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Following [9], we will call the "distance metric" a function that satisfies the axioms of a metric
space, leaving the term "metric" free for use in a broad sense as a real-valued function of two
variables.

The length of the longest common subsequence of two text strings (LCS) is а commonly used
similarity metric. For example, it is only natural that the line b = "BRITAIN" appears to be
more similar to gb = "GREAT BRITAIN" than to i = "IRAN" (l(b, gb) = 7 > 3 = l(b, i)) and
the string rf = "RUSSIA" is more similar to rf = "RUSSIAN FEDERATION" than to u =
"USA" (l(r, rf ) = 6 > 3 = l(r, u)).

Usually, data clustering algorithms work in metric spaces. Known from [13, 26, 14, 17, 5, 35]
formulae

d1(x, y) =
2l(x, y)

|x|+ |y|
, d2(x, y) =

l(x, y)

|x|+ |y| − l(x, y)
,

d3(x, y) =
l(x, y)2

|x||y|
, d4(x, y) =

l(x, y)√
|x||y|

,

(1)

d5(x, y) =
l(x, y)

min(|x|, |y|)
, (2)

where |x| = l(x, x) и |y| = l(y, y), normalize LCS for use in clustering algorithms through
conversion to metric or directly. Each of (1) turns the similarity order, so that "BRITAIN"
becomes closer to "IRAN", and "RUSSIA" — to "USA". The turn prevents qualitative clustering.

Thought very old study of similarity metrization in psychology [29] showed the hardness
of the problem, for formally specified similarity metrics including LCS, the problem came into
consideration only in the last decade. Thought the subsequent studies [14] detected some LCS
turn with d2 from (1) for some data set, it did not respond the emerging issues:

— Why no right formula is known for this purpose?
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— What is the reason for such а systematic clustering error?
— What are the practically effective formulae with minimal turn?
Some clarification was provided in [31] noting in particular that “the trivial transformations of

semimetric spaces into metric ones are not suitable for efficient similarity search” and discussing
known approaches, without answers to the questions above.

The construction of a metric space avoiding the turn in similarity is used to analyze exper-
imental data for more than half a century [28]. The success of the multidimensional scaling
technology based on this construction [4] caused essential progress in the development of the
ordinal embedding theory [19, 2]. These recent studies have theoretically confirmed the met-
ric determinacy noted in applied research: the ordinary distance metric for a domain in Rn is
uniquely determined, up to a constant multiplier, by order comparisons.

Our situation vary: the original is no longer the metric of the domain in Rn, but the infinite-
dimensional similarity metric, and not the set of compared objects should be transformed to the
distance metric [9], but the similarity metric itself. We need to understand relations between the
similarity metrics and distance metrics.

1. Similarity as a partial metric with minus sign

The non-negativity of distance is generally accepted. Similarity is usually evaluated with a
non-negative number, so that zero means a complete lack of similarity. It is often convenient
thought to consider the lack of a special similarity as zero similarity and use negative values for
apparent opposites. The paper [20, 23] describes the use of Pearson correlation coefficient r as
a similarity metric and its transformation to a distance metric. The cosine of the angle between
vectors in Euclidean space and the distance with the minus sign s = −d are also used as a metrics
of similarity s.

Denote by R = R ∪ {−∞,+∞}, R+ = {x ∈ R : x > 0} and R0+ = {x ∈ R : x > 0}.
Attempts to construct the axiom set for similarity metrics and dissimilarity metrics [32]

showed the triangle inequality from the metric space definition to be not suitable for similarity
metrics [33]. New form of the triangle inequality for the similarity metric in [9] reflects the
similarity as a measure of coinciding content (i.e., the power of a set of common characteristics,
the length of the longest common subsequence, the amount of general information etc.):

Compare this system of axioms with the system of axioms of partial metrics [22]. Partiall
metric space is a generalization of metric space in which the elements can have non-zero dimen-
sions.

Adding the axiom ∀x ∈ U p(x, x) = 0 makes this system of axioms equivalent to the usual
system of axioms of a metric space.
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If we set s(x, y) = −p(x, y), then we see that axioms (P1), (P2), (P3), and (P4) are exactly
the axioms 5, 3, 1, and 4. The remaining axiom 2 and similar later additions in the partial metric
definition (i.e. [6]) reflect just the natural desire to avoid negative numbers. It should better to
move it from axiom set to a set for metric values, usually either V = R0+ or V = [0, 1].

The second letter may be uniquely associated with each of the suitable axiom:

∀x∈U p(x, x) = 0 — shotness, thinness;
3(P2) — direction,small self-distances [6], self-similarity [14];
5(P1) — coincidence [25], nondegenerate [15], identity of indiscernibles [9], T0 separation [11],
strict positiveness [8];
4(P4) — triangle inequality;
1(P3) — symmetry.

Let U be an arbitrary set, V ⊂ R. For distance f = d : U × U → V or for similarity
f = s : U × U 7→ V under the exception of the axiom оf symmetry, the axiom of the direction
becomes more complicated and the full list of axioms takes the form:

(h) ∀x∈U f(x, x) = 0,
(i) ∀x,y∈U s(x, y) 6 min(s(x, x), s(y, y))

∣∣ d(x, y) > max(d(x, x), d(y, y)),
(o) ∀x,y∈U f(x, y) = f(x, x) = f(y, y) =⇒ y = x,
(r) ∀x,y,z∈U s(x, z) + s(y, y) > s(x, y) + s(y, z)

∣∣ d(x, z) + d(y, y) 6 d(x, y) + d(y, z),
(y) ∀x,y∈U f(x, y) = f(y, x).

Definition 1. Let U an arbitrary set, V ⊂ R and U = V U×U the set of all functions of two
variables U with values in V and A = {h,i,o,r,y}. For any B ⊂ A denote Sim:B(U, V ) ⊂ U the
subset consisting of all functions s ∈ U that satisfies all the axioms of B and Dist:B(U, V ) ⊂ U
the subset consisting of all functions d ∈ U , satisfying all the axioms of B.

Corollary 1.
1. p is a partial metric on U in the sense of [22] if and only if p ∈ Dist:iory(U,R).
2. p is a partial metric on U in the sense of [6] if and only if p ∈ Dist:iory(U,R0+).
3. d is a prameric [3] U if and only if d ∈ Dist:hi(U,R).
4. d is a semi-metric [1] U if and only if d ∈ Dist:hioy(U,R).
5. (U, d) is a metric space if and only if when d ∈ Dist:hiory(U,R).
6. d is a quasi-metric [36, 18] if and only if when d ∈ Dist:hior(U,R).
7. d is a pseudo-metric [18] if and only if when d ∈ Dist:hiry(U,R).
8. d is a pseudo-quasi-metric (p-q-metric) [18] if and only if when d ∈ Dist:hir(U,R).
9. s is a similarity metric on U if and only if when s ∈ Sim:hiory(U,R0+).
10. Sim:i(U, V ) ∩ Dist:i(U, V ) consists of constants Sim:io(U, V ) ∩ Dist:io(U, V ) = ∅ for

nontrivial U and V .
11. The Pearson correlation coefficient r and the cosine of the angle between the vectors

belong to Sim:iory(Rn,R).
12. ∀B⊂A s ∈ Sim:B(U, V ) ⇐⇒ (−s) ∈ Dist:B(U, V ).
13. ∀B⊂C⊂A Sim:C(U, V ) ⊂ Sim:B(U, V ) and Dist:C(U, V ) ⊂ Dist:B(U, V ).

We see that the cone of partial metrics on U with values in R is a mirror reflection of the
cone of similarity metrics and that the volumes of these concepts are reflected by the scheme in
Fig. 1, in which a metric reversion d = −s looks as a central symmetry.

Definition 2. We call the metric s ∈ Sim:i(U, V ) to be a LCS-like similarity metric if it satisfies
align-base axiom about the existence of common part:

(l) s(x, y) = sup{s(z, z) : s(z, z) = s(x, z) = s(z, y), z ∈ U}.
and to be a Tversky similariy metric if common part always unique:

(v) ∀x,y∈U∃z∈U s(x, y) = s(z, z) = s(x, z) = s(z, y).
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Fig. 1. Relations of distance and similarity metrics satisfying the direction axiom (i)

An important for the data analysis possibility of visual representation of the hierarchy of
proximity with the tree phylogenetic tree or evolutionary tree [12] is provided by replacing with
a stronger inequality, the additive inequality (same as the four points inequality)

(d) ∀x,y,u,v∈U s(x, y) + s(u, v) > min(s(x, u) + s(y, v), s(x, v) + s(u, y))∣∣ d(x, y) + d(u, v) 6 max(d(x, u) + d(y, v), d(x, v) + d(u, y)),

or even more powerful the ultrametric inequality

(u) ∀x,y,z∈U s(x, z) > min(s(x, y), s(y, z))
∣∣ d(x, z) 6 max(d(x, y), d(y, z)).

All the definitions above remains valid for the extension A = {d,i,h,o,l,r,u,v,y}.
Further investigation of this axiom system appears in [37].

2. Monotonic transformations

The axiom of direction allows clusterization algorithms to use closed and open balls with
center at a fixed point a:

B(a, r) = {x ∈ U : d(a, x)− d(a, a) 6 r}, B(a, r) = {x ∈ U : d(a, x)− d(a, a) < r}

for similarity and respectively

B(a, r) = {x ∈ U : s(a, a)− s(a, x) 6 r}, B(a, r) = {x ∈ U : s(a, a)− s(a, x) < r}

for distance. In contrast to the usual formulae for the balls, these proposed in [27] (cited in [16])
guarantee the emptiness of balls with negative radii and the belonging of the center to balls with
positive radii.

Proposition 1 (equivalence of left-monotonic relatedness definitions). The following conditions
on s1, s2 ∈ Sim:i(U, V ) are equivalent:

1. The (non)strict inequalities between distances to the third point coincide:

∀x,y,z∈U s1(x, z) < s1(y, z) ⇐⇒ s2(x, z) < s2(y, z); (3)
∀x,y,z∈U s1(x, z) > s1(y, z) ⇐⇒ s2(x, z) > s2(y, z). (4)

2. Оpen or closed balls with any given center differ only in radii:

∀{j,j}={1,2} ∀a∈X ∀r>0 ∃r′>0 Bsi(a, r) =Bsj (a, r
′); (5)

∀{j,j}={1,2} ∀a∈X ∀r>0 ∃r′>0 Bsi(a, r) =Bsj (a, r
′). (6)
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3. Open or closed halph-spaces separating arbitrary a, b ∈ U coincide:

{x ∈ X : s1(a, x) < s1(b, x)} = {x ∈ X : s2(a, x) < s2(b, x)}; (7)
{x ∈ X : s1(a, x) > s1(b, x)} = {x ∈ X : s2(a, x) > s2(b, x)}. (8)

Symmetric to this statement can be obtained by permuting the arguments of each si in
Proposition 1. We call si to be pivot-monotonically related if they are both left-monotonically
related, and right-monotonically related. The pivot-monotonic relatedness means exactly the
preservation of the SimOrder (pre)order relation considered in [30] and subsequent studies.

The transformation of metrics we call pivot-monotonic if the image of any metric is pivot-
monotonically related with its preimage (SimOrder preserving).

Proposition 2 (equivalence of monotonic relatedness [13] definitions). The following conditions
on s1, s2 ∈ Sim:i(U, V ) are equivalent:

1. The (non)strict inequalities between distances coincide:

∀x,y,u,v∈U s1(x, y) < s1(u, v) ⇐⇒ s2(x, y) < s2(u, v); (9)
∀x,y,u,v∈U s1(x, y) > s1(u, v) ⇐⇒ s2(x, y) > s2(u, v). (10)

2. Оpen or closed balls differ only in radii and inequalities signs always coincide:

∀{i,j}={1,2} ∀a1,a2∈B ∀r1>r2>0 ∃r′1>r′2>0 ∀k=1,2 Bsi(ak, rk) = Bsj (ak, r
′
k); (11)

∀{i,j}={1,2} ∀a1,a2∈B ∀r1>r2>0 ∃r′1>r′2>0 ∀k=1,2 Bsi(ak, rk) = Bsj (ak, r
′
k). (12)

The transformation of metrics is called monotonic [13] if the image of any metric is mono-
tonically related with its preimage.

Proof of propositions 1 and 2.
(9) ⇐⇒ (10) is trivial.
(9) ⇐⇒ (11). Let r′k = inf

x/∈Bfi
(ak,rk)

sj(ak, x). Then

x ∈ Bsj (ak, r
′
k) ⇐⇒ ∀y /∈ Bsi(ak, rk) sj(ak, x) < sj(ak, y)

⇐⇒ (si(ak, y) > rk =⇒ sj(ak, x) < sj(ak, y))

⇐⇒ (si(ak, y) > rk =⇒ si(ak, x) < si(ak, y)).

The last condition obviously holds under si(a, x) < rk and fails under si(a, x) > rk.
(9) ⇐⇒ (12). Let r′ = sup

x∈Bsi
(ak,rk)

sj(ak, x). Then

x /∈ Bsj (ak, r
′
k) ⇐⇒ ∀y ∈ Bsi(ak, rk) sj(ak, x) > sj(ak, y)

⇐⇒ (si(ak, y) 6 rk =⇒ sj(ak, x) > sj(ak, y))

⇐⇒ (si(ak, y) 6 rk =⇒ si(ak, x) > si(ak, y)).

The last condition obviously holds under si(a, x) > rk and fails under si(a, x) 6 rk.
The proofs of (3) ⇐⇒ (5) and (3) ⇐⇒ (6) are the same as the above just without indexes k.

The equivalences (3) ⇐⇒ (4), (3) ⇐⇒ (7), and (4) ⇐⇒ (8) are trivial.

Corollary 2. Left-monotonic relatedness s, t ∈ Sim:i(U, V ) implies

∀x,y,z,∈U s(x, z) = s(y, z) ⇐⇒ t(x, z) = t(y, z), (13)

and monotonic relatedness implies

∀x,y,u,v∈U s(x, y) = s(u, v) ⇐⇒ t(x, y) = t(u, v). (14)
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3. Convexity of metric and monotonic determinacy
Corollary 3. For the metrics f1, f2 ∈ Sim:i(U, V ) to be monotonically connected, it is necessary
and sufficient that there exist a strictly increasing function ϕ defined on the image of f1, that

f2(x, y) = ϕ(f1(x, y)) ∀x, y ∈ U. (15)

Let’s denote f(U × U) the set of all values of f .

Corollary 4. For the metrics f1, f2 ∈ Sim:i(U, V ) to be pivot-monotonically connected, it is
necessary and sufficient that there exist a strictly increasing over second argument function φp :
U × f1(U × U) → V , that

f2(x, y) = φp(x, f1(x, y)) ∀x, y ∈ U. (16)

We call a metric transformation to be monotone if the image of any metric is monotonically
related to its preimage.

The monotone transformation of metrics by the formula (15) is named in [30] SP-modification,
and the function ϕ in (15) is SP-modifier. We restrict our discussion to the case V = R, since
V ⊂ R is mainly used, from which ϕ can be extended to all R. The set of all SP-modifiers forms
a partially ordered group (po-group) G = Aut(R) of isomorphisms of linear ordered set R. The
group operation in it is a superposition of functions ϕ and the unit 1S is the function ϕ(x) = x.
and the positive cone P consists of all concave functions on R that are different from linear
functions. The cone P accurately characterizes those monotonic metric transformations that
always preserve the triangle inequality [10] but differs from multiplication to a constant.

A partially ordered group G defines on U a relation of strict partial order ≻P by the rule
t ≻P s

def⇐⇒ ∃ϕ∈P ∀x,y∈U t(x, y) = ϕ(s(x, y)). If t and s here are distance metrics, then t is
named in [30] triangle-generating modification or TG-modification of metric s.

The strict partial order ≻P induces the preorder t <P s
def⇐⇒ (s ≻P u =⇒ t ≻P u) and

the equivalence relation t ∼P s
def⇐⇒ (t <P s)& (s <P t), that mean coincidence up to an affine

transformation t(x, y) = cs(x, y) + b with the appropriate constants c > 0 and b. The constant
term b disappears if the axiom of shortness (h) is satisfied.

Note that d2 in (1) is monotonically related to the Levenshtein distance, and that the examples
of geographical names cited at the beginning of the article clearly indicate the particularity of
the Levenshtein formula, commonly used in data cleansing applications [21, 34] in comparison
with the LCS similarity metric or other similarity metric [38].

Clear statement of our problem requires a criterion for the optimality of the distance metric.
For this purpose [7] suggest to use the intrinsic dimensionality calculated through the math-

ematical expectation µd and the variance σ2
d of prametric d by the formula IDimµ(d) =

µ2
d

2σ2
d

.

Comparative review of other definitions for intrinsic dimensionality with computer evaluation
can be found in [24].

Let Nk = {0, . . . , k + 1} be an integer segment with the metric dNk
(m,n) = |n − m|. It

seems intuitively plausible that the metric dNk
has the smallest internal dimension among all

pivot-monotonically equivalent metrics.
None of the approaches to determining the intrinsic dimension considered in [24] succeeded to

prove or disprove this assertion. Most of them assume the assignment of a probability measure
µ on U × U , which is quite natural for a data set. On Nk one can use the uniform probability
measure.

As an alternative, consider the notion of convexity that allocates this space. The convexity
of a metric space is intuitively associated with the presence of a segment with arbitrary ends.
The convexity of a metric space is intuitively associated with the presence of the segment free
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ends. Usually the definition of convexity requires the existence of midpoint of a segment and the
consistent application of this definition gives a dense on the segment set of points. To discrete
metric spaces such a definition is inapplicable and an alternative is required.

Definition 3. We call the metric d ∈ Dist:i(U, V ) or s = −d to be convex if for any x, z ∈ U and
t ∈ V inside (d(x, x), d(x, z)) there exists y ∈ U , for which d(x, y) = t and the triangle inequality
for x, y, z turns to equality.

Proposition 3. Let d ∈ Dist:iy(U,Nk) is convex and d(x, y) = k. Then there exists an isometric
inclusion ψ : Nk → U with the ends ψ(0) = x и ψ(k) = y.

Proof. We use induction on k. For k = 1, by assumption, there exist (x, y) ∈ U such that
d(x, y) = 1. Assuming ψ(0) = x and ψ(1) = y, we obtain the desired isometry.

Suppose that the assertion is proved for k = n. By hypothesis, for k = n + 1 there exist
(x, y) ∈ U such that d(x, y) = k. Using the convexity of the metric with t = n, we obtain m ∈ U
for which d(x,m) = t and d(m, y) = d(x, y)− t. Applying the induction hypothesis to the points
x,m of an open ball of radius k with the center at x, we obtain a map that remains to be extened
by the equality ψ(k) = y. In this case, the equalities d(ψ(i), y) = ki follow from the triangle
inequalities d(ψ(0), ψ(i)) + d(ψ(i), y) 6 d(x, y) = k and d(ψ(i), n) + d(ψ(n), y) = n − i + 1 6
6 d(ψ(i), y).

Theorem 1. Suppose that two convex pseudometrics are monotonically connected and the set
of values of one of them is an arithmetic progression or is closed with respect to addition or is
closed with respect to the calculation of the half-sum. Then they differ by multiplication by a
constant.

Note that the multiplication of a metric by a constant does not change its intrinsic dimension
and convexity.

Proof. The case of an arithmetic progression follows directly from the Proposition 3. Let 0 <

< x1 = f(a1, b1) < x2 = f(a2, b2). It is necessary to show that
x1
x2

=
φ(x1)

φ(x2)
.

For any k ∈ N let nk 6 k
φ(x1)

φ(x2)
< nk + 1. Let’s consider the equivalent inequality:

nkφ(x2) 6 kφ(x1) < (nk + 1)φ(x2). (17)

1. Closedness with respect to the operation of addition allows us to apply the Proposition 3

with an arbitrarily large k to the functions
f(x, y)

x1
, g(x, y) as well as to functions

f(x, y)

x2
, g(x, y)

and obtain
φ(nkx2) 6 φ(kx1) < φ((nk + 1)x2).

Applying the monotonicy of φ, we get nkx2 6 kx1 < (nk + 1)x2 and it remains to pass to the

limit in
nk
k
<
x1
x2

<
nk + 1

k
.

2. Closedness with respect to the mean calculation also allows us to combine two sufficiently
long arithmetic progressions of the values, constructing them by midpoint selections.

Fix 2m > r + nk + k and using the middle point selections construct in f(X ×X) two grids
of size 2m with the endpoints x10 = 2−mx1 and x20 = 2−mx2 respectively. Then (17) gives

2−mnkφ(x2) 6 2−mkφ(x1) < 2−m(nk + 1)φ(x2).
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In contrast to the proof of the previous case, here we have to apply the Proposition 3 to each
part also in the opposite direction with a 2m grid to get

φ(2−mnkx2) 6 φ(2−mkx1) < φ(2−m(nk + 1)x2).

This and the monotonicity of φ imply the equality nkx2 6 kx1 < (nk + 1)x2 and it remains to

pass to the limit in
nk
k
<
x1
x2

<
nk + 1

k
.

Corollary 5 (monotonic determinacy of metrics). The statement “If the monotonous transfor-
mation of the distance metric is convex, then it is multiplication by a suitable positive constant”
is true for each of the following metric spaces: Zn, N, Nk, an arbitrary convex subset of Rn.

4. Monotonic normalization
Proposition 4. Let the metric of similarity s∈ Sim:iy(U,R) satisfies ∃x,y,z∈U s(x, y) > s(z, z).
Then no metric d ∈ Dist:hi(U,R0+) can be monotonically related to s.

Proof. 0 = d(z, z) > d(x, y).

If we change the zero values, the situation will change:

Proposition 5. Let the metric of similarity s ∈ Sim:iy(U,R0+). Then the formula

d(x, y) =
1

2
+

1

2 + s(x, y)
, x ̸= y (18)

defines the distance metric d ∈ Dist:hiory(U, [0, 1]), which satisfies the condition (9) of monotonic
relatedness to s for all x ̸= y, u ̸= v ∈ U .

Unfortunately, Theorem 3 in [8] state that none current acceleration technology for the nearest
neighbor search will be effective for this metric since all non-zero values are between 1 and 2.
The formulae (1)–(2) for LCS also narrow the range of nonzero values, which usually leads to
greater intrinsic dimension and consequently to smaller efficiency. The formula

d(x, y) = 1− s(x, y)

M
, x ̸= y (19)

also monotonically transforms to Dist:hiory(U, [0, 1]) and defines the distance metric if M is large
enough. It may be possible to decrease the intrinsic dimension selecting smaller M .

Proposition 6. Let the similarity metric s ∈ Sim:iry(U,R0+). Then the formula d(x, y) =
= s(x, x)− s(x, y) defines p-q-metric d ∈ Dist:hir(U,R0+) to be left-monotonically related with s.

However, to make it at least pseudometric, we need some symmetrized function ϕ(s, t). This
function should be convex if s is convex to preserve the triangle inequality and should be close
to linear to avoid high intrinsic dimension.

Uzing a segmnet [ε, λ] ⊂ R0 containing all possible positive value of s on the data set, it is
possible to limit values of d by the [0, 1] segment:

d(x, y) = λ−1ϕ(s(x, x), s(y, y))− s(x, y). (20)

Among the admissible functions, there are the largest

d(x, y) =
s(x, x) + s(y, y)− 2s(x, y)

2λ
, (21)

intermediate
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dp(x, y) =λ
−1 p

√
(s(x, x))p + (s(y, y))p − s(x, y), (22)

d(x, y) =λ−1
√
s(x, x)s(y, y)− s(x, y). (23)

and the smallest

d(x, y) =
ε+ (min(s(x, x), s(y, y))− s(x, y))

λ+ ε
, x ̸= y. (24)

To localize the turns, in any arbitrary triplet x, y, z ∈ U , we rename the vertices so that
s(x, x) 6 s(y, y) 6 s(z, z). The pivot-monotonicity is violated if ϕ(s(y, y), s(z, z)) − s(y, z) <
< ϕ(s(x, x), s(y, y))−s(x, y) for s(x, y) < s(y, z). For d8 this means 2(s(y, z)−s(x, y)) > s(y, y)−
−s(x, x), and the Levenshtein metric d6 turns more often: 2(s(y, z)− s(x, y)) > s(z, z)− s(x, x).

In each of these cases, rather natural restrictions on s provides the convexity of the metric
so that Theorem 1 confirm the quality of the metric. The possible normalization formulae with
some generic restrictions on usage are shown in Tab. 1.

Table 1. Expected performance of normalization formulae for convex similarities

Formula Turns Speed Recommended applications

(18) never slow none
(2) rare slow none
(1) less rare slow none
(19) never ? cluster analisys of medium size data

(21) rare faster focused only on objects of high similarity
(such as correcting typographical errors)

(22),(23) more rare faster ?
(24) most rare faster common use

This work was performed under financial support from the Government, represented by the
Ministry of Education and Science of the Russian Federation (Project ID RFMEFI60716X0153).
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От сходства к метрике: система аксиом, монотонные
преобразования и метрическая определенность

Сергей В. Знаменский
Институт программных систем им. А.К. Айламазяна РАН

ул. Петра I, 4а, с. Веськово, Ярославская обл., Переславский район, 152021
Россия

Исследуется сохранение порядка преобразованиями произвольной метрики (сходства или рассто-
яния) в метрическое или полуметрическое пространство. Вводится система аксиом, по-новому
объединяющая известные обобщения метрик расстояния и метрик сходства, коэффициент кор-
реляции Пирсона и косинус угла между векторами. Сохраняющие порядок (как монотонные,
так и стержнево-монотонные) преобразования метрик эквивалентно определяются в различ-
ных терминах. Метрическая определенность среди стержнево-монотонных преобразований вы-
пуклых метрических подпространств Rn и Z доказывается при условии выпуклости метрики
расстояния. Обсуждаются формулы ускоренной монотонной нормализации метрик сходства.

Ключевые слова: метрическое пространство, аксиомы сходства, нормализация сходства, метри-
ческая определённость, длиннейшая общая подпоследовательность
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