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The theory of nonlinear Fredholm operators by S. Smale [3] provides an approach to obtain
generic results on the uniqueness and/or existence for nonlinear equations in Banach spaces.
We recall that a bounded linear operator L in Banach spaces X and Y is called Fredholm if its
kernel and cokernel are finite-dimensional and its range is closed. Then a nonlinear operator N
is Fredholm if at every point x ∈ X its derivative (i.e. the principal linear part) N ′

x possesses the
Fredholm property. The most advanced results were obtained for the so called proper operators
(a map is proper if the inverse image of a compact set is compact). For instance, using results on
proper Fredholm maps from [3], J.C. Saut and R. Temam proved the generic uniqueness theorem
for the steady version of the Navier-Stokes equations on the scale of the Sobolev spaces, see [4].
Recently, A. Shlapunov and N. Tarkhanov [2] proved that the evolution Navier-Stokes equations
induce a Fredholm open injective map on the scale of the Hölder spaces over the strip Rn× [0, T ],
T > 0, n > 2, weighted at the infinity with respect to the space variables. In the present short
note we prove that the steady Navier-Stokes type equations induce a Fredholm map on the scale
of the Hölder spaces over Rn, n > 3, weighted at the infinity.

Namely, let Z>0 be the set of all natural numbers including zero, and let Rn be the Euclidean
space of dimension n > 3 with coordinates x = (x1, . . . , xn). Following [2], we denote by Cs,0

δ

the space of all s times continuously differentiable functions on Rn with finite norm

∥u∥Cs,0
δ

=
∑
|α|6s

sup
x∈Rn

(1 + |x|)(δ+|α|)/2|∂αu(x)|.

For 0 < λ < 1, we introduce

⟨u⟩λ,δ = sup
x ̸=y

|x−y|6|x|/2

(
max (1 + |x|2, 1 + |y|2)

)(δ+λ)/2 |u(x)− u(y)|
|x− y|λ

.
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We define Cs,λ
δ to consist of all s times continuously differentiable functions on Rn, such that

∥u∥Cs,λ
δ

= ∥u∥Cs,0
δ

+
∑
|α|6s

⟨∂αu⟩λ,δ+|α| + ∥u∥Cs,λ(B1)
< ∞

where Cs,λ(B1) is the space of Hölder functions in the unit closed ball B1 centered at the origin.
These are Banach spaces for all s ∈ Z>0 and all 0 6 λ < 1.

Denote by Λq the bundle of the differential forms of degree q and let Cs,λ
δ,Λq stand for the

spaces of the differential forms of degree q with the coefficients in Cs,λ
δ .

Problem 1 Let s > 2 and δ > 0. Given form f ∈ Cs−2,λ
δ+2,Λ1 find a form u ∈ Cs,λ

δ,Λ1 and a function
p ∈ Cs−1,λ

δ+1 satisfying {
−µ∆u+ Du+ d0p = f,

d∗0 v = 0

where µ is a positive real number, ∆ is the Laplace operator, dq is the de Rham differential on
q-forms, d∗q is its formal adjoint and Du =

∑n
j=1 uj∂ju.

For n = 3 the de Rham differentials give: d0 = ∇, d1 = rot, d2 = div where ∇ is the gradient
operator, rot is the rotation operator and div is the divergence operator in Rn. Hence Problem
1 is precisely the steady Navier-Stokes equations on the scale Cs,λ

δ if n = 3.
Now, integration by parts yields that, for δ > n− 2, we have

(f, 1)L2(Rn) = 0, (1)

for any form f ∈ Cs−2,λ
δ+2,Λ1 admitting a solution (u, p) to Problem 1. Clearly, the weighted space

Cs,λ
δ with δ > 0 corresponds to the one point compactification of Rn and then Problem 1 is

similar to the steady Navier-Stokes equations in the periodic case (or, the same, on a torus) and
(1) is similar to [4, condition (2.3)]. We will always assume that (1) is fulfilled if δ > n− 2.

On the next step, using Hodge theory for the de Rham complex over weighted spaces (see
[2]), we reduce the Navier-Stokes equation for the velocity u to the equation with respect to
vorticity d1u (cf. [1] on the scale of Sobolev spaces). With this purpose, we note that ker d will
stand for solutions of the equation du = 0 in Rn in the sense of distributions. We denote by
Rs−1,λ

δ+1,Λq+1(d) the range of the operator d : Cs,λ
δ,Λq → Cs−1,λ

δ+1,Λq+1 . According to [2, Corollary 3.11],
the space Rs−1,λ

δ+1,Λq+1(d) coincides with Cs−1,λ
δ+1 ∩ ker dq+1 if δ ∈ (0, n − 1); it consists of elements

f ∈ Cs−1,λ
δ+1 ∩ ker dq+1 satisfying

(f, dqhj)L2(Rn) = 0, (2)

for all harmonic homogeneous polynomials hj of degree j in Rn with 0 6 j 6 m + 1 if δ ∈
(n− 1 +m,n+m), m ∈ Z>0.

Now, let ∧ be the exterior product on the differential forms and let ⋆ be the Hodge star
operator on the differential forms, induced by identity dxI ∧ ⋆dxI = dx for each differential
dxI = dxi1 ∧ · · · ∧ dxiq with |I| = q. Now for q-form F (x) =

∑
|I|=q FI(x)dxI we set

(φF )(x) =

∫
Rn

∑
|I|=q

FI(y)φn(x− y)dy, Φv(x) =

∫
Rn

F (y) ∧ (dn−q−1)
∗
y

( ∑
|I|=q

φn(x− y) ⋆ dyI

)
,

where φn(x − y) is the standard fundamental solution of the Laplace operator in Rn. The
behaviour of these potentials on the weighted Hölder spaces were investigated in [2, §3]. Now,
for 1-for g we set

Gg(x) = ⋆(⋆g ∧ Φg).
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Problem 2 Let s > 3 and δ > 0. Given form f ∈ Cs−2,λ
δ+2,Λ1 (satisfying (1) if δ > n − 2) find a

form g ∈ Rs−1,λ
δ+1,Λ2 satisfying

g − (1/µ)φGg = φd1f.

Now we may achieve the main theorems of our note.
Theorem 1. Let n > 3, s ∈ N, s > 3 and 1 < δ < n/2 with 2δ − n+ 3 ̸∈ Z>0. Then Problems
1 and 2 are equivalent.

Proof. Indeed, we may write the nonlinear term D in the Lamb form (see, for instance, [1] or
[2, Lemma 1.2]:

Du = d0|u|2 + ⋆(⋆d1u ∧ u).

According to [2, Corollary 3.11], the operator Φ maps Rs,λ
δ+1,Λ2 continuously to Cs,λ

δ,Λ1 for the
chosen δ. Then, as u = Φg is the unique form from Cs,λ

δ,Λ1 satisfying d1Φg = g, d∗0Φg = 0 in Rn,
see [2], we conclude that dD = Gd. As d2 = 0, this proves that Problem 1 is equivalent to the
following equation

−µ∆g +Gg = d1f (3)

on the discussed scales of spaces. Besides, the potential φ induces bounded linear map from the
range Rs−2,λ

δ+2 (∆) of the bounded operator ∆ : Cs,λ
δ → Cs−2,λ

δ+2 to Cs,λ
δ where Rs−2,λ

δ+2 (∆) coincides
with Cs−2,λ

δ+2 if 0 < δ < n− 2; it consists of all the elements F ∈ Cs−2,λ
δ+2 satisfying

(F, hj)L2(Rn) = 0, (4)

for all harmonic homogeneous polynomials hj of degree j in Rn with 0 6 j 6 m if δ ∈ (n− 2 +

m,n+m− 1), m ∈ Z>0 (see, for instance, [2, Theorem 3.1].
Since δ > 1 the potential φd1f is a convergent integral. Moreover, as f satisfies (1) if δ > n−2,

then using integration by parts we see that d1f satisfies (4) with j = 0 and j = 1. Hence if
δ ̸= n − 2, δ ̸= n − 1, δ ̸= n, 1 < δ < n + 1, the form φd1f belongs to Cs−1,λ

δ+1 . However, as
1 < δ < n/2 and n > 3 all these conditions are fulfilled.

Similarly, integration by parts yields Du satisfies (1) if 2δ + 1 > n − 2. On the other hand,
according to [2, Lemma 2.9] on the multiplication of the weighted functions, we see that D maps
Cs,λ

δ,Λ1 continuously to Cs−1,λ
2δ+1,Λ1 . Hence, as 2δ − n + 3 ̸∈ Z>0, the operator φd1D maps Cs,λ

δ,Λ1

continuously to Cs,λ
2δ,Λ2 if 2δ < n. Similarly, φG maps Rs−1,λ

δ+1,Λ2(d) continuously to Cs,λ
2δ,Λ2 if 2δ < n

(and, by the very definition, to Rs,λ
2δ,Λ2(d)).

Finally, as φ∆u = u for each u ∈ Cs,λ
δ,Λq (see, for instance, [1] or [2, Theorem 3.1]) and the

space Cs,λ
δ,Λq is continuously embedded to the space Cs−1,λ

δ′,Λq for any δ > δ′ (see [2, Theorem 2.3]),
applying the potential φ to (3) we conclude that Problems 1 and 2 are equivalent, which was to
be proved. �
Theorem 2. Let n > 3, s ∈ N, s > 3 and 1 < δ < n/2 with 2δ − n + 3 ̸∈ Z>0. Then the
continuous operator

I − (1/µ)φG : Rs−1,λ
δ+1 (d) → Rs−1,λ

δ+1 (d)

is Fredholm one and the operator

(1/µ)φG : Rs−1,λ
δ+1 (d) → Rs−1,λ

δ+1 (d)

is continuous and compact.
Proof. We already proved in Theorem that φG maps Rs−1,λ

δ+1,Λ2(d) continuously to Rs,λ
2δ,Λ2(d)

if 2δ < n. On the other hand, as the embedding Cs,λ
δ,Λq to the space Cs−1,λ

δ′,Λq is compact for any
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δ > δ′ we see that φG maps Rs−1,λ
δ+1,Λ2(d) compactly to Rs,λ

δ+1,Λ2(d) if 2 < 2δ < n, i.e. the second
statement of the theorem is true.

Finally, as
G′

|g=g0
F = d ⋆ (⋆g0 ∧ ΦF ) + d ⋆ (⋆F ∧ Φg0)

for each F, g0 ∈ Rs−1,λ
δ+1,Λ2(d), we may argue as before to conclude that

(φG)′|g=g0
: Rs−1,λ

δ+1,Λ2(d) → Rs−1,λ
δ+1,Λ2(d)

is a compact linear operator. Thus the operator I − (1/µ)φG′
|g=g0

is Fredholm for each g0 ∈
Rs−1,λ

δ+1,Λ2(d) because of the famous Fredholm theorems. �
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О свойстве Фредгольма для стационарных уравнений
Навье-Стокса в весовых пространствах Гельдера

Андрей А. Парфенов,
Александр А. Шлапунов

Мы доказываем, что стационарные уравнения Навье-Стокса индуцирует нелинейный оператор
фредгольмовского типа в весовых пространствах Гельдера.

Ключевые слова: стационарные уравнения Навье-Стокса, нелинейные фредгольмовы операторы,
весовые пространства Гельдера.
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