УДК 517.9

## On the Fredholm property for the steady Navier-Stokes equations in weighted Hölder spaces

## Andrei A. Parfenov, Alexander A. Shlapunov\*

Institute of Mathematics and Computer Science, Siberian Federal University, Svobodny 79, Krasnoyarsk, 660041

Russia

Received 10.05.2018, received in revised form 10.06.2018, accepted 20.07.2018

We prove that the steady Navier-Stokes equations induce a Fredholm non-linear map on the scale of Hölder spaces weighted at the infinity.

Keywords: steady Navier-Stokes Equations, non-linear Fredholm operators, weighted Hölder spaces. DOI: 10.17516/1997-1397-2018-11-5-659-662.

The theory of nonlinear Fredholm operators by S. Smale [3] provides an approach to obtain generic results on the uniqueness and/or existence for nonlinear equations in Banach spaces. We recall that a bounded linear operator  $\mathcal{L}$  in Banach spaces  $\mathcal{X}$  and  $\mathcal{Y}$  is called Fredholm if its kernel and cokernel are finite-dimensional and its range is closed. Then a nonlinear operator  $\mathcal{N}$  is Fredholm if at every point  $x \in \mathcal{X}$  its derivative (i.e. the principal linear part)  $\mathcal{N}'_x$  possesses the Fredholm property. The most advanced results were obtained for the so called proper operators (a map is proper if the inverse image of a compact set is compact). For instance, using results on proper Fredholm maps from [3], J.C. Saut and R. Temam proved the generic uniqueness theorem for the steady version of the Navier-Stokes equations on the scale of the Sobolev spaces, see [4]. Recently, A. Shlapunov and N. Tarkhanov [2] proved that the evolution Navier-Stokes equations induce a Fredholm open injective map on the scale of the Hölder spaces over the strip  $\mathbb{R}^n \times [0,T]$ , T > 0,  $n \ge 2$ , weighted at the infinity with respect to the space variables. In the present short note we prove that the steady Navier-Stokes type equations induce a Fredholm map on the scale of the Hölder spaces over  $\mathbb{R}^n$ ,  $n \ge 3$ , weighted at the infinity.

Namely, let  $\mathbb{Z}_{\geqslant 0}$  be the set of all natural numbers including zero, and let  $\mathbb{R}^n$  be the Euclidean space of dimension  $n \geqslant 3$  with coordinates  $x = (x^1, \dots, x^n)$ . Following [2], we denote by  $C_{\delta}^{s,0}$  the space of all s times continuously differentiable functions on  $\mathbb{R}^n$  with finite norm

$$||u||_{C^{s,0}_{\delta}} = \sum_{|\alpha| \le s} \sup_{x \in \mathbb{R}^n} (1+|x|)^{(\delta+|\alpha|)/2} |\partial^{\alpha} u(x)|.$$

For  $0 < \lambda < 1$ , we introduce

$$\langle u \rangle_{\lambda,\delta} = \sup_{\substack{x \neq y \\ |x-y| \leqslant |x|/2}} \left( \max\left(1+|x|^2,1+|y|^2\right) \right)^{(\delta+\lambda)/2} \frac{|u(x)-u(y)|}{|x-y|^{\lambda}}.$$

 $<sup>^*</sup> ashlapunov@sfu-kras.ru\\$ 

<sup>©</sup> Siberian Federal University. All rights reserved

We define  $C_{\delta}^{s,\lambda}$  to consist of all s times continuously differentiable functions on  $\mathbb{R}^n$ , such that

$$\|u\|_{C^{s,\lambda}_\delta} = \|u\|_{C^{s,0}_\delta} + \sum_{|\alpha| \leqslant s} \langle \partial^\alpha u \rangle_{\lambda,\delta+|\alpha|} + \|u\|_{C^{s,\lambda}(\overline{B}_1)} < \infty$$

where  $C^{s,\lambda}(\overline{B}_1)$  is the space of Hölder functions in the unit closed ball  $\overline{B}_1$  centered at the origin. These are Banach spaces for all  $s \in \mathbb{Z}_{\geq 0}$  and all  $0 \leq \lambda < 1$ .

Denote by  $\Lambda^q$  the bundle of the differential forms of degree q and let  $C^{s,\lambda}_{\delta,\Lambda^q}$  stand for the spaces of the differential forms of degree q with the coefficients in  $C^{s,\lambda}_{\delta}$ .

**Problem 1** Let  $s \ge 2$  and  $\delta > 0$ . Given form  $f \in C^{s-2,\lambda}_{\delta+2,\Lambda^1}$  find a form  $u \in C^{s,\lambda}_{\delta,\Lambda^1}$  and a function  $p \in C^{s-1,\lambda}_{\delta+1}$  satisfying

$$\begin{cases} -\mu \Delta u + \mathbb{D}u + d_0 p &= f, \\ d_0^* v &= 0 \end{cases}$$

where  $\mu$  is a positive real number,  $\Delta$  is the Laplace operator,  $d_q$  is the de Rham differential on q-forms,  $d_q^*$  is its formal adjoint and  $\mathbb{D}u = \sum_{j=1}^n u_j \partial_j u$ .

For n=3 the de Rham differentials give:  $d_0 = \nabla$ ,  $d_1 = \text{rot}$ ,  $d_2 = \text{div}$  where  $\nabla$  is the gradient operator, rot is the rotation operator and div is the divergence operator in  $\mathbb{R}^n$ . Hence Problem 1 is precisely the steady Navier-Stokes equations on the scale  $C^{s,\lambda}_{\delta}$  if n=3.

Now, integration by parts yields that, for  $\delta > n-2$ , we have

$$(f,1)_{L^2(\mathbb{R}^n)} = 0, (1)$$

for any form  $f \in C^{s-2,\lambda}_{\delta+2,\Lambda^1}$  admitting a solution (u,p) to Problem 1. Clearly, the weighted space  $C^{s,\lambda}_{\delta}$  with  $\delta > 0$  corresponds to the one point compactification of  $\mathbb{R}^n$  and then Problem 1 is similar to the steady Navier-Stokes equations in the periodic case (or, the same, on a torus) and (1) is similar to [4, condition (2.3)]. We will always assume that (1) is fulfilled if  $\delta > n-2$ .

On the next step, using Hodge theory for the de Rham complex over weighted spaces (see [2]), we reduce the Navier-Stokes equation for the velocity u to the equation with respect to vorticity  $d_1u$  (cf. [1] on the scale of Sobolev spaces). With this purpose, we note that  $\ker d$  will stand for solutions of the equation du=0 in  $\mathbb{R}^n$  in the sense of distributions. We denote by  $R^{s-1,\lambda}_{\delta+1,\Lambda^{q+1}}(d)$  the range of the operator  $d:C^{s,\lambda}_{\delta,\Lambda^q}\to C^{s-1,\lambda}_{\delta+1,\Lambda^{q+1}}$ . According to [2, Corollary 3.11], the space  $R^{s-1,\lambda}_{\delta+1,\Lambda^{q+1}}(d)$  coincides with  $C^{s-1,\lambda}_{\delta+1}\cap\ker d_{q+1}$  if  $\delta\in(0,n-1)$ ; it consists of elements  $f\in C^{s-1,\lambda}_{\delta+1}\cap\ker d_{q+1}$  satisfying

$$(f, d_q h_j)_{L^2(\mathbb{R}^n)} = 0, \tag{2}$$

for all harmonic homogeneous polynomials  $h_j$  of degree j in  $\mathbb{R}^n$  with  $0 \leq j \leq m+1$  if  $\delta \in (n-1+m,n+m), m \in \mathbb{Z}_{\geq 0}$ .

Now, let  $\wedge$  be the exterior product on the differential forms and let  $\star$  be the Hodge star operator on the differential forms, induced by identity  $dx_I \wedge \star dx_I = dx$  for each differential  $dx_I = dx_{i_1} \wedge \cdots \wedge dx_{i_q}$  with |I| = q. Now for q-form  $F(x) = \sum_{|I| = q} F_I(x) dx_I$  we set

$$(\varphi F)(x) = \int_{\mathbb{R}^n} \sum_{|I|=q} F_I(y) \varphi_n(x-y) dy, \ \Phi v(x) = \int_{\mathbb{R}^n} F(y) \wedge (d_{n-q-1})_y^* \Big( \sum_{|I|=q} \varphi_n(x-y) \star dy_I \Big),$$

where  $\varphi_n(x-y)$  is the standard fundamental solution of the Laplace operator in  $\mathbb{R}^n$ . The behaviour of these potentials on the weighted Hölder spaces were investigated in [2, §3]. Now, for 1-for q we set

$$\mathbb{G}g(x) = \star(\star g \wedge \Phi g).$$

**Problem 2** Let  $s \ge 3$  and  $\delta > 0$ . Given form  $f \in C^{s-2,\lambda}_{\delta+2,\Lambda^1}$  (satisfying (1) if  $\delta > n-2$ ) find a form  $g \in R^{s-1,\lambda}_{\delta+1,\Lambda^2}$  satisfying

$$g - (1/\mu)\varphi \mathbb{G}g = \varphi d_1 f.$$

Now we may achieve the main theorems of our note.

**Theorem 1.** Let  $n \ge 3$ ,  $s \in \mathbb{N}$ ,  $s \ge 3$  and  $1 < \delta < n/2$  with  $2\delta - n + 3 \notin \mathbb{Z}_{\ge 0}$ . Then Problems 1 and 2 are equivalent.

*Proof.* Indeed, we may write the nonlinear term  $\mathbb{D}$  in the Lamb form (see, for instance, [1] or [2, Lemma 1.2]:

$$\mathbb{D}u = d_0|u|^2 + \star(\star d_1 u \wedge u).$$

According to [2, Corollary 3.11], the operator  $\Phi$  maps  $R_{\delta+1,\Lambda^2}^{s,\lambda}$  continuously to  $C_{\delta,\Lambda^1}^{s,\lambda}$  for the chosen  $\delta$ . Then, as  $u=\Phi g$  is the unique form from  $C_{\delta,\Lambda^1}^{s,\lambda}$  satisfying  $d_1\Phi g=g$ ,  $d_0^*\Phi g=0$  in  $\mathbb{R}^n$ , see [2], we conclude that  $d\mathbb{D}=\mathbb{G}d$ . As  $d^2=0$ , this proves that Problem 1 is equivalent to the following equation

$$-\mu \Delta g + \mathbb{G}g = d_1 f \tag{3}$$

on the discussed scales of spaces. Besides, the potential  $\varphi$  induces bounded linear map from the range  $R^{s-2,\lambda}_{\delta+2}(\Delta)$  of the bounded operator  $\Delta:C^{s,\lambda}_{\delta}\to C^{s-2,\lambda}_{\delta+2}$  to  $C^{s,\lambda}_{\delta}$  where  $R^{s-2,\lambda}_{\delta+2}(\Delta)$  coincides with  $C^{s-2,\lambda}_{\delta+2}$  if  $0<\delta< n-2$ ; it consists of all the elements  $F\in C^{s-2,\lambda}_{\delta+2}$  satisfying

$$(F, h_i)_{L^2(\mathbb{R}^n)} = 0, (4)$$

for all harmonic homogeneous polynomials  $h_j$  of degree j in  $\mathbb{R}^n$  with  $0 \leq j \leq m$  if  $\delta \in (n-2+m, n+m-1), m \in \mathbb{Z}_{\geq 0}$  (see, for instance, [2, Theorem 3.1].

Since  $\delta > 1$  the potential  $\varphi d_1 f$  is a convergent integral. Moreover, as f satisfies (1) if  $\delta > n-2$ , then using integration by parts we see that  $d_1 f$  satisfies (4) with j=0 and j=1. Hence if  $\delta \neq n-2$ ,  $\delta \neq n-1$ ,  $\delta \neq n$ ,  $1 < \delta < n+1$ , the form  $\varphi d_1 f$  belongs to  $C^{s-1,\lambda}_{\delta+1}$ . However, as  $1 < \delta < n/2$  and  $n \geqslant 3$  all these conditions are fulfilled.

Similarly, integration by parts yields  $\mathbb{D}u$  satisfies (1) if  $2\delta+1>n-2$ . On the other hand, according to [2, Lemma 2.9] on the multiplication of the weighted functions, we see that  $\mathbb{D}$  maps  $C^{s,\lambda}_{\delta,\Lambda^1}$  continuously to  $C^{s-1,\lambda}_{2\delta+1,\Lambda^1}$ . Hence, as  $2\delta-n+3\not\in\mathbb{Z}_{\geqslant 0}$ , the operator  $\varphi d_1\mathbb{D}$  maps  $C^{s,\lambda}_{\delta,\Lambda^1}$  continuously to  $C^{s,\lambda}_{2\delta,\Lambda^2}$  if  $2\delta< n$ . Similarly,  $\varphi\mathbb{G}$  maps  $R^{s-1,\lambda}_{\delta+1,\Lambda^2}(d)$  continuously to  $C^{s,\lambda}_{2\delta,\Lambda^2}$  if  $2\delta< n$  (and, by the very definition, to  $R^{s,\lambda}_{2\delta,\Lambda^2}(d)$ ).

Finally, as  $\varphi \Delta u = u$  for each  $u \in C^{s,\lambda}_{\delta,\Lambda^q}$  (see, for instance, [1] or [2, Theorem 3.1]) and the space  $C^{s,\lambda}_{\delta,\Lambda^q}$  is continuously embedded to the space  $C^{s-1,\lambda}_{\delta',\Lambda^q}$  for any  $\delta \geqslant \delta'$  (see [2, Theorem 2.3]), applying the potential  $\varphi$  to (3) we conclude that Problems 1 and 2 are equivalent, which was to be proved.

**Theorem 2.** Let  $n \ge 3$ ,  $s \in \mathbb{N}$ ,  $s \ge 3$  and  $1 < \delta < n/2$  with  $2\delta - n + 3 \notin \mathbb{Z}_{\ge 0}$ . Then the continuous operator

$$I - (1/\mu)\varphi \mathbb{G} : R_{\delta+1}^{s-1,\lambda}(d) \to R_{\delta+1}^{s-1,\lambda}(d)$$

is Fredholm one and the operator

$$(1/\mu)\varphi\mathbb{G}: R^{s-1,\lambda}_{\delta+1}(d) \to R^{s-1,\lambda}_{\delta+1}(d)$$

is continuous and compact.

*Proof.* We already proved in Theorem that  $\varphi \mathbb{G}$  maps  $R_{\delta+1,\Lambda^2}^{s-1,\lambda}(d)$  continuously to  $R_{2\delta,\Lambda^2}^{s,\lambda}(d)$  if  $2\delta < n$ . On the other hand, as the embedding  $C_{\delta,\Lambda^q}^{s,\lambda}$  to the space  $C_{\delta',\Lambda^q}^{s-1,\lambda}$  is compact for any

 $\delta > \delta'$  we see that  $\varphi \mathbb{G}$  maps  $R^{s-1,\lambda}_{\delta+1,\Lambda^2}(d)$  compactly to  $R^{s,\lambda}_{\delta+1,\Lambda^2}(d)$  if  $2 < 2\delta < n$ , i.e. the second statement of the theorem is true.

Finally, as

$$\mathbb{G}'_{|g=q_0}F = d \star (\star g_0 \wedge \Phi F) + d \star (\star F \wedge \Phi g_0)$$

for each  $F, g_0 \in R^{s-1,\lambda}_{\delta+1,\Lambda^2}(d)$ , we may argue as before to conclude that

$$(\varphi \mathbb{G})'_{|g=g_0}: R^{s-1,\lambda}_{\delta+1,\Lambda^2}(d) \to R^{s-1,\lambda}_{\delta+1,\Lambda^2}(d)$$

is a compact linear operator. Thus the operator  $I - (1/\mu)\varphi \mathbb{G}'_{|g=g_0}$  is Fredholm for each  $g_0 \in R^{s-1,\lambda}_{\delta+1,\Lambda^2}(d)$  because of the famous Fredholm theorems.

The work was supported by the grant of the Ministry of Education and Science of the Russian Federation N 1.2604.2017/PCh.

## References

- [1] A.Bertozzi, A.Majda, Vorticity and Incompressible Flows, Cambridge University Press, Cambridge, 2002.
- [2] A.Shlapunov, N.Tarkhanov, An Open Mapping Theorem for the Navier-Stokes Equations, Advances and Applications in Fluid Mechanics, 21(2018), no. 2 127-246.
- [3] S.Smale, An infinite dimensional version of Sard's theorem, Amer. J. Math., 87(1965), no. 4, 861–866.
- [4] R.Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd ed., SIAM, Philadelphia, 1995.

## О свойстве Фредгольма для стационарных уравнений Навье-Стокса в весовых пространствах Гельдера

Андрей А. Парфенов, Александр А. Шлапунов

Мы доказываем, что стационарные уравнения Навъе-Стокса индуцирует нелинейный оператор фредгольмовского типа в весовых пространствах Гельдера.

Ключевые слова: стационарные уравнения Навье-Стокса, нелинейные фредгольмовы операторы, весовые пространства Гельдера.