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established.
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Игровая интуитивная спектральная модель аукциона  
и изучение процесса подачи заявок  
на когнитивные радиосистемы

Абдулкарим Олоиеде
Департамент телекоммуникационных наук 

Университет Илорин 
Нигерия, Илорин

Изучается процесс обучения на основе аукциона для когнитивных радиосетей, где 
пользователи и поставщики услуг узнают друг о друге, чтобы максимизировать 
полезность друг друга. Игровая модель сформулирована так, чтобы позволить игрокам 
учиться в зависимости от их приоритета. Это дает возможность пользователям 
изучать различные параметры, такие как наилучшая цена предложения и подходящее 
время для участия в аукционном процессе. Производительность системы проверяется на 
основе разработанной функции полезности. Результаты показывают, что вероятность 
блокировки, функция полезности и потребляемая энергия лучше у пользователей обучения 
по сравнению с пользователями, не участвующими в обучении. Результаты также 
показывают, что при условии, что обучение будет проходить в системе, может быть 
установлено равновесие Нэша.

Ключевые слова: спектральный аукцион, доступ к динамическому спектру, аукцион, основанный 
на учебе, вспомогательная функция.

I. Introduction

The huge shift to wireless communications brought about by the advent of smartphones and 
related devices is leading to congestion of the radio spectrum. The cause of the congestion is 
however mainly associated with the traditional fixed spectrum allocation schemes put in place by the 
different regulatory authorities [1, 2]. This led to the concept of Dynamic Spectrum Access (DSA) 
as proposed in [3]. Furthermore energy efficiency is a key factor in future wireless network because 
of climate change [4, 5]. In addition to this, the concept of Cognitive Radio Networks (CRN) has 
also been proposed in [6]. Consequently to complement the dynamic network, increase the revenue 
in relation to the increase in demand for expansion purposes and management of the occasional 
congestion as a result of people congregating in a single location such as during a football match, the 
Olympics or other events, dynamic pricing using the concept of an auction was also introduced. An 
auction process is important because, over the years the price paid for the spectrum has been based 
on potential price rather than allowing competition to reflect the actual price for the radio spectrum. 
Hence, this resulted into a growth in demand for the radio spectrum without a corresponding growth 
in revenue [7]. 

The implementation of a heterogeneous network requires proper planning in terms of pricing, 
licensing period and the power allocation mechanism among others to deliver the expected gain. 
However, the primary users of the radio spectrum are still not willing to share the radio spectrum 
based on the concept of DSA. This is because of concerns about interference from secondary users. 
Therefore, to encourage the efficient use of the radio spectrum for secondary access, [8] has previously 
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proposed the use of the green payments (GP) as an incentive for efficient use of the radio spectrum 
in and an auction based balancing on revenue and fairness was proposed in [9]. This paper uses the 
already proposed green paymnets to fomulate this work. This paper also examines a novel concept of 
a game based model in combination with an auction process to characterise the interactions that exist 
between the different competing elements in an auction based DSA network. This is done to reduce 
the amount of energy consumed in the system. The use of these two concepts to model a DSA network 
can also be found in [10-13]. 

The remaining parts of this paper are organised as follows: Section II defines some of the new and 
important models used in this paper. Section III defines the utility function adopted. Section IV shows 
a modelling scenario with the game model. Section V gives the results and discussion while the last 
section is the conclusions and future work. 

II. System Model and Parameters

To model a heterogeneous network, the users in this paper are divided into two groups, the High 
Powered Users (HPUs) and the Low Powered Users (LPUs). The HPU requires a higher quality of 
service when compared to the LPU. Just these two categories are compared for simplification purposes. 
Furthermore we consider the presence of the service provider called the Wireless Service Provider 
(WSP) whose responsibility is to provide radio spectrum access to the users. These three entities 
considered form the players in the game model. 

The Energy Model

The energy model is represented as a 2 state Markov chain shown in Fig. 1 and explained thus:
1. A user who has file(s) to send moves into the OFF state and continue to be in this state until such 

user is among the winning bidders. 
2. A user who is among the winning bidders moves from the OFF state to the ON state.
3. The user remains in the ON state until after transmission if transmission is successful or until 

when the user receives a failed signal either due to low offered bid compared to the reserve price or due 
to poor quality channel.

4. After transmission the user moves back to the OFF state before switching completely off if no 
file is to be sent again. However if the user has another file to send, the user remains and attempt again 
in the off state. The complete off mode (not in Fig. 1) is the mode a user is in when there is no file to 
be sent. 

A processing time which is the time taken to process the received bid is also assumed. All users 
that move from the ON state to the OFF state have the same processing time. 

Fig. 1. Energy and system model as a two state Markov chain
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The Reserve Price 

The reserve price is the minimum price to be paid by any user intending to transmit before 

the spectrum is allocated to such a user. When the demand is low the reserve price helps to 

retain the minimum selling price of the WSP as shown in [8]. It is formulated by taking into 

account the current traffic load in the system, the frequency band, the total number of 

channels and the number of channels in use as: 

                             ������������� � ���TC��                  (1) 

Where �� is a constant in price unit which is used to specify the value of a spectrum band in 

use. This value is determined from the common knowledge regarding the common price of 

the radio spectrum and it is specified in parameters table 1. The users believe that the bigger 

the size of the network, the better the quality of service offered hence, the total number of 

channels in the system is also taken into consideration when calculating the reserve price. 

The congestion factor (��� as shown below is introduced because of the laws of demand and 

supply as explained in [14]: 
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 A user intending to seek access to the radio spectrum picks a bid from any of the bins depending 

on the user’s belief regarding the values of the bids submitted by other users in the system. It is quite 
similar to the traffic load bin used in [15]. However, unlike in [15] where the bids are assumed to 
be a discreet value, here the values are real numbers. The OBB is formulated as explained because 
the assumption in [15] that a user knows the system’s traffic load might not always be true, as such 
information is available mainly to the WSP. 

The Users Belief

As stated earlier, the offered bid of a user depends on the belief of the user regarding the bids of 
others. Two beliefs models are proposed, the greedy and the learning model. 

The Greedy or Non-learning Process

A user using the greedy model is assumed to be myopic and only intends to maximise its utility 
by bidding using a low price value. Such a user is known as extremely price sensitive bidder [16]. The 
bidder does not mind wasting energy by losing the auction process. Hence, it is assumed here that such 
a user is not learning the bid of the others or the reserve price.



– 698 –

Abdulkarim Ayopo Oloyede. A Game Based Energy Sensitive Spectrum Auction Model and Bid Learning Process…

The Learning Process

Learning about the optimal bidding price can be useful to control the traffic load in the system 
especially when the system is congested in addition to the reduction in consumed energy and delay as 
demonstrated in [17]. Users that use the learning model are assumed to be interested in always winning 
or not wasting energy.

LPU Learning 

A LPU receives a form of subsidy using the green payment equation as explained in [8] (while 
the HPUs are taxed using the same green payment equation). It is assumed that the LPU are provided 
with the information about the previous bids of the HPU in additional to the incentive received from 
the WSP. This information is used by the LPU as the prior information during the learning process. 
The WSP provides such information only to the LPU because as shown in [8] the WSP prefers the LPU 
transmitting rather than the HPU to keep interference in the system low.

HPU Learning 

A HPU can only learn about the bids of the LPU based on an estimated prior knowledge while using 
the Bayesian learning model [18]. The HPU learn to understand when the LPU are not transmitting to 
increase their chances of winning the auction process (Fig. 2). 

WSP Learning

The information available to the WSP is the bids submitted by the users. The aim of the WSP is 
to maximise revenue. Therefore, the WSP learns the user’s reservation price. The reservation price 
is determined by the user’s budget as explained in [19]. If the reserve price is higher than the user’s 
reservation price then no user is able to pay hence, the spectrum is not utilised. On the other hand, 
if there is congestion in the system, the WSP can increase the reserve price to prevent more users 
attempting to transmit. 

III. The Utility Function

The utility function plays an important role in determining the achievable performance of a 
system. It describes the level of satisfaction or the preference of a user based on the QoS received 
[20]. It can be used in radio resource management to determine the level of satisfaction of the 
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users. The utility function can be described using different ways, but the choice of the function 
is critical in achieving the desired performance. In this paper, it is defined for each set of players 
using a power utility function because of its rapidly increasing nature. All the players are assumed 
to be rational and they seek to maximize their utility. The utility function of the users is divided 
into four parts: the utility based on the bid value (UB), the utility based on the OBB (UOBB), the 
utility based on the energy consumed per file sent (UE) and the utility based on the green payments 
(UR). 

Utility in Terms of the OBB

The higher the OBB a user picks a bid from, the lower the utility of the user in terms of the OBB. This 
means that a user that picks a bid from OBB1 has a higher utility value in terms of the OBB compared to 
a user that picks a bid from OBB2 or higher 
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). This is because it is assumed that the users are 

price sensitive and the users aim is to win with the least possible amount.  
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values has the least utility.  is used as the denominator in order to avoid a user 
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�� is the bid of any user �. If a bidder is not among the winning bidders, the utility of such a 

user is zero. The lower part of equation 5 contains a fixed value ��which is specified in the 

parameter table. This is used for the user with the maximum bid to prevent a user from 

having a utility function value of zero. The value of �� is picked to be quite small so that it 

does not affect the utility of the highest bidder. 

Utility in Terms of Energy Consumed During the Bidding Process 

From the energy model, the more efficient a user is in terms of offering a bid that is accepted 

by the WSP, the more energy efficient the user is. A user whose bid is never rejected is 

considered to be more energy efficient compared to a user whose bid is sometimes/often 

rejected. This is because a user can only participate in the bidding process when in the ON 

state as explained earlier. It is measured as shown below: 
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more energy efficient compared to a user whose bid is sometimes/often rejected. This is because a user 
can only participate in the bidding process when in the ON state as explained earlier. It is measured as 
shown below:
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Utility in Terms of the Green Payments

The concept of the green payments was formulated in [8]. The utility in terms of the green 
payments is set to determine the satisfaction of the user depending on the value of the received green 
subsidy. The higher the amount of green payments subsidy received, the higher the utility of a user in 
terms of the green payment. However, it is assumed that a user paying a tax has a utility value of zero 
in terms of the green payment. This is done to allow for the simplification of this work rather than 
having a negative utility. 
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�� is the green payment tax/subsidy for user � respectively, ���� is the maximum subsidy.  

The Overall Utility of the User 

The overall utility of each of the user can vary between 0 and 1as shown below: 
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Where � can vary between 1 and 2. This is done in order to vary the impact of �� and ���� 

on the utility value. � is specified in the parameters table 1. It is introduced to reduce the 

weight associated to the utility in terms of the green payments and the OBB because it is 

assumed that they have less impact on the general utility of the users in this model. The 

components of the utility function that has less impact depend on the on the service offered 

by the system. This is because the satisfactions derived by users vary with the offered service. 

The peak point in Fig. 3 might be difficult to achieve because a user might prefer one factor 

more than the others, depending on the application in use. It can be as shown below. 
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Where ω can vary between 1 and 2. This is done in order to vary the impact of UR and UOBB on the 
utility value. ω is specified in the parameters Table 1. It is introduced to reduce the weight associated 
to the utility in terms of the green payments and the OBB because it is assumed that they have less 
impact on the general utility of the users in this model. The components of the utility function that 
has less impact depend on the on the service offered by the system. This is because the satisfactions 
derived by users vary with the offered service. The peak point in Fig. 3 might be difficult to achieve 
because a user might prefer one factor more than the others, depending on the application in use. It can 
be as shown below.
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. (10)

Where NCAU(t) is the total number of channels that was available and used up till time t and NTC(t) 
is the total number of channels that was available in the system up till time t. It is assumed that if a 
channel is not occupied, the WSP is losing some revenue. 
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Table 1. Parameters used

Parameters Value

Cell radius 2 km
Interference threshold -40 dBm

Users in a cell 200
Number of cell 19

Noise floor -114 dB/MHz
SINRmax 21 dB

SINRthreshold 1.8 dB
Cr 0.7

Max number of channels per cell 4
Height of base station 15 m

Height of mobile station 1 m
Budget 100000 Price Units

Transmit power for users 0.9 W/bit
Energy consumed by device 0.5 Watt sec

Power used in bidding 0.25% of the transmit power
Abs 12
dk 0.001
ω 1

IV. The Modelling Scenario

A cognitive network with users seeking access to the spectrum in an opportunistic manner is 
modelled, where NUSA out of the possible N users in the system are competing for NAC unlicensed 
channels (where NAC is the number of available channels). A multi-channel scenario (NAC > 1) is 
modelled using an uplink scenario. The bid of each user is either taxed or subsidized using the concept 
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of green payments as described in [8]. The channel is allocated to the highest bidder(s) represented as  
NWU  using the first price sealed bid auction with a reserve price as explained in [21]. The WINNER II 
B2 propagation model is used as detailed in [22]. The parameters used in the simulations are as given 
in Table 1. 

The truncated Shannon equation is used to model the transmission rates of each of the users as 
detailed in [23]. The flow chart is as shown below (Fig. 4).

The Game Model

The game model is used to examine the utility of the learning users compared to the non-learning 
users. This section also investigates if a player can increase their utility by unilaterally changing from 
the learning model to the non-learning model or the other way round. The already formulated utility 
functions as explained are used. 

A game model is used to study the allocation of the spectrum to obtain a satisfactory and a fair 
energy efficient auction based mechanism. This paper assumes a game which can be represented 
as a tuple G = [P, A, U]. Where P represents the set of players in the game, A represents the set of 
actions that is available to the players and U is the payoff or the utility obtained by taking an action. 
The players are represented as P = [GHPU, GLPU, W]. Where, GHPU represents the HPU, GLPU represents 
the LPU and W represents the WSP. Two actions are available to the players to either learn or use 
the greedy/non-learning approach A = [Al, Ag]). Each of the players aim is to maximise the obtained 
utility by bidding using the bid value that offers the maximum possible utility. The utility of the WSP 
depends on the revenue received as explained earlier. The players in the same group form a coalition 

Fig. 4. System Flow Chart
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using transfer learning. In this coalition, they share information such as the optimal OBB with each 
other. The aim of the game is to examine how a Nash Equilibrium can be achieved. 

Each group of players can choose different actions (Al or Ag) but the players in the same group can 
only choose or use the same action in an auction round. This means that if the GLPU decides to learn, 
all the users in the group are learning. If GLPU is not learning then no user in that group can decide to 
learn. This is the same for GHPU and the WSP. 

In the game formulation, a player belonging to GLPU learns the optimal bid value by learning 
based on the prior probability provided by the WSP using Bayesian learning or adopting the 
greedy model. Each GHPU can decide not to use the greedy model by learning the likelihood of 
being among the highest bidder and stays out if the likelihood is low. Depending on the value of 
the likelihood, the number of HPU that should attempt to bid during the next bidding round is 
determined. The equation of the likelihood is formulated such that the number of HPU attempting 
depends on the available channels and the offered bid of the users. This prevents a situation where 
the users are attempting to access the channels with either a low value of offered bid or when few 
channels are available in the system. This is because in such scenarios, it is most likely that the 
channels would be allocated to the LPU who are also attempting during the same bidding round. 
The formulation is as shown below:
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greedy model. Each  can decide not to use the greedy model by learning the likelihood 

of being among the highest bidder and stays out if the likelihood is low. Depending on the 

value of the likelihood, the number of HPU that should attempt to bid during the next bidding 

round is determined. The equation of the likelihood is formulated such that the number of 

HPU attempting depends on the available channels and the offered bid of the users. This 

prevents a situation where the users are attempting to access the channels with either a low 

value of offered bid or when few channels are available in the system. This is because in such 

scenarios, it is most likely that the channels would be allocated to the LPU who are also 

attempting during the same bidding round. The formulation is as shown below: 
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Where  is the value of the reserve price if known to the user otherwise it is the minimum 

possible bid by user  based on the budget of the user.  is the maximum possible 
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Where bm is the value of the reserve price if known to the user otherwise it is the minimum 
possible bid by user i based on the budget of the user. Vmax is the maximum possible valuation for a user 
per file and bi is the bid for user i. The probability is calculated for all the HPU users. If the probability 
is high for all the HPU attempting to transmit, then they are allowed, but if it is low, only a fraction are 
allowed as shown in equation (12). The users allowed are picked in descending order of the probability. 
The numbers allowed depend on the arriving users and the numbers of channels available. This is 
because at low traffic loads more HPU can be allowed, the numbers allowed decrease as the traffic load 
increase. It is as shown below:
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Where  is the total number of HPU who arrived and wants to transmit during a 

transmission period ,  is the number of arriving HPU that are allowed to attempt to 

transmit after multiplying by the probability and  here is probability calculated from 

equation (12). This shows that the higher the likelihood, the higher the number of HPU 

allowed into the system. However, using the equation to determine the number of users 

allowed is not optimal. Therefore, the HPU varies the probability (  in equation 12 and 

learns the optimal value for each traffic load provided  is positive initially. The equation is 

used in generating the prior probability and it serves as basis for the learning process. The 

HPU users use Bayesian learning as explained in [17] to learn the optimal number of users to 

be admitted into the system by exploring different numbers starting from the minimum 

provided by equation 12. Furthermore, the WSP also learns the traffic load which is used to 

fix the reserve price. When the system is congested (at traffic load of 4 Erlangs and above) 

the reserve price is fixed in such a manner that only bids from the highest OBB can be above 

the reserve price. Therefore, the HPU paying the green tax are denied complete access to the 

spectrum. In this model it is assumed that that WSP is also learning the traffic load in this 
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fix the reserve price. When the system is congested (at traffic load of 4 Erlangs and above) 
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the reserve price. Therefore, the HPU paying the green tax are denied complete access to the 

spectrum. In this model it is assumed that that WSP is also learning the traffic load in this 

 is the number of arriving HPU that are allowed to attempt to 
transmit after multiplying by the probability and Pr here is probability calculated from equation (12). 
This shows that the higher the likelihood, the higher the number of HPU allowed into the system. 
However, using the equation to determine the number of users allowed is not optimal. Therefore, 
the HPU varies the probability (Pr) in equation 12 and learns the optimal value for each traffic load 
provided Pr is positive initially. The equation is used in generating the prior probability and it serves 
as basis for the learning process. The HPU users use Bayesian learning as explained in [17] to learn 
the optimal number of users to be admitted into the system by exploring different numbers starting 
from the minimum provided by equation 12. Furthermore, the WSP also learns the traffic load which 
is used to fix the reserve price. When the system is congested (at traffic load of 4 Erlangs and above) 
the reserve price is fixed in such a manner that only bids from the highest OBB can be above the 
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reserve price. Therefore, the HPU paying the green tax are denied complete access to the spectrum. 
In this model it is assumed that that WSP is also learning the traffic load in this system using that 
Bayesian learning model in order to fix the appropriate reserve price. Below are the summary of the 
assumptions:

•	 Players are rational and are seeking the best action which they understand to be the actions that 
maximise their utility;

•	 All the players who are users (GHPU, GLPU) have the same budget (B) per file and no user can 
spend above his budget under any condition;

•	 A participating user in each group submits a bid 
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user can spend above his budget under any condition  

• A participating user in each group submits a bid ( ) where  is 

the number of users submitting a bid.  

• All users in the same group pick the bid value using the same OBB provided they are 

bidding in the same bidding round.  

• All the players can either chose to learn or adopt the greedy approach.  

V.  Results and Discussion 

Examining the performance of the system using the modelling scenario, Fig. 5 shows the 

utility obtained by the HPU and the LPU against iteration at 3 Erlangs. In the game 

formulation, the LPU learn the OBB that gives them the highest utility while the HPU learn 

the traffic load in the system. A traffic load of 3 Erlangs is used in the game formulation 

because at 4 Erlangs the HPUs are never allowed to transmit in the system as explained 

earlier. Therefore, no results can be obtained for the HPU.  

 where NUSA is the number 
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•	 All users in the same group pick the bid value using the same OBB provided they are bidding 
in the same bidding round;

•	 All the players can either chose to learn or adopt the greedy approach. 

V. Results and Discussion

Examining the performance of the system using the modelling scenario, Fig. 5 shows the utility 
obtained by the HPU and the LPU against iteration at 3 Erlangs. In the game formulation, the LPU learn 
the OBB that gives them the highest utility while the HPU learn the traffic load in the system. A traffic 
load of 3 Erlangs is used in the game formulation because at 4 Erlangs the HPUs are never allowed to 
transmit in the system as explained earlier. Therefore, no results can be obtained for the HPU. 

The utility obtained by either the LPU or the HPU increases as the learning progresses. However, 
at the 20th iteration the utility of the HPU decreases because the HPUs are exploring the possibility 
of allowing more HPU to attempt to transmit but such users are unable to transmit therefore the 
utility in terms of UE reduces. It is worth pointing out that throughout the game formulations it was 
assumed that the HPU has learnt the best OBB to use and is only picking bids from the best OBB. 
Therefore, UOBB for the HPU is constant. The utilities obtained by the LPU are more than that of the 
HPU because the LPU are giving more priority to transmit compared to the HPU because of the 
green payments. The above figure showed the utility of each user that is learning. The results if one 
of the players is deviating from the learning process is now showed in order to examine the effects of 

Fig. 5. Utility of HPU and LPU when both are learning
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The utility obtained by either the LPU or the HPU increases as the learning progresses. 

However, at the 20th iteration the utility of the HPU decreases because the HPUs are 

exploring the possibility of allowing more HPU to attempt to transmit but such users are 

unable to transmit therefore the utility in terms of  reduces. It is worth pointing out that 

throughout the game formulations it was assumed that the HPU has learnt the best OBB to 

use and is only picking bids from the best OBB. Therefore,  for the HPU is constant. 

The utilities obtained by the LPU are more than that of the HPU because the LPU are giving 

more priority to transmit compared to the HPU because of the green payments. The above 

figure showed the utility of each user that is learning. The results if one of the players is 

deviating from the learning process is now showed in order to examine the effects of such 

user deviating. Figure 6 (a) shows the average utility obtained by all the users in the system 

when all the 3 players are learning and the average utility when one of the three players is 

deviating from the learning model. The average for one deviation is shown because on the 

average, the utility graph of any player deviating looks similar. Hence, the three utilities are 

summed together and the average is used. It can be seen that if one of the players is deviating, 

the utility is lower compared to when all the users are learning. This is because if any of the 

players is not learning, energy is wasted and the utility obtained is lower. Figure 6(b) shows 
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Fig. 6. Utility for all the 3 players learning and utility for one player deviating

  

utility obtained with all three learning. As the traffic load increases, the utility obtained 

reduces due to the increase in traffic load and a reduction in the utility of the users.  

 

Fig. 6. Utility for all the 3 players learning and utility for one player deviating 

Figure 7 (a) shows the average energy consumed by the system when the LPU and the HPUs 

are learning. The LPU consumes less energy compared to the HPU. This should be expected 

because of the difference in their transmit powers. As the learning progress, the energy 

consumed is reducing. This is because the users are learning to use either the optimal bidding 

price to find out the appropriate number of users to be introduced into the system depending 

on the traffic load in the system. 
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such user deviating. Fig. 6 (a) shows the average utility obtained by all the users in the system when 
all the 3 players are learning and the average utility when one of the three players is deviating from 
the learning model. The average for one deviation is shown because on the average, the utility graph 
of any player deviating looks similar. Hence, the three utilities are summed together and the average 
is used. It can be seen that if one of the players is deviating, the utility is lower compared to when 
all the users are learning. This is because if any of the players is not learning, energy is wasted and 
the utility obtained is lower. Fig. 6(b) shows utility obtained with all three learning. As the traffic 
load increases, the utility obtained reduces due to the increase in traffic load and a reduction in the 
utility of the users. 

Figure 7 (a) shows the average energy consumed by the system when the LPU and the HPUs are 
learning. The LPU consumes less energy compared to the HPU. This should be expected because of 
the difference in their transmit powers. As the learning progress, the energy consumed is reducing. 
This is because the users are learning to use either the optimal bidding price to find out the appropriate 
number of users to be introduced into the system depending on the traffic load in the system.

While Fig. 7 (b) shows the utility based on the total energy consumed by the system (both HPU and 
the LPU) when all the users are learning and the average energy when one of the user is deviating from 
the learning model. It can be seen that the average energy consumed with one deviation is significantly 
higher. This is because when one of the players is not learning, the energy consumption level of the 
players is increased compared to when all the three players are learning. The learning process gets 
better for the learning players as the number of iteration increases and the amount of energy consumed 
reduces until the best utility is obtained. 

Figure 8(a) shows the average energy consumed per file sent against traffic load with all three 
players are learning, the average with one of the users deviating from the learning model and 
when none of the players are learning. It can be seen that as the traffic load increases, the energy 
consumption increases for all the scenarios. This is because as the traffic load increases the collision 
and activity in the system increases. When all the three players are learning the average energy 
consumption is lower and the reason is the same as explained for Fig. 7. It can be seen that using 
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Fig. 8. (a) Energy Consumption (b) Utility in terms of energy consumption

  

energy consumption increases for all the scenarios. This is because as the traffic load 

increases the collision and activity in the system increases. When all the three players are 

learning the average energy consumption is lower and the reason is the same as explained for 

Fig. 7. It can be seen that using the proposed model an average of 40% of energy is saved 

compared to when none of the users are learning.  
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expected when all the three players are learning, the average utility is significantly more than 

when a user is deviating especially as the traffic load increases. At lower traffic load, the 

users can avoid each other by transmitting on different channels, making the values closer at 

lower traffic loads compared to higher traffic loads. It can also be seen that with the proposed 
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Fig. 7. The Average energy consumed by LPU and HPU (b) The Average energy consumed 

by all learning and average with one of the players deviating 

While Fig. 7 (b) shows the utility based on the total energy consumed by the system (both 

HPU and the LPU) when all the users are learning and the average energy when one of the 

user is deviating from the learning model. It can be seen that the average energy consumed 

with one deviation is significantly higher. This is because when one of the players is not 

learning, the energy consumption level of the players is increased compared to when all the 

three players are learning. The learning process gets better for the learning players as the 

number of iteration increases and the amount of energy consumed reduces until the best 

utility is obtained.  

Figure 8(a) shows the average energy consumed per file sent against traffic load with all three 

players are learning, the average with one of the users deviating from the learning model and 

when none of the players are learning. It can be seen that as the traffic load increases, the 
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Fig. 7. The Average energy consumed by LPU and HPU (b) The Average energy consumed by all learning and 
average with one of the players deviating

the proposed model an average of 40% of energy is saved compared to when none of the users are 
learning. 

Figure 8(b) shows the utility obtained in terms of energy consumption (UE) against traffic load. 
It can be seen that the average utility falls with the traffic load because as the traffic load increases the 
activity in the system increases and more collision occurs in the system. As expected when all the three 
players are learning, the average utility is significantly more than when a user is deviating especially 
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model there is an average of 20% increases in utility compared to when the learning process 

is not used. 

Delay is one of the important parameters that determine the functionality of a wireless 

network. This is because different applications have different tolerance level for delay. Hence 

the delay experience by the players is also examined. Figure 9 shows the delay against the 

traffic load when all the players are learning, when one of the players is deviating and when 

all the players are deviating. The delay increases as the traffic load increases for all the 3 

scenarios because as the traffic load increases, the number of users entering the system also 

increase, thereby, increasing the delay. It can be seen that the delay in the system is lower 

when all the players are learning compared to when one player is deviating or all are 

deviating. There is an average of 33% reduction in delay using the proposed model for all 

traffic loads that was considered.  

 

Fig. 9. The system delay with all three scenarios 

Another important performance metric in a wireless communication network is the blocking 

probability. Hence the blocking probability is examined to see if there is an improvement in 

Fig. 9. The system delay with all three scenarios

as the traffic load increases. At lower traffic load, the users can avoid each other by transmitting on 
different channels, making the values closer at lower traffic loads compared to higher traffic loads. It 
can also be seen that with the proposed model there is an average of 20% increases in utility compared 
to when the learning process is not used.

Delay is one of the important parameters that determine the functionality of a wireless network. 
This is because different applications have different tolerance level for delay. Hence the delay experience 
by the players is also examined. Fig. 9 shows the delay against the traffic load when all the players 
are learning, when one of the players is deviating and when all the players are deviating. The delay 
increases as the traffic load increases for all the 3 scenarios because as the traffic load increases, the 
number of users entering the system also increase, thereby, increasing the delay. It can be seen that the 
delay in the system is lower when all the players are learning compared to when one player is deviating 
or all are deviating. There is an average of 33% reduction in delay using the proposed model for all 
traffic loads that was considered. 

Another important performance metric in a wireless communication network is the blocking 
probability. Hence the blocking probability is examined to see if there is an improvement in the 
blocking probability of the system with the players learning. Fig. 10 shows the blocking probability of 
the system when all the three players are learning and the average blocking when one of the players 
is deviating from the learning model against the traffic load in the system. It can be seen that as the 
traffic load increases, the blocking also increases. This is because there is an increase in the system’s 
collision. This result shows that learning reduces the blocking experienced by the users. Hence, the 
performance parameters are better with learning. 

All the three players are contributing one way or the other to the performance of the system, 
hence the effects of the WSP not learning is examined. Fig. 11(a) shows the utility obtained by the WSP 
when learning and when using the greedy model. As expected, the utility obtained when learning is 
significantly higher than when not learning. This is because when the WSP is not learning, the reserve 
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Fig. 11. (a) Utility against traffic load (a) WSP is learning at 3 Erlangs and WSP not learning (b) WSP and one of 
the users is not learning

  

it is important for the WSP to learn and use the reserve price to control the admission process. 

Figure 11(b) shows the average utility obtained when the WSP and one of the users is not 

learning, when the WSP is learning but the other two players are not. For all three scenarios 

the utility obtained by the WSP increases. This is because as the traffic load increases, more 

of the available channels are in use. The results also show that the greater the number of 

players not learning, the lower the overall utility.  

 

Fig. 11. (a) Utility against traffic load (a) WSP is learning at 3 Erlangs and WSP not 

learning (b) WSP and one of the users is not learning 

The results show that none of the players are better off or are having a higher utility value by 

deviating from the learning model. This shows that learning by all the three players forms a 

Nash Equilibrium for the proposed game model giving the definition of Nash equilibrium in 

[70].  
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the blocking probability of the system with the players learning. Figure 10 shows the 

blocking probability of the system when all the three players are learning and the average 

blocking when one of the players is deviating from the learning model against the traffic load 

in the system. It can be seen that as the traffic load increases, the blocking also increases. 

This is because there is an increase in the system’s collision. This result shows that learning 

reduces the blocking experienced by the users. Hence, the performance parameters are better 

with learning.  

 

Fig. 10. The blocking probability for all three players learning and the average with one of 

the three players deviating from learning 

All the three players are contributing one way or the other to the performance of the system, 

hence the effects of the WSP not learning is examined. Figure 11(a) shows the utility 

obtained by the WSP when learning and when using the greedy model. As expected, the 

utility obtained when learning is significantly higher than when not learning. This is because 

when the WSP is not learning, the reserve price in the system is not set to reflect the present 

situation. Hence, the learning process does converge at a non-optimal value. This shows that 
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Fig. 10. The blocking probability for all three players learning and the average with one of the three players de-
viating from learning

price in the system is not set to reflect the present situation. Hence, the learning process does converge 
at a non-optimal value. This shows that it is important for the WSP to learn and use the reserve price 
to control the admission process. Fig. 11(b) shows the average utility obtained when the WSP and one 
of the users is not learning, when the WSP is learning but the other two players are not. For all three 
scenarios the utility obtained by the WSP increases. This is because as the traffic load increases, more 
of the available channels are in use. The results also show that the greater the number of players not 
learning, the lower the overall utility. 
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The results show that none of the players are better off or are having a higher utility value by 
deviating from the learning model. This shows that learning by all the three players forms a Nash 
Equilibrium for the proposed game model giving the definition of Nash equilibrium in [70]. 

VI. Conclusions and Future Work

This paper developed a learning scenario where all the users in the system can learn simultaneously. 
Different parameters were learnt by each of the users in the game model. Utility functions which 
were explicitly dependent on four parameters which determine the satisfaction received by the users 
was proposed. The utility function was based on the bid price, the green payments and the energy 
consumed by the user during the auction process. The results also showed that the energy consumed by 
the system is lower when all the users are learning the different parameters about each other compared 
to when of the player group is using the greedy model. As part of the future work a more mathematical 
model would be developed for the proposed system.
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