= 0. Then

(a) DF,F̌ 6= 0 for every x outside a ball with a finite radius.

(b) Assume that k1, k2,∈ S and p ∈ L1(Rd). Then
DF

DF,F̌

∈ L1(Rd), provided DF,F̌ 6= 0 for

every x ∈ Rd and Fp ∈ L1(Rd).

Proof. (a) Combining the facts that two functions γ1, γ2 are continuous and bounded on
Rd and the Riemann-Lebesgue lemma for the Fourier integral transform, we conclude that the
function DF,F̌ (x) is continuous on Rd and lim

|x|→∞
DF,F̌ (x) = λ. (see [14, Theorem 7.5]). Now (a)

follows from the fact that λ 6= 0 and the continuity of DF,F̌ (x).
(b) By the continuity of DF,F̌ (x) and lim

|x|→∞
DF,F̌ (x) = λ 6= 0, there exist R > 0, ε1 > 0 so

that inf
|x|>R

|DF,F̌ (x)| > ε1. Since DF,F̌ (x) is continuous and does not vanish in the compact set

S(0, R) = {x ∈ Rd : |x| 6 R}, there exists ε2 > 0 so that inf
|x|6R

|DF,F̌ (x)| > ε2. We then have

sup
x∈Rd

1
|DF,F̌ (x)|

6 max
{

1
ε1
,

1
ε2

}
<∞. Hence the function

1
|DF,F̌ (x)|

is continuous and bounded

on Rd. Therefore,
DF

DF,F̌

∈ L1(Rd), provided DF ∈ L1(Rd). We now prove that if Fp ∈ L1(Rd),

then DF ∈ L1(Rd). Indeed, we have γ, Fk1, Fk2 ∈ S (see [14, Theorem 7.7]). It follows that
the functions γ(x), (Fk1)(x), (Fk2)(x) are continuous and bounded on Rd. Now we can conclude
that if Fp belongs to L1(Rd, ) then so does each of the three terms in the right side of (2.8).
Therefore, DF ∈ L1(Rd), provided that Fp ∈ L1(Rd). 2

This work is partially supported by the Central Project, grant QGTD.0809, Vietnam National
University, Hanoi, Vietnam.
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