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1. Introduction and preliminaries

Let us consider a sequence of experiments in which observed data consist of independent pairs
{(Xk, Ax), k > 1}, where X}, are random variables (r.v.-s) on a probability space (2, A, P) with
values in a measurable space (X; B) and Ay, are events with common probability p=P(A;) € (0, 1).
Let 6 = I (Ag) be an indicator of the event Aj. At the n-th stage of experiment the observed
data are S = {(Xy, %), 1 < k < n}. Bach pair (X, dx) induces a statistical model with sample
space X ® {0, 1} with o-algebra G of sets B ® D and distribution Q* (-) on (X ® {0,1},G):

Q*(B®D)=P(Xy,e€eB,8,€D),BeB,Dc{0,1}.

We consider submeasures Q,, (B) = Q* (B® {m}), m = 0,1 and Q(B) = Qo (B) + Q; (B) =
=Q*(B®{0,1}), B € B. From a practical point of view, it is important to test the validity of
hypothesis H for independence of r.v. X} and event Ay for each k > 1. In order to verify this we
use the signed measure A (B) = Q; (B) — pQ(B), B € B, where p = Q; (X) and the validity of
‘H is equivalent to the equality A (B) = 0 for any B € B. We introduce the empirical estimates
of the above introduced measures for B € B from sample S :

1 — 1 —
Qon (B 5}; (1—0x)I (X € B), an(B):E];(SkI(XkGB)a
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n

@u(B) = Qo (B) + Qun (B) = = YT (X € B), (1

k=1
Ay (B) = an (B> - ann (B) yPn = an (:{) .
By the strong law of large numbers (SLLN) we have for a fixed set B that Q,,,(B) —"—
n—oo

Qu(B), m = 0,1; Q,(B) :—> Q(B) and A, (B) :—> A(B). If hypothesis H is valid
then An(B)% 0. Then we arrive at the study of limit behaviour of normalized process
{xn =an (A, (B) —A(B)),B € G}, where {a,,n > 1} is a (possible random) sequence of posi-
tive numbers, and G is a certain class of sets from B. The specially normalized empirical process
of independence indexed by the class F of measurable functions f € F was studied [1]. Class F
coincides with y, when f = I (-) is the indicator. In this paper we extend these results for the
sequential analogue of that process.

2. Sequential uniform law of large numbers

For a measure G and class F of Borel measurable functions f : X — R we introduce the
following integral

Gf:/%fdG,fe]-‘.

Let us introduce the following F-indexed extensions of (1) for f € F:

n

Qon = 3 32000 £ (60 Qunf =1 37 00f (X0,
=1

k=1

Qnf = Qouf +@unf = =3 F (X, 2

k=1

1
and Apf = Qinf — paQnf, where p, = Q1,1 = Q1 (X) = -~ > 0. Relations (1) are special
k=1
cases of (2) when F = {I (B),B € G}. We define F-indexed empirical process G,, : F — R as

feGuf=vn(Qu—Q) f=n""2Y (f(X3) —Qf), f € F. (3)
k=1

Here G, f = Gonf + G1,f with subempirical processes

For a given f by SLLN and central limit theorem (CLT) we have

(@) Quf —=—>Qf as Q|f| < oo; (5)
() Gnf = GfEN (0,03 (f)), n— o0 as Qf? < oo, (6)

where o2 (f) = Q(f — Qf).

There is theory for uniform variants of special classes F of measurable functions in (5) and (6)
(see, for example, [2—4]). There are various extensions of the Glivenko-Cantelli theorem and the
Donsker theorem for F-indexed empirical processes (3) under certain conditions on the set F of
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measurable functions. These conditions ensure that n=/2||G,,f|| » = sup {n"Y2 |G, f|, f € F}
converges either in probability or almost surely to zero. These classes F are called the weak or
strong Glivenko-Cantelli classes, respectively. Donsker-type theorems provide general conditions
on F in order to get weak convergence

Gnf=Gf in I*(F), (7)

where [ (F) is the space of all bounded functions f : X — R with the supremum-norm |.||
(see [3], p.81). Class F with condition (7) is called the Donsker class. The limiting field
{Gf, f € F}in (7)is called Q-Brownian bridge. Let us introduce tight Borel measurable element
of [°° (F) and Gaussian field with zero mean and covariance function

cov (Gf,Gg) = Qfg —QfQg, fgeF. (8)

Remind that Q-Brownian bridge {Gf, f € F} can be represented in terms of Q-Brownian sheet
{W (f),f € F} with zero mean and covariance

cov(W(f),W(g) =Qfg, fgeF, (9)

by distribution equality
d
Gf=W(f)-w@L)Qf, feF. (10)
For a given f with the conditions Q; | f| < oo, 7 = 0,1 by SLLN we have

Auf "3 ASE 0 (11)

Moreover, for a given f variable \/n (A, — A) f is a linear functional of subempirical processes
(4) with the condition Q;f? < oo, j = 0,1. It has limiting normal distribution N (O,aé (f)-
Uniform SLLN and CLT for the specially normalized empirical F-indexed process

{Anf () s g e f} ,

Were proved [1].It was shown that the limiting distribution is Q-Brownian bridge {Gf, f € F}
with covariance (8). Let us consider the following sequential extension of {A, f, f € F}

{A” (55 f) = (pn (1 - pn))71/2n71/2 [ns] (A[ns] - A) f, (55 f) € D} ) (12)

where D = T @ F, T = [0,1], Apy) = Qipns] — Pns)Qns) and [a] denotes the integer part
of a. Then Anf = A, (1;f). Let [[v(s)lly = sup{[¢(s)], 0<s <1} and [[A, (s;f)]p =
=sup{|A, (s; f)|, (s;f) € D}. We will prove uniform strong and weak LLN’s for process

[ns]

{ (Apug —A) £, (5:1) € D} .

n
Sequential SLLN is considered in the following theorem.

Theorem 2.1. Let us assume that Q; f* < oo, j=0,1, f € F. Then

n— oo

@ (Apns) — A) fHT —5 0. (13)
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Proof. Tt is easy to see that

[ns]

- (Ajpg) — A) f = % Z (Orf (Xk) — Quf)—
k

PN (- 5) F (X6) ~ Qo) — - S0 (5~ p)QF. (14)
k=1 k=1
Assuming Q;1 = p, from (14) we have
[ns] 1 [ns]
S g =) f| < QI |- Y00k - Qul) |+
T k=1
1 ool 1 o]
|2 20 Oef () = Quf)|| + 1D (=80 f (X)) = Qof)| - (15)
k=1 T k=1 T

Using sequential SLLN (Theorem 1.1 in [2]), we obtain (13) for all three terms in the right

hand side of (15). Theorem 2.1 is proved. O
Remark 2.1. The assumptions in Theorem 2.1 can not be weaken. But for sequential weak
LLN ns]
ns
1] 2
n T n—oo

only the validity of the assumption Q; |f| < oo, j=0,1, f € F is required.

In order to prove that D = T'® F are uniform variants of the Glivenko-Cantelli theorem and
the Donsker theorem we need some notations from bracketing entropy theory. Let £, (Q) be the
space of functions f : X — R with norm

1/q

1llg, = (@IF19)"7 = / F17dQ
x

To determine the complexity or entropy of a set of Borel measurable functions F it is necessary
to define a concept of e-brackets in £, (Q). So e-bracket in £, (Q) is a pairs of functions ¢, €
L, (Q) such that Q (¢ (X) < ¢ (X)) =1 and [ — ¢llg, <&, that is, Q1) — ¢)? < 9. Function
f € F is covered by bracket [p, 9] if Q (¢ (X) < f(X) <9 (X)) = 1. Note that functions ¢
and 1 may not belong to the set F but they must have finite norms. The bracketing number
Nj (e, F, L, (Q)) is the minimum number of e-brackets in L, (Q) needed to cover the set F
(see, [3,4]):
[k for some fi,..., fr € Ly (Q),

Npj (e, F, £4(Q)) = min {]—" C Ui fil: 155 = fillgy <=

The number H, (¢) = log Ny (¢, F, L4 (Q)) is called the metric entropy of class F in £, (Q). The
metric entropies of a class F in £, (Q;), j = 0,1 is we denoted by Hj, (¢) = log Ny (¢, F, L, (Q)).
Integrals of metric entropies are

é
TS0 (0) = T (6, F, £, (@m:/ (Hjq (£))/%de, 0<8<1, j=0,1.
0

Let us recall the important properties of numbers N (.). They tend to +-oc when ¢ | 0. However,
for the Donsker theorems they should converge to 400 not very fast. This rate of convergence

- 637 —



Abdurahim A. Abdushukurov, Leyla R. Kakadjanova Sequential Empirical Process of Independence

is measured by integrals J;%) (0) (for more details, see [3,4]). Let us prove stronger properties of
considered random fields and introduce following normalized empirical processes on D =T ® F:

Yn(saf):YOn(Svf)+Y1n(saf)v

Zn(s;f):\/ﬁYn(S;f):ZOn(S;f)+Zln(5;f)a
where for j = 0,1

an (S, f) = TY'[na] ( f) )
[ns]
Vo (5:.1) = 22037 (1= 6) £ (X0) ~ Qo (%),
k=1
[ns]
Vin (:6) = = 3 (00f (X0) = Quf (X))

[ns]

Let [*° (D) be a space of all bounded functions on D = T'® F with the supremum norm .| .
In what follows we show that the role of s € T is negligible in the LLN theorems. Let P* be the
outer probability.

Theorem 2.2. There exists a universal constant C such that for every e > 0
P* (¥ (55 Pl p > 42) < 2Cmaax P* ([0 (1 ) > <) (16)
Proof. For (s; f) € D we have |Y,, (s; f)| < 2m%>§ 1Y n (55 f)|| 7. Hence
=

¥ (55 Pllp < 2max sup ¥, (55 )l (17)

11 0<s<<

k
In the right hand side of (17) the parameter s may take values — with & = 1,...,n. Because
n

Yin (85 f) = %Yﬂm] (s;f) = % (Qjins) — Q) f,7 = 0,1, we obtain from (17) that
k
1¥n (51 f)llp < 2max max —{|(Qjx — Q) fll - (18)

It follows from the Ottaviani inequality A.1.1. [3] that

P (I1(Qjn — Q) fllz > €)

L j=0,1. (19
= P - Q-5

k
P* ( max —|[(Qjx — @])f”]—' )

1<ks<n n

Thus, the numerator of (19) converges to zero as n — oo on condition that F is a weak Glivenko-
Cantelli class. The term

wx P (2@ - @) 115 > <)

indexed by k < n can be controlled with the help of inequality

kI(Qjk — Q) fll 7 < 2ZF Xi) +2n0P*F, j=0,1 (20)
k=1

- 638



Abdurahim A. Abdushukurov, Leyla R. Kakadjanova Sequential Empirical Process of Independence

for an envelope function F of the class F. For sufficiently large ng the terms indexed by k& > ng
are bounded away from 1 by the uniform weak LLN for Q;,, j = 0, 1. Moreover, the denominator
in (19) is bounded away from zero. Using inequalities (19) and (20) twice, we obtain (16) from
(17) and (18). Theorem 2.2 is proved. O

Let us introduce some definitions of uniform weak and strong LLN [2] and adapt them to our
processes.

Definition 2.1. A class of measurable functions F is a sequential weak Glivenko-Cantelli class
if

¥ (5 )5 —— 0.

Definition 2.2. A class of measurable functions F is a weak Glivenko-Cantelli class if

Y, (1;-)" —— 0,
n— o0

where Y,,(1;-)" is the measurable cover function of Y,, (1;-).
Definition 2.3. A class of measurable functions F is a sequential strong Glivenko-Cantelli class
if
1Yo (s; H)llp === 0.
Definition 2.4. A class of measurable functions F is a strong Glivenko-Cantelli class if
Yo (1) == 0.
n— oo
Because [|Y,, (1;-)|| 7 < [|[Yn (55 f)|lp then by Theorem 2.2 for every € > 0 we have
P (1)l 7 > 2¢) < P ([[Yn (55 F)llp > 28) S OP™ ([[Yn (15-)] 7 > €) - (21)
Taking into account (21), we have

Corollary 2.1. A class F is a sequential weak (or strong) Glivenko-Cantelli class if and only if
it is a weak (or strong) Glivenko-Cantelli class.

Consider singleton set of measurable functions {f}. If Q|f| < oo then by weak LLN
P
1Yo (L)l 5y = (@ —Q) f —=0

and by Corollary 2.1 the singleton set {f} is a sequential weak Glivenko-Cantelli class.

Definition 2.5. A class of measurable functions F is a sequential complete Glivenko-Cantelli
class if

Z (I (5. f)llp > 1) < o0 (22)

* C
and |[Yn (55 f)lp —— 0

Definition 2.6. A class of measurable functions F is a complete Glivenko-Cantelli class if
* C
Yo (1)1l ~=— 0

By introducing summation in each side of inequality (21) we have
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Corollary 2.2. A class of measurable functions F is a sequential complete Glivenko-Cantelli
class if only if it is a complete Glivenko-Cantelli class.

The sequential SLLN was proved in Theorem 2.1 in terms of the second moment condition.
But such results can be established by bracketing entropy.

Theorem 2.3. Let us assume that

FCLy(Q) and Ji) (1) < o0, j=0,1. (23)

Then F is a sequential strong Glivenko-Cantelli class, that is,
ns Yoas

P (g~ ) 1| =200 (24)
n D n—oo

Proof. Let us obtain almost sure convergence (24) in terms of the complete convergence

*

@ (Mg = A) fl| —=0. (25)

D
Consider Corollary 2.2. In order to prove (25) it is enough to prove

1A = 8) fll7 = 0. (26)

Taking into acount (14), we have
(An = A) f = (L =pn) Un (f) = pnUon () — (pn — ) Qf, (27)
where U, (f)= [ fd(Qjn,— Q;), j=0,1. Using Proposition 3.3 [2| with the condition Q; f? < oo,
7 =0,1, we obtgin
Ujn (f) == 0,j=0,1 (28)

Using the Berstein inequality [5],

o] > TL€2
Y. Plpa—pl>e)< 2;@@) (—4) <oo, >0,

we obtain
C
Pp —— P. (29)

n—oo

Statements (26) and (25) follow from (27)-(29). This completes the proof of (24) and Theo-
rem 2.3.

3. Sequential uniform central limit theorem

Let us consider the sequential specially normalized empirical D =T ® F — indexed random
fields defined by relation (12). It was proved under the mild conditions [1] that

An (L f) = Af in I7(F), (30)

n— oo

where {Af, f € F} is a Gaussian fields with zero mean and subject to hypothesis H that it
coincides with the Q-Brownian bridge with covariance (8). Here we extend convergence (30) to
the sequential field (12). To begin with we prove that two-dimensional vector-field

{(Zn (55 ) Z1n (t;9)) , (55 f) , (t; 9) € D} (31)

weakly converges to corresponding Gaussian field uniformly with respect to semimetric of product
space [*° (D) ® [*° (D) for every Donsker class of measurable functions F.
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Theorem 3.1. Let us consider the class F such that
FCLy(Q)) and Ji) (1) < oo, j=0,1. (32)

Then for n — oo sequence of random vector-fields (31) weakly converge in [°° (D) ® I*° (D) to
the Kiefer-Miiller-type Gaussian field {(Z (s; f),Z1 (t;9)),(s; f), (t; 9) € D} with zero mean and
covariance structure

cov (Z(s; f),Z(t;g)) = min (s;1) {Qfg — QfQg},
cov (Z1 (s; f),Z1 (t; 9)) = min (s;¢) {Q1fg — Q1 fQug}, (33)
cov (Z(s; f),Z1 (t;9)) = min (s;1) {Q1fg — QfQug} -

Proof. Consider the first condition in (32). Then for the fixed f € F it follows that Q;f? <
00, j = 0,1 and hence Qf? = Qo f%+Q; f? < co. For every such Donsker class F with the second
condition in (32) the sequences Z,, (s; f) and Zy,, (t; g) are asymptotically tight (see, Lemma 1.3.8
in [3]). There exists a tight Borel measurable version of Gaussian processes Z (s; f) and Z4 (¢; g),
that is, the Kiefer-Miiller processes with zero mean and jointly covariances (32). Tightness and
measurability of limiting processes Z (-, -) and Z (-, ) are equivalent to the existence of versions of
all sample paths (s; f) — Z (s; f), (t;9) — Z; (t; g) uniformly bounded and uniformly continuous
with respect to the corresponding semimetrics with squares given by (see, [3], p.226)

E(Z(s; ) = Z(t:9))" = |s — 1] [05 (/) I (s > ) + 0§ (9) I (s < t)] + min (5;t) 03 (f — ) ,

E(Zy (s;f) = L1 (t:9)* = |s — t| [0, (/) I (s > 1) + 03, (9) I (s < )] +min(s:t) 03, (f — ).
where o3 (f) = Q(f = Qf)*, 03, (f) = Qu(f - Q1 f)*.

On the other hand, the considered vector-field is the normalized sequential sum of independent
and identically distributed random vectors

[n(sAt)]
(Zn (55 ), Zan (1:9)) =2 > (f (Xk) = QF, k9 (Xx) — Qug). (34)
k=1
Then by the multivariate CLT the marginals of the sequence of vector-fields converge to
the marginals of a Gaussian vector-valued field with zero mean and covariance matrix defined by
structure (33). Vector-field (34) is element of [*° (D) ®1* (D), and it also induces tight sequences
of distributions in product space by Lemma 1.4.3 [3].
Covariance structure of vector (34) has the form

min([ns}, [n, ])

cov(Zn(s; ), Zn(t; 9)) = {Qfg — QfQg},

min([ns], [n,t])

3

cov(Zin(8; f), Zan(t; g)) = {Qifg — Qi1 fQug}, (35)

n

min([ns], [n,t])

cov(Zn(s; f), Zan(t; 9)) = {Qifg — QfQug},

n
and we see that (33) is the limiting value of (35). These arguments complete the proof of
Theorem 3.1. O

Remark 3.1. Consider relation (34). At g =1 for s,t € T and f € F we have Q;1 = p and
hence

cov(Z (s, f),Z1 (t;1) = min (s,t) {Q1f — pQf} = min(s,t) - Af. (36)
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Because covariance (36) is zero for any s,t € T and f € F under hypothesis H then Kiefer-
Muller field {Z (s; f), (s, f) € D} and rescaled Wiener process {Z, (¢;1), t € T} with covariance
min (s,t) p (1 — p) are independent. We use this fact in the following theorem. Now we consider
the intermediate random field

[ns]

1
connected by A, (s; f) in terms of A (s;f) = (pn (1 —pn)) 2 A, (s; f). Process (37) plays
a supporting role in the study of basic process (12) which property of weak convergence to a
corresponding Gaussian process is contained in the following statement.

Theorem 3.2. Under conditions of Theorem 3.1 for n — oo we have

An (s f) = Als;f) in1>(D), (38)

n—r oo

where {A (s; f), (s;f) € D} is a Gaussian field with zero mean and hypothesis H is valid. For
s,t €T and f,g € F it coincides with Kiefer-Miller random field with covariance

cov (A (s, t) A(t;g)) = min (s, 1) (Qfg — QfQg) . (39)

Proof. Let us consider process (37) and represent it in the form of linear functional of
sequential subempirical processes

[ns]

1,

n
where R, (s; f) = n /e [ns] (p[nsl —p) (Q[ns]f — Qf) and hence
[ B (53.)llp = 0p (1), n— o0. (41)

We consider only A% (s; f). It is not difficult to see that Al (s; f) have zero mean and for
s,t €T, f,g € F its covariance is

cov (A0 (s: ), AD (1:9)) = 2L 1D 57 (12)
j=1
where
C1=Q1fg—Qi1fQyg, Co=—-p(Qifg—QfQig), Cs=—(1-p)QfQuy,
Cy=-pQifg—QgQif), Cs=p*>(Qfg—QfQg), Ce =pQf (Qig —pQg), (43)
Cr=—(1-p)QgQu f, Cs = pQg (Q1f — pQf), Co =p(1—-p)QfQg.

Taking into account Theorem 3.1, we have
A (s ) = A (s f) in 1™ (D), (44)

where A (+;+) is a mean zero Gaussian process and accordingly to (42) its covariance is

cov (AO (s; f) ,A° (t; g)) = min (s, t) Z Cj, (45)

Jj=1
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where C; are defined in (43). Assuming that hypothesis H is valid and taking into account
Remark 3.1, it is easy to obtain that

cov (A%(s; f), A(t;g)) = p (1 — p) min(s, t) (Qf g — QfQg) , (46)
and »
(p(1=p) " A% (sf) = Alsif) in 1% (D). (47)
Now relation (38) follows from (39)—(47). Theorem 3.2 is proved. O
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HOCJ’IGI[OB&TG.TIBHBIG AMIINPpHUYIECKHEe IIPoLIeCChl
HEe3aBUCNIMOCTHA

Abnypaxum A. AbGaynryKyposB

Kadenpa npuknaauoit MareMaTnku U WHGOPMATUKA

Pusman MOCKOBCKOro rocy/1apCTBEHHOTO YHUBEPCUTETA B TallkeHTe
aB. Tumypa, 100060, Tamkent

Vabeknucran

Jleitna P. Kakam>kanosa

Hanwmonanensblit yauBepcuTeT Y36ekucrana uM. M. Yiyroeka
By3ropojiok, Tamkent, 100174

V3bekucran

Mo dokasvieaem pasHoOMeEPHBLE YCUAEHHDLE 3AKOHDL OONLUUT HUCEN U YEHMPAALHYIO NPEICABHYIO Meope-
MY OAA CREYUAADHBLT NOCAEI0BATNEABHHLT IMNUPULECKUT NPOYULCCO8 HE3ABUCUMOCTNUY A CTLEUUAADHBLLT
KAQCCO8 USMEPUMBLT PYHKUUT.

Karoueswie caosa: nocaedo8amesvHvle IMNUPUHECKUE NPOUECCHL, MEMPUYECKAA IHMPONUSA, MEOPEMDL
I'nusenxo-Karnmennu u Jlonckepa.
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