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The Joint Motion of Two Binary Mixtures in a Flat Layer
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The invariant solution of the equations of thermodiffusional motion is investigated. This solution describes
the motion of two immiscible incompressible binary mixtures with a common flat interface under the
action of pressure gradient and thermocapillary forces. The stationary flow of such system is found. If
the pressure gradient in one of the mixtures tends to zero sufficiently fast, then the motion of mixtures is
slowed down by the viscous friction. On the other hand, if there exists a finite limit of pressure gradient
when time tends to infinity, then the solution tends to the stationary state.
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1. Problem Statement

Consider the motion of two immiscible incompressible binary mixtures with a common interface.
Suppose that Ωj (j = 1, 2) are the domains occupied by the fluids with interface Γ, uj(x, t)
and pj(x, t) are the velocity vectors and pressures, respectively, and θj(x, t) and cj(x, t) are
the deviations of temperatures and concentrations from their average values. The equations of
thermodiffusion and motion in the absence of external forces (g = 0) have the form [1]

duj
dt

+
1
ρj
∇pj = νj∆uj ;

dθj
dt

= χj∆θj ;

dcj
dt

= dj∆cj + αjdj∆θj ; divuj = 0,

(1.1)

where ρj is the average density, νj is the kinematic viscosity, χj is the thermal diffusivity, dj is
the diffusion coefficient, αj is the thermal diffusion coefficient, and d/dt = ∂/∂t+ u · ∇.

Suppose that the coefficient of surface tension σ on the interface depends on the temperature
and concentration, σ = σ(θ, c). For many mixtures, the linear law provides a good approximation
of this dependence:

σ(θ, c) = σ0 − æ1(θ − θ0)− æ2(c− c0), (1.2)

where æ1 > 0 is the temperature coefficient and æ2 is the concentration coefficient (usually æ2 < 0
since the surface tension increases with concentration). Let us now formulate the conditions on
the interface Γ.

1. Equality of velocities:
u1 = u2, x ∈ Γ. (1.3)
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2. Kinematic condition:
u · n = Vn, x ∈ Γ. (1.4)

This condition follows from the assumption that Γ is a moving material surface. Here n is the
unit normal vector to Γ directed from Ω1 to Ω2, Vn is the velocity of interface displacement in
the normal direction, and u is the velocity vector on Γ, which is the same for both fluids due to
(1.3).

3. Dynamic condition:

(P2 − P1)n = 2σHn +∇Γσ, x ∈ Γ. (1.5)

This condition expresses the balance of all forces acting on the surface (pressure, friction, surface
tension, and thermocapillary forces). Here Pj = −pj + 2ρjνjD(uj) are the stress tensors, D is
the rate of strain tensor, H is the mean curvature of Γ, and ∇Γ = ∇ − (n · ∇)n is the surface
gradient.

4. Temperature continuity and concentration balance on the interface:

θ1 = θ2, c1 = λc2, x ∈ Γ, (1.6)

where λ is the Henry’s law constant.
5. The equality of heat fluxes on the interface:

k2
∂θ2

∂n
− k1

∂θ2

∂n
= 0, x ∈ Γ, (1.7)

where kj are the thermal conductivities.
6. The equality of mass fluxes through the interface:

d2

(
∂c2
∂n

+ α2
∂θ2

∂n

)
= d1

(
∂c1
∂n

+ α1
∂θ1

∂n

)
, x ∈ Γ. (1.8)

The domains Ω1 and Ω2 can be in contact not only with each other, but also with rigid walls
that will be denoted by Σj . On these walls, the no-slip condition should be imposed

uj = aj(x, t), x ∈ Σj , (1.9)

where aj(x, t) is the velocity of the wall Σj . In addition, we assume that the temperature on Σj
satisfies the following conditions

θj = θjw(x, t), x ∈ Σj , (1.10)

with given functions θjw. It means that temperature is imposed on the wall. The condition of
absence of mass flux through the walls Σj is written as

∂cj
∂n

+ αj
∂θj
∂n

= 0, x ∈ Σj . (1.11)

For completing the problem statement, the initial conditions should be added to relations
(1.1)–(1.6):

uj(x, 0) = u0j(x), θj(x, 0) = θ0j(x), cj(x, 0) = c0j(x), x ∈ Ωj . (1.12)
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In what follows, we consider two-dimensional equations of motion for two binary mixtures
with a flat interface in the absence of external forces. It can be shown [2] that this system admits
a one-parameter subgroup of transformations corresponding to the generator

∂

∂x
+Aj

∂

∂θj
+Bj

∂

∂cj
+ ρjfj(t)

∂

∂pj
,

where Aj , Bj are constants and fj(t) are functions of time. The invariant solution should be
sought in the form

uj = uj(y, t), vj = vj(y, t), pj = ρjfj(t)x+ Pj(y, t),

θj = Ajx+ Tj(y, t), cj = Bjx+Kj(y, t).

It follows from the continuity equation that vj is a function of time only, vj = vj(t). Projecting
the momentum equations on y axis, we find ρ−1

j Pjy = vjt(t). Further we assume that vj(t) = 0
(otherwise the no-slip conditions on the walls are not satisfied). Then the invariant solution is
written as

uj = uj(y, t), vj = 0, pj = ρjfj(t)x+ Pj(t),

θj = Ajx+ Tj(y, t), cj = Bjx+Kj(y, t).
(1.13)

Solution (1.13) can be interpreted as follows. Suppose that on the interface y = 0 be-
tween two mixtures the surface tension linearly depends on the temperature and concentration:
σ(θ, c) = σ0− æ1θ−æ2c, where æ1 > 0 and æ2 are constants (see (1.2)). Initially, the first and
second mixtures are at rest and occupy the layers −l1 < y < 0 and 0 < y < l2, respectively. At
t = 0, the temperature field θj = Ajx and concentration field cj = Bjx are created instantly in
the entire layers. The thermoconcentration effect and pressure gradients fj(t) induce the motion
of mixtures. In this motion, the interface is represented by the plane y = 0 and the trajectories
are straight lines parallel to x axis. The functions uj , Tj ,Kj can be called the perturbations of
the quiescent state.

Substituting (1.13) in the governing equations and taking into account the conditions on the
interface y = 0, we obtain the initial boundary value problem

ujt = νjujyy + ρjfj(t); Tjt = χjTjyy −Auj ;

Kjt = djKjyy + αjdjTjyy −Bjuj
(1.14)

at −l1 < y < 0 (j = 1), 0 < y < l2 (j = 2);

u1(0, t) = u2(0, t), T1(0, t) = T2(0, t), K1(0, t) = λK2(0, t); (1.15)

k1T1y(0, t) = k2T2y(0, t); (1.16)

d1(K1y(0, t) + α1T1y(0, t)) = d2(K2y(0, t) + α2T2y(0, t)); (1.17)

ρ2ν2u2y(0, t)− ρ1ν1u1y(0, t) = −æ1A− æ2B1 ≡ H; (1.18)

uj(y, 0) = 0, Tj(y, 0) = 0, Kj(y, 0) = 0. (1.19)

In the second equation (1.14), A ≡ A1 = A2 (it follows from the equality of temperatures at
y = 0). In the boundary condition (1.15), λ = const is the Henry’s law constant, so B1 = λB2. In
addition, νj , χj , dj , αj , kj are positive constants that characterize the physical properties of the
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mixtures. The above relations should be supplemented by conditions on the rigid walls y = −l1
and y = l2. These are the no-slip condition

u1(−l1, t) = 0, u2(l2, t) = 0, (1.20)

condition of absence of temperature perturbations

T1(−l1, t) = 0, T2(l2, t) = 0, (1.21)

and condition of absence of diffusive fluxes(
∂K1

∂y
+ α1

∂T1

∂y

) ∣∣∣∣
y=−l1

= 0,
(
∂K2

∂y
+ α2

∂T2

∂y

) ∣∣∣∣
y=l2

= 0. (1.22)

It can be seen that equations (1.14)–(1.22) form three problems for functions (u1, u2), (T1, T2),
and (K1,K2). These problems can be solved successively. Since the problem for the velocity field
is linear, it can be decomposed into inhomogeneous problem with fj(t) 6= 0 and zero boundary
condition (1.18) and homogeneous problem with fj(t) = 0 and non-zero boundary condition
(1.18), i.e. H 6= 0.

Remark 1. Since p1 = p2 at y = 0 for all x, it follows from the dynamic condition on the
interface that [1]

ρ1f1(t) = ρ2f2(t), P1(t) = P2(t). (1.23)

2. Determination of the Velocity Field Under Given
Pressure Gradient

Taking into account the above considerations, let us first consider the problem of determining
the velocity field only under instantly imposed pressure gradient in one of the layers. In this case,
we have the following adjoint linear initial boundary value problem (f(t) ≡ f1(t))

u1t = ν1u1yy + f(t), −l1 < y < 0; (2.1)

u1(−l1, t) = 0; (2.2)

u2t = ν2u2yy +
ρ1

ρ2
f(t), 0 < y < l2; (2.3)

u2(l2, t) = 0; (2.4)

u1(0, t) = u2(0, t), µ1u1y(0, t) = µ2u2y(0, t), t > 0; (2.5)

u1(y, 0) = 0, −l1 < y < 0, u2(y, 0) = 0, 0 < y < l2. (2.6)

Relations (2.2) and (2.4) represent the no-slip conditions on the fixed rigid walls, while equa-
tions (2.5) express the equality of velocities and shear stresses on the interface [5, p. 268]. In
addition, ν1,2 = µ1,2/ρ1,2, where µ1,2 are the dynamical viscosities.

Remark 2. Without loss of generality, we can assume that P1(t) = P2(t) = 0 in (1.23) since
these functions do not influence the motion of mixtures.
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A priori estimates. Let us derive some a priori estimates for the solution of problem (2.1)–
(2.6). First, we multiply equation (2.1) by %1u1(y, t) (equation (2.3) by %2u2(y, t)) and integrate
it with respect to y between −l1 and zero (between zero and l2). Summing up the obtained
relations and using boundary conditions (2.2), (2.4), and (2.5), we find

dE(t)
dt

+ µ1

0∫
−l1

u2
1y dy + µ2

l2∫
0

u2
2y dy = ρ1f(t)

( 0∫
−l1

u1 dy +

l2∫
0

u2 dy

)
, (2.7)

where

E(t) =
1
2
ρ1

0∫
−l1

u2
1(y, t) dy +

1
2
ρ2

l2∫
0

u2
2(y, t) (2.8)

is the total energy of two layers.
The uniqueness of solution for problem (2.1)–(2.6) follows from (2.7). It can be seen that if

f(t) = 0, then u1(y, t) = u2(y, t) ≡ 0.
Relation (2.7) allows us to determine the asymptotic behaviour of solution when t→∞ under

some restrictive assumptions on the function f(t). Indeed, owing to conditions (2.2) and (2.4),
the Friedrichs inequalities hold for u1(y, t) and u2(y, t):

0∫
−l1

u2
1(y, t) dy 6

`21
2

0∫
−l1

u2
1y(y, t) dy,

`2∫
0

u2
2(y, t) dy 6

`22
2

`2∫
0

u2
2y(y, t) dy. (2.9)

Using inequalities (2.9) and the Cauchy–Bunyakovski–Schwarz inequality, we find from (2.7)
(since

√
a+
√
b 6

√
2(a+ b), a > 0, b > 0)

dE(t)
dt

+ 4δE(t) 6 2δ1|f(t)|
√
E(t) , (2.10)

where δ = min(l−2
1 ν1, l

−2
2 ν2) and δ1 = ρ1 max(

√
l1/ρ1 ,

√
l2/ρ2). Taking into account that E(0) =

0, and according to (2.8) and initial conditions (2.6), we obtain from (2.10)

E(t) 6 δ2
1

( t∫
0

|f(t)|e2δt dt

)2

e−4δt. (2.11)

Hence, if the integral
∞∫

0

|f(t)|e2δt dt ≡
√
C1 > 0, (2.12)

converges, then it follows from (2.11) that

E(t) 6 δ2
1C1e

−4δt (2.13)

for all t > 0. Therefore, L2−norms of functions u1(y, t) and u2(y, t) tend to zero as t → ∞
exponentially and uniformly with respect to y ∈ (−l2, 0) and y ∈ (0, l2) provided that (2.12) is
satisfied. To derive the estimate for |uj(y, t)|, it is necessary to estimate the integrals

0∫
−l1

u2
1y dy,

l2∫
0

u2
2y dy.
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Let u(y, t) be a solution of the equation ut = νuyy + F (y, t), y ∈ [a, b]. Then the following
identity holds:

t∫
0

b∫
a

(u2
t +ν2u2

yy) dydt+ν

b∫
a

u2
y dy = 2ν

t∫
0

(utuy)
∣∣∣∣b
a

dt+ν

b∫
a

u2
0y dy+

t∫
0

b∫
a

F 2(y, t) dydt, (2.14)

where u0(y) = u(y, 0). Identity (2.14) follows from the equalities

t∫
0

b∫
a

(ut − νuyy)2 dydt =

t∫
0

b∫
a

F 2(y, t) dydt, utuyy =
∂

∂y
(utuy)− 1

2
∂

∂t
(u2
y).

Let us first put u = u1, a = −l1, b = 0, ν = ν1, F = f(t) in relation (2.14) and multiply it by
ρ1. Then we take u = u2, a = 0, b = l2, ν = ν2, F = %1%

−1
2 f(t) and multiply the same relation

by ρ2. Summing up the results, we obtain another integral identity for problem (2.1)–(2.6):

ρ1

t∫
0

0∫
−l1

(u2
1t + ν2

1u
2
1yy) dydt+ ρ2

t∫
0

l2∫
0

(u2
2t + ν2

2u
2
2yy) dydt+

+µ1

0∫
−l1

u2
1y dy + µ2

l2∫
0

u2
2y dy = ρ1(l1 + l2)

t∫
0

f2(t) dt.

(2.15)

In the derivation of (2.15), initial conditions (2.2), (2.4), and (2.5) and boundary conditions (2.6)
were taken into account. Consequently, for all t > 0

0∫
−l1

u2
1y dy 6

E1(t)
µ1

,

l2∫
0

u2
2y dy 6

E1(t)
µ2

, (2.16)

where E1(t) is the right-hand side of (2.15). Therefore, if

∞∫
0

f2(t) dt ≡ C2 > 0 (2.17)

in addition to (2.12), then the following uniform estimates with respect to y (y ∈ (−l1, 0) and
y ∈ (0, l2)) hold:

|uj(y, t)| 6
(

2δ1

√
2C1C3

µjρj

)1/2

e−δt, (2.18)

where C3 = ρ1(l1 + l2)C2, j = 1, 2. These estimates are obtained with the help of

u2
1(y, t) = 2

y∫
−l1

u1(y, t)u1y(y, t) dy, u2
2(y, t) = −2

l2∫
y

u2(y, t)u2y(y, t) dy,

and with the help of inequalities (2.7), (2.16), (2.17), and the Cauchy–Bunyakovski–Schwarz
inequality.

Remark 3. It can be shown that if condition (2.12) is satisfied, then relation (2.17) also holds
true.
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We have proved

Theorem 1. The solution of problem (2.1)–(2.6) tends to zero as t → ∞ subject to condition
(2.12). The rate of convergence satisfies estimates (2.18) that are uniform in the intervals (−l1, 0)
and (0, l2).

In other words, if the pressure gradient in one of the mixtures tends to zero sufficiently fast,
then the motion of mixtures is slowed down by the viscous friction according to inequalities
(2.18).

Solution in Laplace representation. To obtain more detailed information on the be-
haviour of uj(y, t), let us apply the Laplace transform to problem (2.1)–(2.6):

ũj(y, p) =

∞∫
0

e−ptuj(y, t) dt (j = 1, 2) (2.19)

(the conditions for the applicability of formula (2.19) can be found, for example, in [6, p. 494]).
As a result, we obtain a boundary-value problem for representations ũj(y, p) :

ũ′′1 −
p

ν1
ũ1 = − f̃(p)

ν1
(−l1 < y < 0); (2.20)

ũ1(−l1, p) = 0; (2.21)

ũ′′2 −
p

ν2
ũ2 = − %1

%2ν2
f̃(p) (0 < y < l2); (2.22)

ũ2(l2, p) = 0; (2.23)

ũ1(0, p) = ũ2(0, p); (2.24)

µ1ũ
′
1(0, p) = µ2ũ

′
2(0, p), (2.25)

where the prime denotes differentiation with respect to y.
After some calculations, we obtain from (2.20)–(2.25)

ũ1(y, p) = − f̃(p)
pW (p)

{[
ρ− (ρ− 1) ch

√
p

ν2
l2

]
sh
√

p

ν1
(y + l1)−

−
(
sh
√

p

ν1
y + sh

√
p

ν1
l1

)
ch
√

p

ν2
l2 +

µ√
ν

(
ch
√

p

ν1
y − ch

√
p

ν1
l1

)
sh
√

p

ν2
l2

}
;

(2.26)

ũ2(y, p) = − f̃(p)
pW (p)

{
µ√
ν

[
1 + (ρ− 1)ch

√
p

ν1
l1

]
sh
√

p

ν2
(l2 − y)+

+
µ√
ν
ρ

(
sh
√

p

ν2
y − sh

√
p

ν2
l2

)
ch
√

p

ν1
l1 + ρ

(
ch
√

p

ν2
y − ch

√
p

ν2
l2

)
sh
√

p

ν1
l1

}
.

(2.27)

Here f̃(p) is the representation of f(t), ρ = ρ1/ρ2, and

W (p) = sh
√

p

ν2
l2 ch

√
p

ν1
l1

(
µ√
ν

+ cth
√

p

ν2
l2 th

√
p

ν1
l1

)
, µ = µ1/µ2, ν = ν1/ν2. (2.28)
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The originals uj(y, t) (j = 1, 2) are reconstructed by the formula

uj(y, t) =
1

2πi

a+i∞∫
a−i∞

eptũj(y, p) dp. (2.29)

Suppose that lim
t→∞

f(t) = f0 = const exists, then lim
p→0

pf̃(p) = f0 [6, p. 521]. Of course,

in this case the function f(t) does not satisfy condition (2.12). Let us calculate lim
p→0

pũj(y, p)

according to (2.26) and (2.27). Simple but cumbersome calculations with the use of asymptotic
representations shx ∼ x+ x3/6, chx ∼ 1 + x2/2 as x→ 0 show that

lim
p→0

pũ1(y, p) =
l21f0

2ν1

[
−
(
y

l1

)2

+
µ− l2

l(µ+ l)

(
y

l1

)
+
µ(l + 1)
l(µ+ l)

]
≡ u0

1(y); (2.30)

lim
p→0

pũ2(y, p) =
l22f0µ

2ν1

[
−
(
y

l2

)2

+
µ− l2

µ+ l

(
y

l2

)
+
l(l + 1)
µ+ l

]
≡ u0

2(y), (2.31)

where the relation %ν = µ was employed. It can be easily checked that the right-hand sides of
(2.30) and (2.31) represent the exact stationary solution of problem (2.1)–(2.6), where f(t) should
be replaced by f0. So, the solution of problem (2.1)–(2.6) approaches the stationary regime u0

1(y),
u0

2(y) as t→∞.
Solution for semi-bounded layers. To construct this solution, we consider the case when

l1 and l2 tend to infinity in formulae (2.26), (2.27). Taking into account that relation (2.28) when
l1, l2 →∞ becomes

W (p) ∼
(

1 +
µ√
ν

)
exp

(√
p

ν1
l1 +

√
p

ν2
l2

)
and denoting the limits of ũj(y, p, l1, l2) by Ũj(y, p), after some calculations we find

Ũ1(y, p) =
f̃(p)
p

[
1 +
√
ν (%− 1)
µ+
√
ν

exp
(√

p

ν1
y

)]
; (2.32)

Ũ2(y, p) =
f̃(p)
p

[
%− µ(%− 1)

µ+
√
ν

exp
(
−
√

p

ν2
y

)]
. (2.33)

It can be easily checked that Ũ1, Ũ2 satisfy problem (2.20), (2.22), (2.24), (2.25) (we recall
that y < 0 in (2.32) and y > 0 in (2.33)).

Using the properties of inverse Laplace transform [6, p. 506, p. 510], we reconstruct the
originals

U1(y, t) =

t∫
0

f(τ)
[
1 +
√
ν (%− 1)
µ+
√
ν

Erf
(
− y

2
√
ν1(t− τ)

)]
dτ ; (2.34)

U2(y, t) =

t∫
0

f(τ)
[
%− µ(%− 1)

µ+
√
ν

Erf
(

y

2
√
ν2(t− τ)

)]
dτ, (2.35)

where

Erf z = 1− erf z, erf z =
2√
π

z∫
0

e−z
2
dz.
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Formulae (2.34) and (2.35) provide the solution of problem (2.1), (2.3), (2.5), (2.6) in semi-
bounded layers.

Suppose that

f(t) =
f1√
t

(2.36)

with the constant f1. Then, after some calculations, we find from (2.34) and (2.35) (formulae
(2.32) and (2.33) can also be used):

U1(y, t)=2f1

√
t

{
1 +
√
ν (%− 1)
µ+
√
ν

[
exp

(
−ξ1

4

)
+

1
2
ξ1

ξ1∫
−∞

exp
(
−ξ

2

4

)
dξ

]}
; (2.37)

U2(y, t)=2f1

√
t

{
%− µ(%− 1)

µ+
√
ν

[
exp

(
−ξ

2
2

4

)
− 1

2
ξ2

∞∫
ξ2

exp
(
−ξ

2

4

)
dξ

]}
, (2.38)

where ξj = y/
√
νjt is the similarity variable. In other words, if the pressure gradient is given by

(2.36), then the solution of problem (2.1), (2.3), (2.5), (2.6) is self-similar and given by formulae
(2.37) and (2.38). It is not surprising since only in this case equations (2.1) and (2.3) are invariant
under the group of dilatations u′ = au, y′ = ay, t′ = a2t with parameter a.

From (2.37) and (2.38), we find the asymptotic behaviour of velocities as t→∞ (ξj → 0) at
any finite y, |y| 6 M = const

Uj(y, t) =
f1(µ+ %

√
ν)

µ+
√
ν

√
t [1 +O(1)].

On the other hand, when t is fixed and |y| → ∞ (ξ1 → −∞, ξ2 → +∞), one obtains from (2.37)
and (2.38)

U1(y, t) = 2f1

√
t
[
1 +O

(
exp

(
−ξ2

1/4
))]

, U2(y, t) = 2f1%
√
t
[
1 +O

(
exp

(
−ξ2

2/4
))]

.

In the derivation of these relations, the results of asymptotic behaviour of integrals of the type

F (z) =

∞∫
z

f(ξ) exp[−S(ξ)] dξ

as z →∞ were used [7, p. 58].
On determining the pressure gradient. Often the volume flow rate through the layers

is specified instead of the pressure gradient:

Q1(t) =

0∫
−l1

u1(y, t) dy, Q2(t) =

l2∫
0

u2(y, t) dy. (2.39)

For example, suppose that (−l1, 0) is the layer of water and (0, l2) is that of oil. The flow rate of
oil Q2(t) is given. Applying the Laplace transform (2.19) to relations (2.39) and using formulae
(2.26), (2.27), we find

Q̃1(p) = − f̃(p)
pW (p)

{√
ν1

p

(
ch
√

p

ν1
l1 − 1

)[
%− (%− 2) ch

√
p

ν2
l2

]
+

+
µ√
ν

√
ν1

p
sh
√

p

ν1
l1 sh

√
p

ν2
l2 − l1

(
sh
√

p

ν1
l1 ch

√
p

ν2
l2+

µ√
ν

ch
√

p

ν1
l1 sh

√
p

ν2
l2

)}
;

(2.40)
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Q̃2(p)=− f̃(p)
pW (p)

{
µ√
ν

√
ν2

p

(
ch
√

p

ν2
l2 − 1

)[
1+(2%−1) ch

√
p

ν1
l1

]
+

+%
√
ν2

p
sh
√

p

ν2
l2 sh

√
p

ν1
l1 − %l2

(
µ√
ν

sh
√

p

ν2
l2 ch

√
p

ν1
l1 + ch

√
p

ν2
l2 sh

√
p

ν1
l1

)}
.

(2.41)
One can determine f̃(p) from (2.41) and reconstruct f(t) according to formula (2.29). The flow
rate of the first liquid (water) is determined from (2.40) and (2.29).

It is interesting to calculate the flow rate for stationary flows (2.30) and (2.31). In this case,

Q0
1 =

0∫
−l1

u0
1(y) dy =

f0l
3
1

12ν1l(µ+ l)
(4µl+ 3µ+ l2), Q0

2 =

l2∫
0

u0
2(y) dy =

f0l
3
2µ

12ν1(µ+ l)
(µ+ 4l+ 3l2).

The ratio between flow rates
Q0

2

Q0
1

=
µ

l2
(µ+ 4l + 3l2)

(4µl + 3µ+ l2)

strongly depends on the thickness of the layers. For example, if we take l = 0.25 (l2 = 4l1), then
for water and oil with µ = 0.312 we find Q0

2/Q
0
1 ≈ 5.71, while for l = 0.5 (l2 = 2l1) we have

Q0
2/Q

0
1 ≈ 2.11.

3. Determination of Velocity Perturbations Induced by
Thermocapillary Forces

In this case, the initial boundary value problem is written as

u1t = ν1u1yy, −l1 < y < 0; (3.1)

u1(−l1, t) = 0; (3.2)

u2t = ν2u2yy, 0 < y < l2; (3.3)

u2(l2, t) = 0; (3.4)

u1(0, t) = u2(0, t), µ2u2y(0, t)− µ1u1y(0, t) = H, t > 0; (3.5)

u1(y, 0) = 0, −l1 < y < 0, u2(y, 0) = 0, 0 < y < l2. (3.6)

Remark 4. There is a discontinuity in condition (3.5) at the initial moment of time since its
left-hand side is zero at t = 0 according to (3.6) but H 6= 0.

Problem (3.1)–(3.6) has a stationary solution (Couette flow in layers)

u0
1 = a

(
1 +

y

l1

)
, u0

2 = a

(
1− y

l2

)
, (3.7)

where
a = − Hl1

µ2(µ+ l)
, H = −(æ1A+ æ2B1), l =

l1
l2
. (3.8)

The application of Laplace transform (2.19) to problem (3.1)–(3.6) leads to the boundary-
value problem

ũ′′1 −
p

ν1
ũ1 = 0, −l1 < y < 0; (3.9)
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ũ1(−l1, p) = 0; (3.10)

ũ′′2 −
p

ν2
ũ2 = 0, 0 < y < l2; (3.11)

ũ2(l2, p) = 0; (3.12)

ũ1(0, p) = ũ2(0, p); (3.13)

µ2ũ
′
2(0, p)− µ1ũ

′
1(0, p) =

H

p
, (3.14)

where the prime denotes differentiation with respect to y. The solution of problem (3.9)–(3.14)
can be easily obtained

ũ1(y, p) = −
√
ν2H

µ2

√
p3W1(p) ch

√
pν−1

1 l1

sh
√

p

ν1
(l1 + y), −l1 < y < 0; (3.15)

ũ2(y, p) = −
√
ν2H th

√
pν−1

1 l1

µ2

√
p3W1(p) sh

√
pν−1

2 l2

sh
√

p

ν2
(l2 − y), 0 < y < l2, (3.16)

where
W1(p) =

µ√
ν

+ th
√

p

ν1
l1 cth

√
p

ν2
l2. (3.17)

From (3.15)–(3.17), one can find the limits

lim
p→0

pũj(y, p) = u0
j (y)

with the functions u0
j (y) from (3.7) and (3.8) as it should be.

The flow rates are given by

Q0
1 =

0∫
−l1

u0
1(y) dy =

al1
2
, Q0

2 =

l2∫
0

u0
2(y) dy =

al2
2
, (3.18)

and their ratio is Q0
2/Q

0
1 = 1/l.

A priori estimates. Let us introduce new functions

wj(y, t) = u0
j (y)− uj(y, t). (3.19)

Then wj(y, t) satisfy the problem

w1t = ν1w1yy, −l1 < y < 0; (3.20)

w2t = ν2w2yy, 0 < y < l2; (3.21)

w1(0, t) = w2(0, t), µ2w2y(0, t)− µ1w1y(0, t) = 0; (3.22)

w1(−l1, t) = 0, w2(l2, t) = 0; (3.23)

w1(y, 0) = u0
1(y), w2(y, 0) = u0

2(y). (3.24)

Note that now the initial conditions are non-zero, and the second boundary condition in (3.22)
is satisfied for any t > 0 (at t = 0, its right-hand side equals to H).
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Let us multiply equation (3.20) by ρ1w1 and integrate it with respect to y between −l1 and 0:

∂

∂t

1
2
ρ1

0∫
−l1

w2
1 dy = µ1w1w1y

∣∣∣∣0
−l1
− µ1

0∫
−l1

w2
1y dy.

Similarly,

∂

∂t

1
2
ρ2

l2∫
0

w2
2 dy = µ2w2w2y

∣∣∣∣l2
0

− µ2

l2∫
0

w2
2y dy.

Summing up these equalities and using boundary conditions (3.22) and (3.23), we obtain

dE

dt
+ µ1

0∫
−l1

w2
1y dy + µ2

l2∫
0

w2
2y dy =


0, t > 0;

H2l1
µ2(µ+ l)

, t = 0,
(3.25)

where the ’kinetic’ energy of layers is given by

E(t) =
1
2
ρ1

0∫
−l1

w2
1 dy +

1
2
ρ2

l2∫
0

w2
2 dy. (3.26)

The Friedrichs inequalities (2.9) hold for wj due to boundary conditions (3.23). Then from
(3.25) we derive the inequality (δ = min(l−2

1 ν1, l
−2
1 ν2))

dE

dt
+ 4δE 6 h(t), (3.27)

where h(t) is the right-hand side of (3.25). Integration of (3.27) with initial conditions (3.24)
leads to

E(t) 6 E(0)e−4δt, (3.28)

where

E(0) =
1
2
ρ1

0∫
−l1

w2
1(y, 0) dy +

1
2
ρ2

l2∫
0

w2
2(y, 0) dy =

a2

6
(ρ1l1 + ρ2l2). (3.29)

due to boundary conditions (3.7) and (3.8).

Remark 5. In the derivation of relation (3.28), the Gronuoll inequality was used [8, p. 183]. It
is applicable since h(t) is a summable function and integral of it is equal to zero.

Hence,
0∫

−l1

w2
1 dy 6

2E(0)
ρ1

e−4δt,

l2∫
0

w2
2 dy 6

2E(0)
ρ2

e−4δt. (3.30)

To estimate the L2−norms of wjy, we again apply identity (2.14). Then, instead of (2.15) we
obtain

ρ1

t∫
0

0∫
−l1

(w2
1t + ν2

1w
2
1yy) dydt+ ρ2

t∫
0

l2∫
0

(w2
2t + ν2

2w
2
2yy) dydt+ µ1

0∫
−l1

w2
1y dy

+µ2

l2∫
0

w2
2y dy = µ1

0∫
−l1

(u0
1y)2 dy + µ2

l2∫
0

(u0
2y)2 dy = a2

(
µ1

l1
+
µ2

l2

)
≡ D1.

(3.31)
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It follows that
0∫

−l1

w2
1y dy 6

D1

µ1
,

l2∫
0

w2
2y dy 6

D1

µ2
. (3.32)

Now from (3.30)–(3.32) and the Cauchy–Bunyakovski–Schwarz inequality, we derive the a priori
estimates

|wj(y, t)| 6 2

√
2E(0)D1

ρjµj
e−2δt, (3.33)

where E(0) and D1 are given by formulae (3.29) and (3.31), respectively.
Returning to substitution (3.19), we obtain the following result.

Theorem 2. The solution of initial boundary value problem (3.1)–(3.6) is unique and approaches
the stationary state (3.7) as t→∞. The rate of convergence is estimated by

|uj(y, t)− u0
j (y)| 6 2

√
2E(0)D1

ρjµj
e−2δt (3.34)

with constants E(0) and D1 from (3.29) and (3.31), respectively.

According to (3.34), the solution of initial boundary value problem (3.1)–(3.6) converges
exponentially to the stationary solution.

4. Evolution of Temperature Perturbations

In this case, the initial boundary value problem has the form

T1t = χ1T1yy −Au1, −l1 < y < 0; (4.1)

T1(−l1, t) = 0; (4.2)

T2t = χ2T2yy −Au2, 0 < y < l2; (4.3)

T2(l2, t) = 0; (4.4)

T1(0, t) = T2(0, t), k1T1y(0, t) = k2T2y(0, t); (4.5)

T1(y, 0) = 0, T2(y, 0) = 0. (4.6)

Note that boundary conditions (4.5) are identically satisfied at t = 0 as well.
Problem (4.1)–(4.6) exactly coincides with problem (2.1)–(2.6), where one should replace f(t)

by −Au1(y, t), ρ1ρ
−1
2 f(t) by −Au2(y, t), νj by χj , and µj by kj . Note that χj = kj/ρjc0j , where

c0j are the specific heats of the mixtures. Let us multiply equation (4.1) by ρ1c01T1 (equation
(4.3) by ρ2c02T2), integrate it with respect to y between −l1 and 0 (between 0 and l2), and sum
up the results. Similarly to (2.7), we find

dE2

dt
+ k1

0∫
−l1

T 2
1y dy + k2

l2∫
0

T 2
2y dy = −A

[
ρ1c01

0∫
−l1

u1T1 dy + ρ2c02

l2∫
0

u2T2 dy

]
, (4.7)
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where

E2(t) =
1
2
ρ1c01

0∫
−l1

T 2
1 dy +

1
2
ρ2c02

l2∫
0

T 2
2 dy. (4.8)

The velocity field induced by the pressure gradient only. In this case, estimate (2.13)
holds. It follows that

0∫
−l1

u2
1 dy 6

2δ2
1C1e

−4δt

ρ1
,

l2∫
0

u2
2 dy 6

2δ2
1C1e

−4δt

ρ2
. (4.9)

The functions Tj(y, t) satisfy the Friedrichs inequalities (2.9). So, from (4.7) we obtain the
inequality similar to (2.10):

dE2

dt
+ 4δ2E1(t) 6 2δ3

√
E2(t) e−2δt,

where δ2 = min(l−2
1 χ1, l

−2
2 χ2) and δ3 =

√
2 |A|δ1

√
C1 max(

√
c01,
√
c02). It follows that

E2(t) 6


δ2
3

4(δ2 − δ)2

(
e−2δt − e−2δ2t

)2
, δ2 6= δ;

δ2
3t

2e−4δ2t, δ2 = δ.

(4.10)

In the derivation of estimate (4.10), we take into account that E2(0) = 0 due to (4.8) and
initial conditions (4.6).

The estimates of integrals
0∫

−l1

T 2
1y dy,

l2∫
0

T 2
2y dy

are obtained from identity (2.14), where one should replace νj by χj , uj by Tj , and Fj by −Auj .
By analogy with (2.15) we can obtain the following identity

ρ1c01

t∫
0

0∫
−l1

(T 2
1t + χ2

1T
2
1yy) dydt+ ρ2c02

t∫
0

l2∫
0

(T 2
2t + χ2

2T
2
2yy) dydt+

+k1

0∫
−l1

T 2
1y dy+k2

l2∫
0

T 2
2y dy=A2

[
ρ1c01

t∫
0

0∫
−l1

u2
1 dydt+ρ2c02

t∫
0

l2∫
0

u2
2 dydt

]
.

(4.11)

With the help of inequalities (4.9), it follows from (4.11) that

0∫
−l1

T 2
1y dy 6

δ4(1− e−4δt)
k1

,

l2∫
0

T 2
2y dy 6

δ2
4(1− e−4δt)

k2
, (4.12)

where

δ4 =
A2δ2

1C1

2δ
(c01 + c02).

Since

T 2
1 (y, t) = 2

y∫
−l1

T1(y, t)T1y(y, t) dy, T 2
2 (y, t) = −2

l2∫
y

T2(y, t)T2y(y, t) dy,
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we obtain the following estimates from (4.10), (4.12) and (4.8):

T 2
1 6 2

( 0∫
−l1

T 2
1 dy

)1/2( 0∫
−l1

T 2
1y dy

)1/2

6 2

√
2δ4E2(t)
k1ρ1c01

,

or

|T1(y, t)| 6

(
2

√
2δ4E2(t)
k1ρ1c01

)1/2

. (4.13)

Similarly,

|T2(y, t)| 6

(
2

√
2δ4E2(t)
k2ρ2c02

)1/2

. (4.14)

Therefore, in this case the temperature perturbations decay exponentially with time (as e−δt for
δ 6 δ2 and as e−δ2t for δ > δ2).

The application of Laplace transform to (4.1)–(4.6) leads to the following boundary value
problem for representations

T̃ ′′1 −
p

χ1
T̃1 =

Aũ1(y, p)
χ1

, −l1 < y < 0; (4.15)

T̃ ′′2 −
p

χ2
T̃2 =

Aũ2(y, p)
χ2

, 0 < y < l2; (4.16)

T̃1(0, p) = T̃2(0, p), kT̃ ′1(0, p) = T̃ ′2(0, p); (4.17)

T̃1(−l1, p) = 0; (4.18)

T̃2(l2, p) = 0, (4.19)

where k = k1/k2 and the prime denotes differentiation with respect to y. The solution of problem
(4.15), (4.16) can be written as

T̃1(y, p) = L1 sh
√

p

χ1
y + L2 ch

√
p

χ1
y +

A

χ1

√
pχ−1

1

y∫
−l1

ũ1(z, p) sh
[√

p

χ1
(y − z)

]
dz; (4.20)

T̃2(y, p) = L3 sh
√

p

χ2
y + L4 ch

√
p

χ2
y +

A

χ2

√
pχ−1

2

y∫
0

ũ2(z, p) sh
[√

p

χ2
(y − z)

]
dz. (4.21)

From (4.17)–(4.19) we have the system of algebraic equations for Li(p), i = 1, 4:

L2 −
A

χ1

√
pχ−1

1

0∫
−l1

ũ1(z, p) sh
√

p

χ1
z dz = L4,

k

√
p

χ1
L1 +

kA

χ1

0∫
−l1

ũ1(z, p) ch
√

p

χ1
z dz =

√
p

χ2
L3,

− sh
√

p

χ1
L1 + ch

√
p

χ1
l1L2 = 0,
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sh
√

p

χ2
l2L3 + ch

√
p

χ2
l2L4 +

A

χ2

√
pχ−1

2

l2∫
0

ũ2(z, p) sh
[√

p

χ2
(l2 − z)

]
dz = 0.

It follows that

L1 =
G1(p)−G2(p)

W2(p)
, L2 = L1 th

√
p

χ1
l1,

L3 =
k
√
χ
L1 −G1, L4 = L2 −

A

χ1

√
pχ−1

1

0∫
−l1

ũ1(z, p) sh
√

p

χ1
z dz,

(4.22)

where the following notations are used

G1(p) = −kA
χ1

√
χ2

p

0∫
−l1

ũ1(z, p) ch
√

p

χ1
z dz,

G2(p) = −
A cth

√
pχ−1

2 l2

χ1

√
pχ−1

1

0∫
−l1

ũ1(z, p) sh
√

p

χ1
z dz+

+
A

χ2

√
pχ−1

2 sh
√
pχ−1

2 l2

l2∫
0

ũ2(z, p) sh
[√

p

χ2
(l2 − z)

]
dz,

(4.23)

W2(p) =
k
√
χ

+ th
√

p

χ1
l1 cth

√
p

χ2
l2.

Let us find the stationary solution of problem (4.1)–(4.5) (boundary conditions (4.6) are not
taken into account here). We have the following problem for functions T 0

1 (y) and T 0
2 (y):

T 0
1yy =

A

χ1
u0

1(y), −l1 < y < 0; (4.24)

T 0
2yy =

A

χ2
u0

2(y), 0 < y < l2; (4.25)

T 0
1 (−l1) = 0, T 0

2 (l2) = 0; (4.26)

T 0
1 (0) = T 0

2 (0), kT 0
1y(0) = T 0

2y(0), k = k1/k2. (4.27)

If we substitute the functions u0
1(y), u0

2(y) from (2.30) and (2.31) to the right-hand sides of
(4.24)–(4.27), then integration of (4.24)–(4.27) and further simplification lead to

T 0
1 (y) =

Al21f0

2χ1ν1

[
− y4

12l21
+

(µ− l2)y3

6l1l(µ+ l)
+
µ(l + 1)y2

2l(µ+ l)

]
+ a1y + a2,

T 0
2 (y) =

Al22f0µ

2χ2ν1

[
− y4

12l22
+

(µ− l2)y3

6l2(µ+ l)
+
l(l + 1)y2

2(µ+ l)

]
+ ka1y + a2,

(4.28)

where the constant a1, a2 are given by

a1 =
Al31f0

24χ1ν1(µ+ l)(k + l)
[
l3(5µl + 4µ+ l2)− χµ(µ+ 4l2 + 5l)

]
,

a2 = − Al1l
3
2f0

24χ1ν1(µ+ l)(k + l)
[
kl2(5µl + 4µ+ l2) + χµ(µ+ 4l2 + 5l)

]
.

(4.29)
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It can be shown that lim
t→∞

Tj(y, t) = T 0
j (y), i.e. the temperature perturbations in the layers

approach the stationary state with time if lim
t→∞

f(t) = f0. To prove this, it is sufficient to

calculate the limits lim
p→0

pT̃j(y, p). As an example, let us consider the case j = 1. First, we recast

expression (4.20) with the help of (4.22)

T̃1(y, p) =
G1(p)−G2(p)

W2(p) ch
√
pχ−1

1 l1

sh
√

p

χ1
(y + l1)+

+
A

χ1

√
χ−1

1 p

y∫
−l1

ũ1(z, p) sh
[√

p

χ1
(y − z)

]
dz.

(4.30)

Second, we substitute ũj(y, p) from (2.26) and (2.27) into (4.22), (4.23), and (4.30) and obtain
a cumbersome expression for T̃1(y, p), which is not presented here. However, there is an easier
way of calculating the limit lim

p→0
pT̃1(y, p) from (4.30) and the limits lim

p→0
pũj(y, p) = u0

j (y) given

by formulae (2.30) and (2.31). As p→ 0 (shx ∼ x, chx ∼ 1, x→ 0), it follows from (4.23) that

W2(p) ∼ k + l
√
χ
, pG1(p) ∼ − kA

χ1

√
χ−1

2 p

0∫
−l1

u0
1(z) dz,

pG2(p) ∼ A

χ1l2

√
pχ−1

2

[
−

0∫
−l1

u0
1(z)z dz + χ

l2∫
0

u0
2(z)(l2 − z) dz

]
.

The integrals in the right-hand sides can be easily calculated with the help of (2.30) and (2.31):
0∫

−l1

u0
1(z) dz =

f0l
3
1

12ν1l(µ+ l)
(4µl + 3µ+ l2),

0∫
−l1

u0
1(z)z dz = − f0l

4
1

24ν1l(µ+ l)
(3µl + 2µ+ l2),

l2∫
0

u0
2(z) dz =

f0l
3
2µ

12ν1(µ+ l)
(µ+ 3l2 + 4l).

Therefore,

lim
p→0

pG1(p)− pG2(p)

W2(p) ch
√
pχ−1

1 l1

sh
√

p

χ1
(y + l1) =

= −Af0l
3
2[kl2(8µl + 6µ+ 2l2) + l3(3µl + 2µ+ l2)− µχ(µ+ 4l2 + 5l)]

24ν1χ1(µ+ l)(k + l)
(y + l1).

(4.31)

The second term in the right-hand side of (4.30) multiplied by p has the following limit as p→ 0

A

χ1

y∫
−l1

u0
1(z)(y − z) dz =

Af0l
2
1

2ν1χ1

{
− y4

12l21
+

(µ− l2)y3

6l1l(µ+ l)
+
µ(l + 1)y2

2l(µ+ l)
+

+
l1(8µl + 6µ+ 2l2)y + l21(3µl + 2µ+ l2)

12l(µ+ l)

}
.

(4.32)
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Summing up (4.31) and (4.32) gives precisely formula (4.28) for T 0
1 (y). It can be shown similarly

that lim
p→0

pT̃2(y, p) = T 0
2 (y).

Determination of temperature perturbation induced by thermoconcentration
forces. Let us first find the stationary solution of problem (4.1)–(4.5) with the functions u0

1(y),
u0

2(y) from (3.7) and (3.8) in the right-hand sides of equations (4.1) and (4.3). In this case, the
functions T 0

j (y) satisfy the boundary value problem (4.24)–(4.27). The integration gives

T 0
1 (y) =

aA

χ1

(
y3

6l1
+
y2

2

)
+ a1y + a2, T 0

2 (y) =
aA

χ2

(
− y3

6l2
+
y2

2

)
+ ka1y + a2, (4.33)

a1 =
aAl2(l2 − χ)
3χ1(k + l)

, a2 = −aAl1l2(kl + χ)
3χ1(k + l)

.

Here the functions T 0
j (y) are expressed by third-degree polynomials in y in contrast to (4.28). As

in the previous paragraph, in this case it can be shown with the help of (4.20)–(4.23) and (3.15)–
(3.17) that lim

p→0
pT̃j(y, p) = T 0

j (y). So, the temperature perturbation approaches the stationary

regime with time.

5. Evolution of Concentration Perturbations in the Layers

The initial boundary value problem for concentration perturbations has the form

K1t = d1K1yy +
α1d1

χ1
T1t +

(
α1d1A

χ1
− λB2

)
u1; (5.1)

K2t = d2K2yy +
α2d2

χ2
T2t +

(
α2d2A

χ2
−B2

)
u2; (5.2)

K1(0, t) = λK2(0, t), d(K1y(0, t) + α1T1y(0, t)) = K2y(0, t) + α2T2y(0, t); (5.3)

K1y(−l1, t) + α1T1y(−l1, t) = 0, K2y(l2, t) + α2T2y(l2, t) = 0; (5.4)

K1(y, 0) = 0, K2(y, 0) = 0. (5.5)

Equations (5.1) and (5.2) are satisfied for −l1 < y < 0 and 0 < y < l2, respectively. The term
Tjyy was replaced from the second equation (1.14). In addition, B1 = λB2. So, (5.1) and (5.2) are
inhomogeneous parabolic equations with known right-hand sides (see sections 2–4). In boundary
condition (5.3), d = d1/d2.

Stationary distribution of concentrations. To find this distribution, we assume that
Kjt = 0 and Tjt = 0. Then one obtains the following boundary value problem instead of (5.1)–
(5.4):

K0
1yy =

(
λB2

d1
− α1A

χ1

)
u0

1(y), −l1 < y < 0; (5.6)

K0
2yy =

(
B2

d2
− α2A

χ2

)
u0

2(y), 0 < y < l2; (5.7)

K0
1 = λK2(0), d(K1y(0) + α1T

0
1y(0)) = K0

2y(0) + α2T
0
2y(0); (5.8)

K0
1y(−l1) + α1T

0
1y(−l1) = 0, K0

2y(l2) + α2T
0
2y(l2) = 0, (5.9)

where the functions u0
j (y), T 0

j (y) are given by formulae (2.30), (2.31) [ (3.7), (3.8)) ], (4.28),
(4.29) [ (4.33) ]. The choice of particular functions depends on the factor that induces the motion
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of mixtures, i. e., the pressure gradient or thermoconcentration forces. In the former case, we
substitute u0

1(y) from (2.30) into (5.6) and u0
2(y) from (2.31) into (5.7). With the help of the first

condition in (5.8), integration leads to

K0
1 (y)=

l21f0

2ν1

(
λB2

d1
−α1A

χ1

)[
− y4

12l21
+

(µ− l2)y3

6l1l(µ+ l)
+
µ(l + 1)y2

2l(µ+ l)

]
+b1y+λb2, −l1 < y < 0;

K0
2 (y)=

l22f0µ

2ν1

(
B2

d2
−α2A

χ2

)[
− y4

12l22
+

(µ− l2)y3

6l2(µ+ l)
+
l(l + 1)y2

2(µ+ l)

]
+b3y+b2, 0 < y < l2.

(5.10)

The constants b1, b3 are found from the boundary conditions on the walls (5.9):

b1 = −α1T
0
1y(−l1) +

l31f0

12ν1l(µ+ l)

(
λB2

d1
− α1A

χ1

)
(4µl + 3µ+ l2),

b3 = −α2T
0
2y(l2)− l32f0µ

12ν1(µ+ l)

(
B2

d2
− α2A

χ2

)
(3l2 + 4l + µ)

The second condition (5.8) on the interface provides the following relation

db1 − b3 = (kα2 − dα1)a1, (5.11)

where a1 is a constant from (4.29). Since it follows from (4.28) that

T 0
1y(−l1) = a1 −

l31Af0

12χ1ν1l(µ+ l)
(4µl + 3µ+ l2),

T 0
2y(l2) = ka1 +

l32Af0µ

12χ2ν1(µ+ l)
(3l2 + 4l + µ),

condition (5.11) is satisfied if and only if B2 = 0. Therefore, the stationary distribution of con-
centrations is possible only in the absence of their gradients in the direction of motion at the
initial moment of time. When B2 6= 0, the distribution is always non-stationary.

So, if B2 = 0, then we have in (5.10)

b1 = −α1a1, b3 = −α2ka1. (5.12)

The constant b2 remains arbitrary and without loss of generality it can be assumed to be zero
since adding constant concentrations λb2 and b2 to K0

1 and K0
2 , respectively, does not change the

problem for K0
j (y).

In the case when the velocity field is determined from (3.7) and (3.8) and the perturbation
of temperatures are found from (4.33), integration of equations (5.6) and (5.7) gives

K0
1 (y) =

(
λB2

d1
− α1A

χ1

)
a

(
y3

6l1
+
y2

2

)
+ b1y + λb2,

K0
2 (y) =

(
B2

d2
− α2A

χ2

)
a

(
− y3

6l2
+
y2

2

)
+ b3y + b2, 0 < y < l2,

(5.13)

where one should again put B2 = 0. The constants b1 and b3 are given by (5.12), where a1 is a
constant from (4.33).
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So, one should put B2 = 0 in equations (5.1) and (5.2) when studying the behaviour of
solution for the problem (5.1)–(5.5) as t→∞.

Solution in Laplace representation. Let us find the solution of problem (5.1)–(5.5) using
the Laplace transform. Taking into account zero initial data forKj and Tj , we obtain the following
boundary problem for representations K̃j(y, p):

K̃ ′′1 −
p

d1
K̃1 = −α1

χ1
pT̃1 +

(
λB2

d1
− α1A

χ1

)
ũ1; (5.14)

K̃ ′′2 −
p

d2
K̃2 = −α2

χ2
pT̃2 +

(
B2

d2
− α2A

χ2

)
ũ2; (5.15)

K̃1(0, p) = λK̃2(0, p), dK̃ ′1(0, p)− K̃ ′2(0, p) = α2T̃
′
2(0, p)− α1dT̃

′
1(0, p); (5.16)

K̃1(−l1, p) = −α1T̃
′
1(−l1, p), K̃2(l2, p) = −α2T̃

′
2(l2, p). (5.17)

Note that the right-hand side of (5.16) is equal to

α2T̃
′
2(0, p)− α1dT̃

′
1(0, p) = (kα2 − α1d)T̃ ′1(0, p). (5.18)

due to (4.17). The solution of problem (5.14)–(5.17) is written as

K̃1(y, p) = D1 sh
√

p

d1
y +D2 ch

√
p

d1
y +

√
d1

p

y∫
−l1

h1(z, p) sh
[√

p

d1
(y − z)

]
dz; (5.19)

K̃2(y, p) = D3 sh
√

p

d2
y +D4 ch

√
p

d2
y +

√
d2

p

y∫
0

h2(z, p) sh
[√

p

d2
(y − z)

]
dz, (5.20)

where

h1 = −α1

χ1
pT̃1 +

(
λB2

d1
− α1A

χ1

)
ũ1, h2 = −α2

χ2
pT̃2 +

(
B2

d2
− α2A

χ2

)
ũ2. (5.21)

After substituting (5.19) and (5.20) into boundary conditions (5.16) and (5.17), we find Dj(p)
(j = 1, 2, 3, 4) with the help of (5.18)

D1(p) =
λ

W3(p)

[
G3(p)−G4(p)− α2

√
d2

p

T̃ ′2(l2, p)

ch
√
pd−1

2 l2

− α1

λ

√
d1

p

th
√
pd−1

2 l2

sh
√
pd−1

1 l1

T̃ ′2(−l1, p)
]
,

D2(p) =

√
d1

p

α1T̃
′
1(−l1, p)

sh
√
pd−1

1 l1

+D1(p) cth
√

p

d1
l1,

D3(p) =
√
dD1(p)−G3(p), d = d1/d2,

D4(p) =
D2(p)
λ
− 1
λ

√
d1

p

0∫
−l1

h1(z, p) sh
√

p

d1
z dz, (5.22)

G3(p) = −d

√
d2

p

0∫
−l1

h1(z, p) ch
√

p

d1
z dz +

√
d2

p
(kα1 − α1d)T̃ ′1(0, p),
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G4(p) = − 1
λ

√
d1

p
th
√

p

d2
l2

0∫
−l1

h1(z, p) sh
√

p

d1
z dz+

+
1

ch
√
pd−1

2 l2

√
d2

p

l2∫
0

h2(z, p) sh
[√

p

d2
(l2 − z)

]
dz,

W3(p) = λ
√
d+ cth

√
p

d1
l1 th

√
p

d2
l2.

Using formulae (5.19)–(5.22), it can be shown that lim
p→0

pK̃j(y, p) = K0
j (y) when B2 = 0, where

K0
j are given by (5.10) or (5.13). It is done in the same way as in section 4.
On a priori estimate of concentration perturbations. Let us write equations (5.1) and

(5.2) in the form
K1t = d1K1yy + α1d1T1yy − λB2u1, −l1 < y < 0; (5.23)

K2t = d2K2yy + α2d2T2yy −B2u2, 0 < y < l2. (5.24)

We integrate these equations with respect to y, taking into account the second boundary condition
(5.3) and conditions (5.4) and (5.5). As a result,

0∫
−l1

K1 dy +

l2∫
0

K2 dy = −B2

λ t∫
0

0∫
−l1

u1 dydt+

t∫
0

l2∫
0

u2 dydt

 .
One can only deduce from this relation that∣∣∣∣∣∣

0∫
−l1

K1 dy +

l2∫
0

K2 dy

∣∣∣∣∣∣
is bounded for t > 0. In particular, this expression is zero when B2 = 0 (note that Kj(y, t) can
have arbitrary signs since they represent the concentration perturbations).

On the other hand, multiplying (5.23) and (5.24) by K1 and K2, respectively, and integrating
again with respect to y, we obtain the integral identity

dE3

dt
+ d1

0∫
−l1

K2
1y dy + d2

l2∫
0

K2
2y dy = −α1d1

0∫
−l1

K1yT1y dy−

−α2d2

l2∫
0

K2yT2y dy −B2

λ 0∫
−l1

u1K1 dy +

l2∫
0

u2K2 dy

 ,

(5.25)

where

E3(t) =
1
2

0∫
−l1

K2
1 dy +

1
2

l2∫
0

K2
2 dy. (5.26)

It can be easily deduced from these relations that
0∫
−l1

K2
1 dy and

l2∫
0

K2
2 dy are bounded for any

finite t when B2 = 0. It can be done with the help of elementary inequality ab 6 εa2/2 + b2/2ε,
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∀ε > 0. Here it is difficult to obtain an inequality of type (2.10) or (4.10) from (5.25) and
(5.26). The point is that the Friedrichs inequalities (2.9) does not hold for the functions Kj(y, t).

However, they are satisfied if the mean values
0∫
−l1

K1(y, t) dy = 0 and
l2∫
0

K2(y, t) dy = 0. It follows

from a more general Poincare inequality

b∫
a

f2(x) dx 6
2

b− a

( b∫
a

f(x) dx
)2

+ 2(b− a)2

b∫
a

f ′2(x) dx.

However, the mean values are non-zero here. Therefore, this procedure does not allow us to
determine the rate of convergence of Kj(y, t) to zero when condition (2.12) is satisfied.
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