Journal of Siberian Federal University. Mathematics & Physics 2018, 11(5), 659-662

VK 517.9
On the Fredholm property for the steady Navier-Stokes
equations in weighted Holder spaces

Andrei A.Parfenov,
Alexander A.Shlapunov*

Institute of Mathematics and Computer Science,
Siberian Federal University,
Svobodny 79, Krasnoyarsk, 660041

Russia

Received 10.05.2018, received in revised form 10.06.2018, accepted 20.07.2018

We prove that the steady Navier-Stokes equations induce a Fredholm non-linear map on the scale of

Hoélder spaces weighted at the infinity.

Keywords: steady Navier-Stokes Equations, non-linear Fredholm operators, weighted Holder spaces.
DOI: 10.17516/1997-1397-2018-11-5-659-662.

The theory of nonlinear Fredholm operators by S. Smale [3] provides an approach to obtain
generic results on the uniqueness and/or existence for nonlinear equations in Banach spaces.
We recall that a bounded linear operator £ in Banach spaces X and Y is called Fredholm if its
kernel and cokernel are finite-dimensional and its range is closed. Then a nonlinear operator A/
is Fredholm if at every point z € X its derivative (i.e. the principal linear part) N possesses the
Fredholm property. The most advanced results were obtained for the so called proper operators
(a map is proper if the inverse image of a compact set is compact). For instance, using results on
proper Fredholm maps from [3], J.C. Saut and R. Temam proved the generic uniqueness theorem
for the steady version of the Navier-Stokes equations on the scale of the Sobolev spaces, see [4].
Recently, A. Shlapunov and N. Tarkhanov [2] proved that the evolution Navier-Stokes equations
induce a Fredholm open injective map on the scale of the Holder spaces over the strip R™ x [0, T,
T >0, n > 2, weighted at the infinity with respect to the space variables. In the present short
note we prove that the steady Navier-Stokes type equations induce a Fredholm map on the scale
of the Holder spaces over R™, n > 3, weighted at the infinity.

Namely, let Z> be the set of all natural numbers including zero, and let R be the Euclidean
space of dimension n > 3 with coordinates z = (z',...,2"). Following [2], we denote by C5°
the space of all s times continuously differentiable functions on R™ with finite norm

lull g0 = > sup (1+ |z])6F1eD/2) 9oy (2)).

|a‘<SxER
For 0 < A < 1, we introduce

G+9/2 u(z) — u(y)]

(o= sup  (max(l+[ef,1+y) PRy

TH#yY
|z—y|<[=|/2
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We define C’;’)‘ to consist of all s times continuously differentiable functions on R"™, such that

[[ul

c:ot Z (0%u)x 6410 + llullgan(g,) < o0
|| <s

cir = = |Ju]

where C**(B) is the space of Holder functions in the unit closed ball B; centered at the origin.
These are Banach spaces for all s € Z>g and all 0 < A < 1.
Denote by A? the bundle of the differential forms of degree ¢ and let C’(‘;’,’tq stand for the

spaces of the differential forms of degree ¢ with the coefficients in CS’A.

Problem 1 Let s > 2 and 6 > 0. Given form f € C +2 Al find a formu € Cé 1 and a function
pE C’gﬂ’ satisfying
{ —pAu+Du+dop = f,
div = 0
where p is a positive real number, A is the Laplace operator, d, is the de Rham differential on
q-forms, dy s its formal adjoint and Du = Z?:l u;0;u.

For n = 3 the de Rham differentials give: dy = V, dy = rot, do = div where V is the gradient
operator, rot is the rotation operator and div is the divergence operator in R™. Hence Problem
1 is precisely the steady Navier-Stokes equations on the scale C’E’)‘ if n=3.

Now, integration by parts yields that, for 6 > n — 2, we have

(f? )L2 R™) =0, (1)

for any form f € Cf +22 21 admitting a solution (u,p) to Problem 1. Clearly, the weighted space

CE”\ with § > 0 corresponds to the one point compactification of R™ and then Problem 1 is
similar to the steady Navier-Stokes equations in the periodic case (or, the same, on a torus) and
(1) is similar to [4, condition (2.3)]. We will always assume that (1) is fulfilled if 6 > n — 2.

On the next step, using Hodge theory for the de Rham complex over weighted spaces (see
[2]), we reduce the Navier-Stokes equation for the velocity u to the equation with respect to
vorticity dyu (cf. [1] on the scale of Sobolev spaces). With this purpose, we note that ker d will
stand for solutions of the equation du = 0 in R™ in the sense of distributions. We denote by

R;_:’;\\qﬂ(d) the range of the operator d : Cf N = O§+11 Aa+1- According to [2, Corollary 3.11],

the space Ré+1 ‘a+1(d) coincides with C§+11 AN kerdyy if § € (0,n — 1); it consists of elements
fe C’(?_Hl * Nkerd, satisfying
(f,dgh;) 2@ny = 0, (2)

for all harmonic homogeneous polynomials h; of degree j in R” with 0 < j < m+11if 0 €
(n—14+m,n+m), m e Zxg.

Now, let A be the exterior product on the differential forms and let x be the Hodge star
operator on the differential forms, induced by identity dz; A xdx; = dx for each differential
dry = dxi, A~ Ad;, with |I| = g. Now for g-form F(z) = 37, _, Fi(2)dzr we set

0= [ 3 Putwente =y, #o@) = [ Fo) A Gy (X oale =) 5 dur).

n

[I|=q [I|=q

where ¢, (x — y) is the standard fundamental solution of the Laplace operator in R™. The
behaviour of these potentials on the weighted Holder spaces were investigated in [2, §3]. Now,
for 1-for g we set

Gyg(z) = *x(xg A @g).
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Problem 2 Let s>3 and § > 0. Given form f € Cg;zz’il (satisfying (1) if § >n—2) find a

form g € R +1 A2 satisfying
— (1/n)eGy = ¢d. f.

Now we may achieve the main theorems of our note.
Theorem 1. Letn >3, s €N, s >3 and 1 < § <n/2 with 20 —n+ 3 & Zx>o. Then Problems
1 and 2 are equivalent.
Proof. Indeed, we may write the nonlinear term D in the Lamb form (see, for instance, [1] or
[2, Lemma 1.2]:
Du = do|u|? + *(*diu A u).

According to [2, Corollary 3.11], the operator ® maps R;ﬁ‘L Az continuously to C’;’X‘l for the
chosen §. Then, as u = ®g is the unique form from C;‘X‘l satistying d; ®g = g, d;®g = 0 in R",
see [2], we conclude that dD = Gd. As d*> = 0, this proves that Problem 1 is equivalent to the
following equation

—pAg+Gg=dif (3)

on the discussed scales of spaces. Besides, the potential ¢ induces bounded linear map from the
range R(SH; *(A) of the bounded operator A : C5* — C’;_;;’)‘ to C3 where Rg_é *(A) coincides

with C5 3% if 0 < § < n — 2; it consists of all the elements F € Cy, ;" satisfying
(F,hj) 2@y = 0, (4)

for all harmonic homogeneous polynomials h; of degree j in R with 0 < j <mifd € (n—2+
m,n+m — 1), m € Z>g (see, for instance, [2, Theorem 3.1].

Since § > 1 the potential pd; f is a convergent integral. Moreover, as f satisfies (1) if § > n—2;
then using integration by parts we see that d; f satisfies (4) with j = 0 and j = 1. Hence if
0#n—2,0#n—-1,0 #n,1 <6 < n—+1, the form ¢d; f belongs to C’gﬂl’\. However, as
1 <0 <n/2and n > 3 all these conditions are fulfilled.

Similarly, integration by parts yields Du satisfies (1) if 26 + 1 > n — 2. On the other hand,
according to [2, Lemma 2.9] on the multiplication of the weighted functions, we see that D maps

C;’,){l continuously to C;(;Jrll’\Al Hence, as 26 — n + 3 ¢ Zxo, the operator ¢d;D maps Cg’j’\\l

continuously to C 95,72 if 26 < n. Similarly, ¢G maps R6+1 A2(d) continuously to Cs’ 5 A2 if 26 <n

(and, by the very definition, to R} 6)\A2 (d)).

Finally, as pAu = u for each u € C’(;’Aq (see, for instance, [1] or [2, Theorem 3.1]) and the
space C;’ji‘q is continuously embedded to the space Cgfji;)‘ for any § > ¢’ (see |2, Theorem 2.3]),
applying the potential ¢ to (3) we conclude that Problems 1 and 2 are equivalent, which was to

be proved. O
Theorem 2. Letn >3, s €N, s >3 and 1 <6 < n/2 with 26 —n+ 3 & Zxo. Then the
continuous operator

— (1/w)¢G : Ry 17(d) = Ry (d)

is Fredholm one and the operator
(1/p)eG : Ri372(d) = Ry 3 (d)

is continuous and compact.

Proof. We already proved in Theorem that ¢G maps R} +} /’\\2 (d) continuously to R 5/\/\2 (d)

if 20 < n. On the other hand, as the embedding Cg’Aq to the space C’s,_i,’,’\ is compact for any
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0 > ¢ we see that ¢G maps Rg;i’j‘p (d) compactly to RZ’_;\l a2(d) if 2 < 26 < n, ie. the second

statement of the theorem is true.
Finally, as

IQZQOF =dx* (*go A (I)F) +dx (*F A @go)

for each F, gg € R;;}’RQ (d), we may argue as before to conclude that

s—1,A s—1,\
(90@)19:90 : R(H-i/\? (d) - R5+1,A2 (d)
/
l9=g0
R;:ﬁ;z (d) because of the famous Fredholm theorems. 0

is a compact linear operator. Thus the operator I — (1/u)pG is Fredholm for each gy €
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O cBoiictBe @pejrosbMa JAJas CTAIMOHAPHBIX ypPaBHEHUIT
HaBpe-CTokca B BecoBbIX mpocTtpancTBax leabaepa

Anppeii A. ITapdenos,
Anekcanap A. IllaamyHoB

Mo doxaswieaem, wmo cmayuonaphnve ypashenus Hasve-Cmokca undyyupyem mesunetinoili onepamop
Pppedzorvmosckozo muna 8 secosvir npocmparcmeax I eavdepa.

Karoueswie caosa: cmayuonaproe ypasuernus Hasve-Cmokca, nesunetinoe $pedzosvmoss, onepamopol,
secosvie npocmparcmea Ieavdepa.
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